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Abstract

Motivation: A detailed analysis of multidimensional NMR spectra of macromolecules requires the

identification of individual resonances (peaks). This task can be tedious and time-consuming and

often requires support by experienced users. Automated peak picking algorithms were introduced

more than 25 years ago, but there are still major deficiencies/flaws that often prevent complete and

error free peak picking of biological macromolecule spectra. The major challenges of automated

peak picking algorithms is both the distinction of artifacts from real peaks particularly from those

with irregular shapes and also picking peaks in spectral regions with overlapping resonances

which are very hard to resolve by existing computer algorithms. In both of these cases a visual

inspection approach could be more effective than a ‘blind’ algorithm.

Results: We present a novel approach using computer vision (CV) methodology which could be

better adapted to the problem of peak recognition. After suitable ‘training’ we successfully applied

the CV algorithm to spectra of medium-sized soluble proteins up to molecular weights of 26 kDa

and to a 130 kDa complex of a tetrameric membrane protein in detergent micelles. Our CV

approach outperforms commonly used programs. With suitable training datasets the application

of the presented method can be extended to automated peak picking in multidimensional spectra

of nucleic acids or carbohydrates and adapted to solid-state NMR spectra.

Availability and implementation: CV-Peak Picker is available upon request from the authors.

Contact: gsw@mol.biol.ethz.ch; michal.walczak@mol.biol.ethz.ch; adam.gonczarek@pwr.edu.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy has become a

standard technique in biological research. NMR applied on solu-

tions of biological macromolecules provides data on their structural

as well as dynamic properties and supplies detailed information on

molecular interactions. The analysis of the NMR spectra often still

includes substantial manual work even though a broad range of

automated procedures have been developed (Antz et al., 1995;

Carrara et al., 1993; Cieslar et al., 1988; Garrett et al., 1991;

Güntert, 2004; Herrmann et al., 2002; Herrmann et al., 2002;

Hiller et al., 2008; Jung and Zweckstetter, 2004; Kleywegt et al.,

1990). Automation of spectral analysis is particularly important in

NMR-based drug discovery where hundreds of two-dimensional

spectra are measured during screening of libraries of chemical

compounds (Coles et al., 2003; Hajduk et al., 1999; Pellecchia et al.,

2004; Pellecchia et al., 2008). Moreover, the increasing amount

of structural genomics and proteomics using NMR necessitate

fast automated procedures to alleviate the time-consuming

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2981

Bioinformatics, 31(18), 2015, 2981–2988

doi: 10.1093/bioinformatics/btv318

Advance Access Publication Date: 20 May 2015

Original Paper

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv318/-/DC1
http://www.oxfordjournals.org/


user-dependent classical analysis of spectra (Banci et al., 2010;

Baran et al., 2004; Parsons and Orban, 2004; Yee et al., 2006). A

rapid and robust user-independent pipeline in NMR data analysis

would relieve many NMR spectroscopists from routine tasks.

The first step in a fully computerized analysis of NMR spectra is

automated peak picking - a task that has attracted substantial interest

and there are numerous algorithms available (Abbas et al., 2013;

Alipanahi et al., 2009; Antz et al., 1995; Carrara et al., 1993;Cheng

et al., 2014; Garrett et al., 1991; Herrmann et al., 2002; Hiller et al.,

2008; Kleywegt et al., 1990; Koradi et al., 1998; Liu et al., 2012;

Tikole et al., 2014). And yet manual peak picking usually still pro-

vides superior results. Existing programs for automated peak picking

can suffer from limited ability to discriminate between signals, arti-

facts and noise requiring external intervention by experienced spec-

troscopists for an exhaustive recognition of all resonances.

In manual peak picking a researcher visually selects peaks with the

expected shapes that, from experience, represent real signals. Thus, he

relies on his prior knowledge about the appearance of real peaks as

local extrema in the spectrum. An analogous approach is used by peo-

ple to recognize solid objects in planar images, where small patches

are analyzed for the decision whether or not they contain an object.

