EH zürich

Spatial Impulse Waves

Rock falls, landslides, shore instabilities, or snow avalanches may generate large water waves in oceans, bays, lakes, or reservoirs. These impulse waves, also referred to as tsunami-type waves, involve long-wave characteristics and may run-up the shoreline or overtop a dam, endangering thereby adjacent settlements and infrastructure.

Radially propagating wave front in the VAW wave basin

Videometric measurement of a radially propagating impulse wave train [mm]

The hydraulic processes related to landslide generated impulse waves have been extensively investigated at VAW during the past decades by means of physical scale model experiments. A set of governing dimensionless parameters was derived from the results. They include the slide Froude number F, the relative slide thickness S, the relative slide mass M and the slide impact angle α . These parameters are relevant for the description of the characteristics of the generated waves, and govern the so-called impulse wave parameter P describing the main wave features.

The previous research studies at VAW mainly focused on the investigation of a vertical two-dimensional experimental set-up in a laboratory flume. The primary objective of the current project is to study wave generation and propagation due to a granular slide impact within a three-dimensional model basin. A state-of-the-art videometry system is applied for tracking and analyzing the temporal and spatial wave surface patterns.

Main goals

- Investigating impulse wave patterns in a three-dimensional model basin
- Quantifying the effects on wave generation and propagation by varying selected parameters
- Extending existing formulas with three-dimensional calculation parameters

Keywords: Commissioned by: impulse wave, landslide, wave gauge, spatial wave propagation, videometry Swiss National Science Foundation Grant 200021-143657/1

