Basic Topspin commands for NMR at the BNSP

Action	Command [‡]	Comment						
Samples								
display lock window	lockdisp	adjust lock gain so lock is 80%						
ej ect sample	ej							
edit temperature	edte	enter target temperature						
inject sample	ij	check temperature before this!						
lock	lock	[90% H₂O/10% D₂O] or [D₂O] or						
		[Methanol-d4]						
optimize lock feedback loop	loopadj loopadj N where N is from 1-10 gives							
		slow to fast reaction time						
automatic tune/match module	atma	option exact slower but more accurate						
m anual tune/match module	atmm	adjust both tune & match to shift curve						
		from left to right last to avoid drifting						
read sh ims	rsh *.eth	read a recent shim						
automatic top spin shim ming	topshim gui	topshim (runs without opening gui)						
manually adjust lockphase & shims	bsmsdisp	software version of the lock panel						
	Experiments	· · · · · · · · · · · · · · · · · · ·						
edit current experiment	edc	NAME EXPNO PROCNO DIR						
•		/opt/topspin/ user /nmr						
		change user if copying parameters from						
		another user						
		Do not select checkbox "Keep						
		parameters"!						
read par ameters	rpar *.all	can filter e.g: rpar NA_*.all						
		also switch from bruker to user dir!						
write processed & acquired data	wrpa	can overwrite nmr data!						
edit pulsesequence parameters	ased	calculated parameters are shown in grey						
edit acquisition parameters	eda	includes parameters for indirect						
		dimensions of 2D,3D						
edit processing parameters	edp							
g o set up	gs	adjust 01 , rg , flipback pulses						
adjust parameters during		interactively						
measurement								
display cnst array	cnst	all constants						
display power level array	pl	all hard power levels						
display pulse length array	p	all pulse lengths (in us)						
display shaped pulse power array	spdb	all shaped pulses (name, power, etc)						
z ero g o (measure data)	zg	delete current experiment buffer and start						
		experiment						
Calibrations								
temperature calibration	calctemp	first process methanol spectrum						
	Calibrations							
90° hard pulse calibration	HCN90	enter logbook power levels to calibrate						
		atterwards write calibrations in logbook!						
set up DOTALL experiment	XXX90	set 90° hard pulses (p1,p3,p5 & pldb 1-						
	getetn	3)						
		set params e.g. shape pulse & dec pwr						
set up Bruker experiment getprosol 1H pl pldb1 13C p3 pldb2 15N p5 pldb3								

Standard high power pulses					
Channel	Power level	90° pulse	180° pulse		
1: H1	pldb1	p1	p2		
2: C13	pldb2	р3	р4		
3: N15	pldb3	p5	р6		
3: N15 (Bruker pulseq.)	pldb3	p21	p22		
See logbook for standard values					

Action	Command [‡]	Comment					
Processing data							
e xponential m ultiply	em	1b is linebroadening in Hz					
sine window multiply	sin	phaseshifted by π/ ssb					
		but ssb=0 is unshifted sine)					
q uadratic sin e window multiply	qsin	see above					
fourier transform 1D	ft	fourier transform only					
	fp	ft+pk					
	ef	em+ft					
	efp	em+ft+pk					
	qfp	qsin+ft+pk					
ph ase correction (interactive)	.ph	.sret (store phases, end phasing mode)					
apply p hase correction	pk	apply phc0 and phc1 to spectrum					
automated phase correction	apk	only for simple spectra like methanol					
Baseline correction	abs	absf1 & absf2 are range in ppm					
2D spectra							
display params of indirect dim	eda	displays sw , td , offsets o1 in all dims					
		td1 (# of fids) must be an even number!					
fourier transform 2D	xfb	FT both dimensions					
	xfb n	xfb and discard imaginary data					
	xf2	FT direct dim (F2)					
	xf1	FT indirect dim (F1)					
Baseline correction	abs2	baseline correct F2 dimension					
	abs1	baseline correct F1 dimension					
	3D spectra						
Fourier transform	tf3 n;tf2 n;tf1 n	FT dim F3,F2,F1 n =no imaginary data					
	ftnd 0	FT all dims in AQORDER					
	ftnd 0 dlp	FT all dim with delayed linear pred. (dlp)					
Baseline correction	tabs3;tabs2;tabs1	Baseline correct dim F3,F2,F1					
Extract data							
Extract fid from 2D ser file	rser N M	read fid N and store in expno=M					
read serial row	rsr N M	read row N and store in procno=M					
read serial column	rsc N M	read column from processed 2D					
If M is not included: fid/row/column is transferred to ~TEMP/1, overwriting what is there							

^{*}Many additional standard topspin commands are available as documented in the acquisition and processing manuals available from the Topspin's help button, or the BNSP website. In addition, there are a number of BNSP specific commands documented on the BNSP website. A few are given in the above table: **HCN90**, **xxx90**, **geteth**

Common procedures

Calibrate temperature

- 1. Create new experiment (**edc**)
- 2. Load parameter-set for temperature calibration (**rpar methanol4.eth**)
- 3. eject sample (**e j**)
- 4. insert methanol4.eth sample with yellow label (**ij**)
- 5. lock on methanol (**lock**) select [methanol-d4]
- 6. set temperature (**edte**)
- 7. read a recent shimfile (rsh *.setup) Steps 8-12 can be performed on one line: atma;topshim;zg;ef;apk;calctemp
 9. tune/metch (atma)
- 8. tune/match (**atma**)
- 9. shim (**topshim**)
- 10. measure data (**zg**)
- 11. process 1D (**ef;apk**)
- 12. calculate temperature (**calctemp**)
- 13. Adjust target temperature in edte and wait a few minutes
- 14. Repeat steps 7 to 10 until calibrated temperature = desired temperature
 - Now you can use this set temperature for all your samples
 - Temperature may still deviate from your desired value if experiment heats (e.g. decoupling, TOCSY)