Computer vision is a rapidly developing branch of computer science

that attempts to automate this process known as the object detection

problem. Computer vision techniques have been successfully applied

in many areas as e.g. in face detection (Ahonen et al., 2006; Viola and

Jones, 2004), for pedestrian detection (Sabzmeydani and Mori, 2007;

Tuzel et al., 2008), or car detection (Zheng and Liang, 2009; Cheng

et al., 2006). Object detection is usually a two-phase process, where

binary classification is followed by feature extraction from a local

image patch. Different image features (Viola and Jones, 2004; Ahonen

et al., 2006; Berg and Malik, 2001; Sabzmeydani and Mori, 2007;

Cheng et al., 2006) and binary classifiers (Freund, 2001; Breiman,

2001) are available. To our knowledge such an image processing ap-

proach has not been applied to automate peak picking in which it

could provide a reliable algorithm for the identification of peaks in

multidimensional NMR spectra.

In this work, we developed a peak picking algorithm based on

computer vision which uses a technique called Histogram of

Oriented Gradients (HOG) (Dalal and Triggs, 2005) as a feature ex-

traction procedure and Support Vector Machine (SVM) (Cortes and

Vapnik, 1995) as a binary classifier for reasons discussed later in the

text. As input, the CV-Peak Picker accepts any kind of spectra with

different data formats (Sparky [UCSF], Topspin [Bruker] or VNMR

[Agilent (Varian)]) and returns peak lists for a given spectrum in

Sparky format (http://www.cgl.ucsf.edu/home/sparky). The general

scheme of the CV-Peak Picker function is illustrated in Figure 1.

2 Methods

2.1 General strategy
The following features are used in CV-Peak Picker:

• Extrema selection: large numbers of potential peaks are identi-

fied in the spectra.
• Volume calculation: 3D/4D spectra are dissected into 2D layers

perpendicular to one/two axes and peak volumes calculated.
• Bounding box: largest and smallest peaks in 2D spectra are con-

fined by the largest and the smallest bounding boxes.
• Symmetrization: 2D symmetrization of peaks affords a deconvo-

lution of overlapped peaks.

• Shape mapping: peak shape is represented by Histograms of

Oriented Gradients (HOG) (Dalal and Triggs, 2005) and trans-

lated from pixel image to feature descriptor.
• Feature pyramid: combining features of the shape extracted with

bounding boxes of different sizes.
• Peak classification: all recognized and dispersed shapes are com-

pared with a training set consisting of manually identified shape

set that contains real peaks and peak artifacts; the comparison is

performed with Support Vector Machines (SVMs).

2.2 Extrema selection
The NMR spectrum is an array of pixels having individual inten-

sities; e.g. a 3D spectrum consists of intensity values Ix,y,z with the

Cartesian coordinates x, y, z along the three frequency axes. After

exclusion of a user-defined spectral band around the water reson-

ance the spectrum is scanned with a 3�3�3 pixel cube. First local

extrema are identified by the criterion that the central pixel has the

single largest or smallest value of all adjacent pixels. Then, the spec-

trum is cut into 2D layers perpendicular to one axis, and henceforth

it is analyzed layer-by-layer.

2.3 Volume calculation
For all extrema in a particular 2D layer the peak volume is defined

as the sum of the intensities of data points (pixels) in small areas

around the extremum starting with 3�3 pixels with the extremum

in the center. The number of pixels is iteratively optimized based on

the peak volume as proposed by Liu et al. (2012). The extrema are

sorted according to their absolute volumes starting with the largest

value. CV-Peak Picker analyzes N peaks per layer (default N¼500,

any N can be chosen). N was set based on 13C/15N-resolved 3D

NOESY spectra which provide a high dynamic range in volumes

and contain much more resonances than through-bond correlation

experiments including TOCSY. N must be larger than the expected

number of real peaks; larger N values increase the scanning time.

2.4 Bounding box
Peaks with absolute volumes above the cut-off value are tightly con-

fined by the bounding box (Fig. 1A) which varies in size between the

largest and smallest peak. Dimensions of the largest and smallest

bounding boxes are predefined by the user visually within a 2D layer

of the spectrum. The area of all bounding boxes is rescaled to the de-

fault size of 32�32 pixels (see Supporting Information for details).

The features will be extracted within the bounding box of the indi-

vidual peaks. The manual choice of the maximal and the minimal

bounding box affects the result in that the size of the bounding box

determines the accuracy and sensitivity of the resulting peak list. A

larger box increases the chances to pick all real peaks, but also

allows the algorithm to pick more artifacts.

2.5 Symmetrization
Overlapping peaks may strongly influence feature values and thus

cause significant irregularities in shape mapping. We empirically

found better accuracy in peak picking, when HOG features are ex-

tracted before and after symmetrization of a peak and thus, both are

included into the peak descriptor (Supplementary Fig. S1A). For

local symmetrization the following equation is applied:
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Fig. 1. Schematics showing the principle features of CV-Peak Picker. First, thousands of local extrema are identified in the 3D/4D spectrum (not shown) of interest.

