© 1993 Am. Chem. Soc. J. Am. Chem. Soc. v 115 p. 9307 Szyperski J-9308-M/ ## Supplementary material The figure S1 shows a 2D HNNCA spectrum obtained with a scheme derived from the ct-HNNCA pulse sequence of Grzsiek & Bax, 20 using the same sample and the same experimental conditions as described in Fig.1. A Bruker AMX 600 spectrometer equipped with four channels was used. 140 (t_1) * 512 (t_2) complex points were accumulated, with $t_{1max}(^{15}\text{N}, ^{13}\text{C}^{\alpha}) = 11.4 \text{ ms and } t_{2max}(^{1}\text{H}^{N}) = 65 \text{ ms. } 192 \text{ scans per increment were ac-}$ quired, resulting in a total measuring time of 17 hours. Phase-sensitive detection was achieved using States-TPPI ¹⁶ in t_I , so that peaks are observed at $\Omega(^{15}N) \pm \Omega(^{13}C^{\alpha})$ along the frequency axis ω_1 . Since in this experiment the chemical shift of $^{13}C^{\alpha}$ is not recorded in a phase-sensitive manner, the carrier of the pulses applied to $^{13}\mathrm{C}^{\alpha}$ was set to the edge of the spectral range covered by the $^{13}\mathrm{C}^{\alpha}$ -resonances in order to allow unambiguous assignments. The water signal was reduced by a purge pulse (see Fig. 2) and with the convolution method of Marion et al. 21 . The digital resolution after zero-filling was 24 Hz along ω_1 and $7.6\,Hz$ along ω_2 . Prior to Fourier transformation the data were multiplied with a cosine window in t_1 and a sine window shifted by 45° in t_2 .²² The spectrum was processed using the program PROSA. 23 (A) Contour plot. The peaks at the ω_2 amide proton frequency of Ile 38 are connected with a vertical line. (B) Cross section along ω_1 at $\omega_2(H^N)$ of Ile 38. Four peaks are observed in this cross section: one pair of peaks (solid arrow) represents the intraresidual connectivity between ^{15}N and $^{13}C^{\alpha}$ of residue Ile 38, the other one (dotted arrow) the sequential $^{15}N_{i}$ - $^{13}C_{i-1}^{\alpha}$ connectivity between Asp 37 and Ile 38. The $^{13}C^{\alpha}$ chemical shifts of Asp 37 (11.8 ppm) and Ile 38 (25.2 ppm) are relative to the ¹³C carrier position (40.1 ppm). The ¹⁵N chemical shift of Ile 38 (120.4 ppm), around which the pairs of peaks are centered, is indicated by a vertical arrow. "Reduced Dimensionality in Triple-Resonance NMR experiments" T. Szyperski, G. Wider, J.H. Bushwellwer and Kurt Wuthrich © 1993 Am. Chem. Soc. J. Am. Chem. Soc. v 115 p. 9307 Szyperski Fig. S1 Supplementary material, page 2