Insert sample and set up 1D ¹H measurement

- 1. Create a new experiment (**edc**)
- 2. load experiment parameters (**rpar** *.eth) select zgpr.eth or zg-wg3919.eth
- 3. lock display (**lockdisp**)
- 4. eject sample (**ej**)
- 5. set temperature (**edte**)
- 6. insert sample (**ij**)
- 7. lock on H2O/D2O (**lock**)
- 8. optimize lock parameters for sample (**loopadj**)
- 9. tune and match probe (**atmm**)
- 10. read shims (**rsh *.eth**)
- 11. adjust lock or shims manually (**bsmsdisp**)
- 12. start automatic shimming (**topshim gui**)
- 13. set power levels: **pldb1** (¹H), **pldb2** (¹³C), **pldb3** (¹⁵N)
- 14. pulse length determination (**HCN90**)
 - If it fails due to low s/n, increase **ns**
 - After running **HCN90**, calibrate high pwr pulses for **DOTALL** or **ETH** datasets: **xxx90**
- 15. check and optimize experimental setup (**ased**)
- 16. interactively adjust parameters (**gs**)
 - Optimize **01** for solvent suppression
 - Optimize **rg** to be large, but avoid receiver overflow
- 17. record a spectrum (**zg**)
- 18. stop experiment (if lock drops rapidly stop measurement: **stop**)
- 19. end experiment early after completing current phase cycle: **halt**)
- 20. process the spectrum (1D: **efp**, 2D: **xfb**)
- 21. phase correct if necessary (.ph to start, .sret to store results)

Calibrate selective pulses for solvent flip-back

- Calibrate hard 90deg ¹H pulse using HCN90 (see procedure above) On 900 do this manually use zg experiment to measure 360° pulse & divide by 4.
- 2. Create a new experiment (**edc**)
- 3. Read flipback calibration parameter-set (**rpar flips.all**)
- 4. Enter hard 90deg ¹H pulse calibration (**xxx90**)
- 5. Display important parameters and adjust them (**ased**)
 - p11 flipback pulselength set to value appropriate for spectrometer
 - 01 set to optimized value determined in zgpr.eth experiment using gs
 - ZGOPTNS :

Type of flip pulse	ZGOPTN	Shape name *	Shape power	Phase correction	
flip down	- DDWN	spnam1	spdb1	phcor1	
flip up	- DUP	spnam2	spdb2	phcor2	
flip watergate	- DWG	spnam3	spdb3	phcor3	

* Use gauss128_5, Sinc1000, or rect1000 and geteth for *approximate* calibration Other shapes are possible, but then you must use **stdisp** for *approximate* calibration.

- 6. Calibrate shaped pulse powers to *approximate* values (**geteth**)
- 7. Interactively adjust shaped pulse pwr & phase correction to minimize solvent (spdb1, phcor11) (gs)
- 8. Write down the shaped pulse power and phase correction
- 9. Change to next type of flipback pulse (ZGOPTN: -DDWN, -DUP, DWG) and repeat steps 7-8

Setup and measure 2D (for bruker expt replace steps 3-4 with getprosol – see bottom of p.1)

- 1. Create a new experiment (**edc**)
- 2. Read 2D parameter-set (**rpar *.all**) and select 2D: E.g. HSQC15N.all
- 3. Enter high power pulse calibrations (**xxx90**, uses calibration from 1D above)
- 4. Setup 2D experiment automatically (geteth, calibrates decoupling, shapes, td1, td2)
- 5. Check main acquisition parameters (**ased**)
 - Check indirect dim acquisition parameters (**eda**) Important are:
 - decoupling should not be too high ~4W, for 123ms
 - No negative calculated delays
 - Indirect dim carrier (**o3p** for experiments with 15N in indirect, **o2p** for 13C)
 - Indirect spectral width in ppm (SW) F1
- 7. Run 2D (**zg**)

6.

- 8. Extract fid from 2D series (**rser** N) where N is fid number
 - FID is copied to 1D parameterset in ~TEMP/1
 - You can process this like the 1D described above, and store phases to 2D
 - Close window when done using x in upper right corner
- 9. Process direct (¹H) dimension of 2D (**xf2**)
- 10. Process indirect (¹⁵N) dimension (**xf1**)
- 11. Process both dimensions (**xfb**)
- 12. After initial 2D run with small number of scans (ns), adjust
 - **sw** (F1) and **o3p** (¹⁵N) or **o2p** (¹³C) to optimize spectral width to sample

Setup and measure 3D:

- 1. Steps 1-8, same as for 2D
- 2. process a 2D plane of 3D (with no evolution in one dim (**xfb**)
- 3. select orientation 13 or 23, and processing number 13 or 23
- 4. phase as usual for a 2D and store to 3D, close 2D by clicking on x at top right
- 5. revise **STSI** and **STSR** so strip FT selects region of interest in direct dim3
- 6. Enter **STSI** and **STSR** from step 2c above in 3D processing parameters
- 7. Process direct (¹H) dim (tf3 n)
- 8. Process indirect dim (tf1 n or tf2 n)
- 9. Process other indirect dim (tf2 n or tf1 n)
- 10. Steps 2-4 can be replaced by **ftnd N** or **ftnd 0 dlp**
- 11. The 3D can be viewed with 3D viewer after steps 4-7 to inspect results