Then the spectrum is dissected into 2D layers and peak volumes are calculated in individual layers. (A) Identified peaks are confined by the bounding boxes and

rescaled to the default size of 32�32 pixels. (B) The spectral data in the bounding box is transformed into feature space by shape mapping. A two-dimensional

local gradient is assigned to each pixel using Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005). For better stability local gradients are averaged

over non-overlapping cells with 4�4 pixels by trilinear interpolation (large black squares). Next, for each cell a histogram of gradient orientation is calculated: 9

histogram bins evenly distributed over 360� are filled by adding partial gradient magnitudes calculated using trilinear interpolation, i.e. each gradient magnitude

is distributed among two closest orientation bins in four adjacent cells according to Dalal and Triggs (Dalal and Triggs, 2005). Then cells are organized into blocks

consisting of 2�2 cells (blue square) and bin values normalized. (C) The resulting bin values obtained in (B) are added into final feature vectors. These feature

vectors (peak descriptors) are compared with the support vectors in the feature space. This comparison is performed using the Gaussian kernel and allows classi-

fication of the peak into the region of true peaks or peak artifacts in feature space. The flow of the algorithm is presented by solid black arrows, and elements of

the flow chart are indicated with dashed black arrows. Two main layers of the algorithm, HOG feature extraction and peak classification, are restrained by the sin-

gle brackets. In the program we actually use a total of 16 cells (4�4) cells each consisting of 64 (8�8) pixels. The scheme presented here is demonstrative and

for clarity we use 9 cells (3�3) each consisting of 16 (4� 4) pixels
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Iu;v ¼
maxf0;minfIdxe�u;dye�v; Ibxcþu;bycþvgg; if Ibxc;byc �0

minf0;maxfIdxe�u;dye�v; Ibxcþu;bycþvgg; if Ibxc;byc < 0

(

(1)

where x,y denote the coordinates of the bounding box center (which

can consist of non-integer values); b�c; d�e denote floor and ceiling

operators, respectively; the peak extremum is located in the pixel

(bxc,byc); the numbers (u,v) vary from b�0:5Mþ 1c to 0:5M, where

M denotes the width of bounding box after rescaling.

The symmetrized spectrum is subtracted from the original spec-

trum and an additional round of extrema selection is performed.

This provides a systematic detection of overlapped peaks.

2.6 Shape mapping
The crucial aspect in choosing the right features is their discrimina-

tive property, i.e. their values should differ significantly between

real peaks and artifacts. One pronounced difference is the shape of

the peaks. Real peaks usually exhibit a Lorentzian or Gaussian type

line shape unlike artifacts, which have varying shapes with less sym-

metry. For a peak descriptor we selected ‘Histogram of Oriented

Gradients’ (HOG) due to its flexibility in describing various irregu-

lar shapes. HOG was successfully applied in computer vision for ob-

ject detection in photographs (Dalal and Triggs, 2005; Felzenszwalb

et al., 2010). For the bounding box the vector field consisting of in-

tensity gradients is created (Fig. 1B). The horizontal gradient gH
l for

a pixel l is calculated from three consecutive pixels k, l, m with

intensities Ik, Il and Im, respectively, by

gH
l ¼ 0:5ðIm–IkÞ: (2)

The vertical gradients gV
l are calculated correspondingly.

Subsequently, vertical and horizontal gradients are combined so that

the magnitude of the resulting diagonal gradient gl, for each pixel l

equals:

gl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgH

l Þ
2 þ ðgV

l Þ
2

q
(3)

and its orientation is:

hl ¼ arctg
gV

l

gH
l

 !
(4)

For further evaluation, the gradient vector field within a bound-

ing box is divided into 16 non-overlapping cells with 8�8 pixels

each (Fig. 1B). Based on the cells the histogram of gradient orienta-

tion (HOG) is calculated. For the HOG the unit circle is divided into

9 equal parts forming the histogram bins. The bins are filled accord-

ing to the gradient orientations hl and the corresponding partial

magnitudes of the gradients are calculated by trilinear interpolation

(Dalal and Triggs, 2005). This interpolation makes the feature de-

scriptor less susceptible to small perturbations in the shape. To in-

crease the robustness of the feature descriptor even further, the

contribution of the noise must be minimized. To this end the cells

are grouped into blocks consisting of 2�2 cells. Final features are a

result of normalization of the histogram values in every single block

as described by Dalal and Triggs (2005).

