Supplementary Material

Structure, Folding and Stability of FimA, the Main Structural Subunit of Type 1 Pili from Uropathogenic *Escherichia coli* Strains

Chasper Puorger¹, Michael Vetsch^{1, 2}, Gerhard Wider¹, and Rudi Glockshuber¹

¹ ETH Zürich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland
²Present address: M. Vetsch, Novartis Pharma AG, Biotechnology Development, 4002 Basel,
Switzerland

FimAw	t					
1	10	20	30	40	50	60
AATTVN	GGTVHFK	GEVVNAACAVD	AGSVDQTVQ	LGQVRTASLAÇ	EGATSSAVG	FNIQLND
	70	80	90	100	110	120
CDTNVA	SKAAVAF	LGTAIDAGHTN	VLALQSSAA	GSATNVGVQII	DRTGAALTLI	GATFSS
	130	140	150			
ETTLNN	GTNTIPF	QARYFATGAAT	PGAANADAT	FKVQYQ		
FimAa						
1	10	20	30	40	50	60
AATTVN	GGTVHFK	GEVVNAACAVD	AGSVDQTVQ	LGQVRTASLAÇ	EGATSSAVG	FNIQLND
	70	80	90	100	110	120
CDTNVA	SKAAVAFI	LGTAIDAGHTN	VLALQSSAA	GSATNVGVQII	DRTGAALTLI	GATFSS
	130	140	150	160	170	180
ETTLNN	GTNTIPF	QARYFATGAAT	PGAANADAT	FKVQYQGGGGG	GAATTVNGG	<u>rvhfkge</u>
<u>VVNA</u>						
E:ma+						
f TIIIWC	10		~~		50	C 0
T	TO	20	30	40 	50	00
	МНННННК	JEVVNAACAVD	AGSVDQTVQ	LGQVRTASLAQ	EGATSSAVG	SUTOTUD
~~~~~	70	80	90	100	110	120
CDTNVA	SKAAVAF		VLALQSSAA	GSATNVGVQII	DRTGAALTLI	JGATESS
	130	140	150			
ETTLNN	GINTIPF	JARYFATGAAT	PGAANADAT	ŀKVQYQ		

## Supplementary figure 1:

Amino acid sequences of FimAwt, FimAa and FimAt. The N-terminal (His)₆ tag in FimAt and the (Gly)₆-linker between the natural FimA C-terminus and the engineered, C-terminal donor strand in FimAa are indicated in italics, the C-terminal donor strand in FimAa is underlined. The amino acid numbering is according to the sequence of mature FimAwt.



Supplementary figure 2:

Far-UV CD spectra of FimAwt (a), FimAa (b) and FimAt (c) measured right after dilution (1:20) of unfolded protein (in 6 M GdmCl) with 10 mM sodium phosphate, pH 7.0, 200 mM NaCl buffer with (red) or without (blue) 6 M GdmCl. The measurement of one spectrum took less than three minutes. The black lines represent the corresponding spectra after several days of incubation in refolding buffer.



### **Supplementary figure 3:**

**Frequency of reported folding rates of model proteins.** 104 rate constants are covered in this plot (55 folding rates of two-state folders, 39 rates of formation of the native state and 10 rates of intermediate formation for non-two-state folders).³⁸⁻⁴⁴ The folding rate of FimA is indicated by the red bar. The solid blue line represents a fit according to a Gaussian function (fit does not include FimA).

### Table S1:

Contact order (CO), absolute contact order (ACO), and the number of sequence distant native pairs ( $Q_d$ ) describing the topological complexity of the FimAa structure[#].

	Value
CO (averaged over all structures)	13.5 %
CO (contacts present in all structures)	18.2 %
ACO (averaged over all structures)	22.6
ACO (contacts present in all structures)	30.4
Q _d (averaged over all structures)	201
$Q_d$ (contacts present in all structures)	145

[#] Since NMR structures are represented by a number of slightly different conformers representing the structure it is not straightforward to calculate the contact parameters. We used two approaches: calculation of the parameter for all conformers individually and take its average, as well as considering only those contacts that are present in all structures.