2.7 Feature pyramid
The size of the bounding box depends on the peak size in a contour

plot which also represents its volume. The program uses K bounding

boxes with different sizes (for details see Supporting Information).

From the spectral information within individual bounding boxes

we extract features that we combine with a procedure called

feature pyramid (Lowe, 2004). Formally, the feature pyramid Ui is

defined by

Ui ¼ ð/i;1; . . . ;/i;KÞ (5)

where /i;k is a vector of extracted features for the peak ðxi; yiÞ using

the k-th area, where k ¼ 1; . . . ;K, for which we calculate exactly

the same features, i.e. HOG with and without symmetrization. To

confirm the reproducibility of the feature extraction procedure, the

peak previously confined by the bounding box, is rescaled to default

32�32 pixels (for details see Supporting Information).

2.8 Peak classification
From every feature pyramid Ui a sequence of real valued responses

fri;1; . . . ; ri;Kg can be extracted, in which larger ri;k values represent

stronger evidence that the peak is in the positive class (real peak),

the value of pi is set to the strongest response

pi ¼
1 if max k ri;k� r0

0 if max k ri;k < r0

;

(
(6)

where r0 is a constant threshold tuned by classifying a preliminary

referenced set of peaks (see Supplementary Fig. S1B). The classifier

is trained on a set of true peaks, where the correct size of the bound-

ing box was set manually. Consequently, it is highly probable that a

real peak with an improper bounding box size will be classified as

an artifact, because it is divergent from the real peaks in the training

set. However, at least one of the different bounding boxes used be-

tween the manually defined minimum and maximum, will be classi-

fied as highly positive.

To calculate the ri;k a classifier known as Support Vector

Machine (SVM) is used (Cortes and Vapnik, 1995). SVMs are cur-

rently one of the basic techniques in window-based object detection

where binary classification is used [along with AdaBoost and

Random Forests (Breiman, 2001; Freund et al., 1999)]. A major ad-

vantage is that they are fast and easily trained to obtain a robust

classifier. An SVM classifier has the following form

ri;k ¼
X

j

ajKð/i;k;/
ðjÞÞ þ a0; (7)

where aj denotes model parameters, Kð�;�Þ is defined in Equation (8),

and /ðjÞ are the reference descriptors, also called support vectors.

Model parameters and support vectors are obtained during the

SVM learning process based on a set of examplesn�
/ð1Þ; pð1Þ

�
; . . . ;

�
/ðNÞ; pðNÞ

�o
, the area of which is called here the

training set (Cortes and Vapnik, 1995).

Our training set consists of 7566 manually selected example

peaks which cover various shapes including both real peaks (3887)

and artifacts (3679). The set containing 13 spectra was created from

HNCO, HNCA, HSQC, CBCA(CO)NH, HNCACB experiments

measured with proteins that contained between 114 and 209

residues.

The peak descriptor (feature vector) is compared with support

vectors (Fig. 1C) using the Gaussian kernel

Kð/;/0Þ ¼ expð�ck/� /0k2Þ: (8)

With increasing similarity of the feature vectors the kernel

approaches its maximum value of 1. Thereby, the support vectors

that are similar to the feature vector, have higher impact on the re-

sponse. Thus, it is important to have a representative training set so

that the support vectors cover diverse regions in the feature space.
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The precision parameter c is tuned according to the standard pro-

cedures (see Supporting Information).

After the peak classification process the positively classified peaks

from all layers are entered into a three-dimensional peak list. This list

is imported into the program Sparky, the peak extrema are refined

by quadratic interpolation and the list is stored in Sparky format.

3 Results

We evaluated the CV-Peak Picker algorithm by comparing the re-

sults with those of established programs PICKY (Alipanahi et al.,

2009), WaVPeak (Liu et al., 2012) using a set of benchmark spectra

and additional spectra (Table 1). Spectra of only 3 proteins from the

original benchmark set were made available to us by the authors of

PICKY and WaVPeak. We also tested our CV based algorithm on a

set of different spectra obtained for proteins with molecular weights

from 13 to 130 kDa (Table 2) to test the high potential of the CV

software. All spectra were picked independently of any other spec-

trum or input, i.e. the number of artifacts will be reduced when com-

bining peak lists from different spectra which is necessary for

sequence specific assignments or structure calculations. For most

spectra all real peaks were correctly picked with a remarkably small

number of artifacts. In the evaluation of our results we used gener-

ally accepted statistical measures: precision, recall and F-measure.

Precision, P, and recall, R, are defined as P¼ (TP/(TPþFP))*100

and R¼ (TP/(TPþFN))*100, where TP stands for true positives

(‘real peaks’ which were classified as ‘true peaks’), FN stands for

false negatives (‘real peaks’ which were classified as ‘artifacts’) and

FP stands for false positives (‘false peaks’ classified as ‘real peaks’).

Combination of these two measures is represented as F-measure,

F¼2RP/(RþP), and allows for direct comparisons of performance

between different methods (Powers, 2011). Values of the F-measure

fall into the range from 0 to 100, where 100 represents highest per-

formance of the method.

Table 1. Comparison between the performance of the CV-Peak Picker, PICKY and WaVPeaka,b,c,d,e

aThe benchmark spectra were provided by Prof. Xin Gao, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia and Prof. Ming Li,

University of Waterloo, Waterloo, ON, Canada. The proteins COILIN, VRAR and HACS1 comprise 98, 72 and 74 amino acids, respectively.
bPerformance measures, Recall (R) and Precision (P), are defined in reference (Alipanahi et al., 2009); R¼TP/(TPþ FN)*100 and P¼TP/(TPþ FP)*100, where

TP stands for true positives (‘real peaks’ which were classified as ‘true peaks’), FN stands for false negatives (‘real peaks’ which were classified as ‘artifacts’) and

FP stands for false positives (‘false peaks’ classified as ‘real peaks’).
cF-measure is a value that combines precision and recall using harmonic mean. It ranges from 0 to 100, where 100 is the score for best performance. The last column

contains the difference of the F-measure of CV-Peak Picker and the higher F-measure value of two programs, PICKY and WaVPeakThe columns F-measure, Precision

and Recall contain double values for PICKY and WaVPeak. Colored values show difference of the parameter (F-measure, Precision and Recall) vs. value of this meas-

ure for CV-Peak Picker. Values colored in red show worse performance of the measure and in green better performance compared to CV-Peak Picker.
dSignal-to-noise (SNR) was calculated by dividing the mean of the real signals in the spectrum (excluding water signal) by the standard deviation of the intensity

of the noise.
eThe correlation coefficient was calculated with the standard function ‘Correlation Coefficient’ in Microsoft Excel.
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Table 1 compares the peak picking performance of CV-Peak

Picker, PICKY and WaVPeak on the set of benchmarked spectra as

introduced by (Alipanahi et al., 2009) and on more challenging spec-

tra selected by us. A comparison of the F-measures between CV-

Peak Picker, PICKY and WaVPeak shows that CV-Peak Picker per-

forms substantially better on each of the benchmark spectra. In the

same table correlation coefficient between F-measure and signal-to-

noise ratio is presented.

In Table 2, we summarize peak picking results for spectra which

are more challenging than the benchmark spectra. In two cases for

the highly overlapped spectra of the 130 kDa helical membrane pro-

tein KcsA alpha and of intrinsically disordered Nlgn-3, CV-Peak

Picker reaches F-measures of about 75. For the remaining proteins

high F-measure scores of approximately 95 are achieved. Exemplary

planes of these five spectra are shown in Supplementary Figure S2.

The reference peak lists for the spectra in Table 2, were obtained

from original peak lists (provided by the authors or found in assign-

ment papers) which we manually corrected as they contained only

assigned peaks and not all real peaks. The performance of CV-Peak

Picker is exemplified in Supplementary Figure S3 with six consecu-

tive cross sections of the HN(CO)CA spectrum of KcsA. Table 3 lists

the 3 parameters (1 obligatory and 2 optional) which must be set be-

fore running the CV-Peak Picker.

In the Supporting Information, we graphically represent the de-

pendence of the performance (F-measure) of CV-Peak Picker on the

selection of the size of bounding box (Supplementary Fig. S4) and

on the threshold value r0 (Supplementary Fig. S5). These figures

show that the values for the bounding box and r0 can be chosen in a

wide range without substantially changing the resulting peak list.

Further, in Supplementary Table S2, we provide average scanning

times per 2D layer of various 3D heteronuclear correlation spectra

measured with different proteins.

4 Discussion

The application of computer vision techniques for a peak picking

algorithm applied to NMR spectra described here, results in fully

automated peak recognition in a wide range of triple-resonance

spectra obtained with five different globular proteins with mo-

lecular weights between 13 and 26 kDa and a uniformly deuter-

ated tetrameric (4�17.5 kDa) alpha helical membrane protein in

detergent micelles (130 kDa in complex). Moreover it outper-

forms other currently used peak pickers as evaluated by bench-

mark spectra. Features and system requirements of the most

popular peak picking programs are presented in Supplementary

Table S1.

A standard measure used for comparison of the performance of

peak picking algorithms, the F-measure, is a combination of two

components: recall and precision. The precision measure contains

information on the excessively picked artifacts, while recall contains

information on missed real peaks. In practice, for structural studies

recall has significantly higher importance than precision as loss of

information (missed real peaks) often cannot be compensated and

thus it may lead to incomplete assignments. Conversely, excessively

picked artifacts are rather easily rejected in an assignment process.

In Table 1 the performance of CV-Peak Picker and WaVPeak as well

as PICKY are compared. CV-Peak Picker always has superior preci-

sion scores and overall F-measures. However, in ten cases CV-Peak

Picker reaches slightly worse recall scores than PICKY and/or

WaVPeak. Although these differences are relatively small, we

Table 2. Summary of the performance of the CV-Peak Picker on a set of selected NMR spectraa

Protein Protein

concentration (mM)

Spectrometer

frequency (MHz)

Probehead Spectrum F-measure Precision Recall

pRN1 primase-polymerase (Lipps et al., 2004) 0.8 700 cryoprobe HSQC 96 96 96

KcsA (Kent et al., 2007) 0.7 700 cryoprobe HNCOCA 77 81 73

FimAwt (Walczak et al., 2014) 1.2 750 room temp. HNCOCA 94 95 92

Nlgn-3 (Wood et al., 2012) 1.0 600 room temp. HNCACB 75 79 72

TM1290 (Etezady-Esfarjani et al., 2003) 1.5 750 room temp. HNCA 94 98 91

aProteins pRN1 primase-polymerase, FimA, Nlgn-3 (intrinsically disordered) and TM1290 comprise 209, 159, 127 and 116 amino acids, respectively. KcsA is

a homo-tetrameric protein with160 residues per subunit solubilized in detergent micelles.

Table 3. Complete list of CV-Peak Picker parameters that are specified by the user

Parameter Description Specification

Size of the scanning

window

Obligatory: Estimation of the proper size of the scanning

window is crucial for the scanning procedure. The peak

picker performs well if the side length of the window se-

lected by the user varies up to 6 50% from the optimal

one.

CV-Peak Picker offers an interactive tool which allows a

user to draw a scanning window on the contour plot of

the spectrum.

Threshold r0 Optional: The parameter can be used for fine tuning after

all peaks are evaluated using SVM. Often change of the

default value is not necessary.

The parameter can be adjusted using an interactive graph-

ical user interface, which updates visualization of the

scanning results in real time according to the value of r0.

Number of scanned

peaks per layer

Optional: The parameter is introduced exclusively for per-

formance optimization. A user can request to scan all

peaks in the spectrum (even small artifacts) by assigning

an arbitrarily large value to this parameter. Nevertheless,

scanning the biggest 500 peaks on each layer of a triple-

resonance spectrum is usually sufficient.

The parameter can be specified in the CV-Peak Picker con-

figuration file.
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speculate that a substantial increase of the number of peaks in the

CV-Peak Picker’s training set, might help reaching higher recall

scores. On the other hand, WaVPeak requires a preset number of

the expected real peaks in the spectrum, which results in a classifica-

tion of questionable peaks as real. Table 1 also presents a correlation

between the F-measure and the signal-to-noise ratio (SNR). CV-

Peak Picker reaches the similar F-measure at low SNR which is a

substantial advantage for its versatility and usefulness in real spectra

with suboptimal SNR.

The applications of CV-Peak Picker in this work demonstrate

that the analysis of NMR spectra of proteins with difficult, highly

overlapped spectra including IDPs or molten globules (Walczak

et al., 2014) can be fully automated. User attention can be focused

on validation of the results. We believe that highest accuracy can

be achieved by coupling our software with powerful assignment

programs as e.g. FLYA (López-Méndez and Güntert, 2006).

The methodology presented in this paper has high potential for in-

vestigations and analysis of NMR spectra of nucleic acids and

carbohydrates, and could be adapted for peak picking of solid state

NMR spectra.
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