Assignment of the ${ }^{1} \mathrm{H}$ Nuclear Magnetic Resonance Spectrum of the Trypsin Inhibitor E from Dendroaspis polylepis polylepis

 Two-dimensional Nuclear Magnetic Resonance at 500 MHzAlexander S. Arseniey ${ }^{1} \dagger$, Gerhard ${ }^{2}$ Wider ${ }^{1}$
Frans J. Jocbert ${ }^{2}$ and Klet Wethrich ${ }^{1}$
${ }^{1}$ Institut für Molekularbiologie und Biophysik Eudgenössische Technische Hochschule ETH-Hönggerberg, CH-8093 Zürich, Switzerland
${ }^{2}$ National Chemical Research Laboratory, Pretoria, South Africa

(Received 18 January 1982, and in revised form 1 April 1982)

Abstract

The assignment of the ${ }^{1} \mathrm{H}$ nuclear magnetic resonance spectrum of the trypsin inhibitor \mathbf{E} from the venom of Dendroaspis polylepis polylepis is described and documented. A sample of 18 mg of the protein was investigated with twodimensional nuclear magnetic resonance experiments at 500 MHz . The assignments are based entirely on the amino acid sequence and the nuclear magnetic resonance data. Individual assignments were obtained for the backbone and C^{β} protons of all 59 residues of inhibitor \mathbf{E}, with the exceptions of the N -terminal amino group, Pro8, Prol3 and the amide proton of Gly37. The amino acid side-chain resonance assignments are complete, with the exception of Pro8, $\operatorname{Prol3}, \mathrm{C}^{y} \mathrm{H}_{2}$ of G lu49, all the lysyl and arginyl residues and the three histidyl residues 1, 34 and 53 , for which the imidazole ring proton lines have not been assigned individually. The chemical shifts for the assigned resonances are listed for an aqueous solution at $50^{\circ} \mathrm{C}$ and $\mathrm{pH} 3 \cdot 2$.

1. Introduction

This paper is part of a comparative nuclear magnetic resonance investigation of three protease inhibitors with molecular weights of 6500 to 7000 , i.e. the basic pancreatic trypsin inhibitor from bovine organs (Tschesche, 1974) and the trypsin inhibitors E and K from the venom of the snake Dendroaspis polylepis polylepis (Strydom, 1973; Joubert \& Strydom, 1978). As a basis for the determination of the three-dimensional structures in solution (Wüthrich et al., 1982), the ${ }^{1} \mathrm{H}$ n.m.r. \dagger spectra of these three proteins have been assigned, and this paper describes these data for the inhibitor E. The individual assignments for BPTI were published

[^0]recently (Wagner \& Wüthrich, 1982), and corresponding data for the inhibitor K will be presented in a forthcoming article. Work on the elucidation of the solution conformations of the three inhibitors is in progress in our laboratory.

In the three inhibitors selected for this project, one has on the one hand readily apparent sequence homologies, i.e. after proper alignment of the six homologous cysteinyl residues, 20 out of a total of 57 to 59 residues are invariant among the three species (Joubert \& Strydom, 1978). On the other hand, one finds numerous non conservative amino acid substitutions in the variant positions, e.g. Trp for Ala. or Pro for Ile and for Thr in positions that are located in regular β-sheet structure in BPTI. Preliminary circular dichroism and ${ }^{1} \mathrm{H}$ n.m.r. (unpublished work) spectral studies indicated that overall similar conformation types prevail for the three proteins. It appeared interesting, therefore, to obtain the data needed for a comparison of the solution conformations of these three species, since this should provide detailed insight into the influence of localized primary structure variations on the spatial structures. With regard to correlations between structure and function, it is an interesting starting point that two of the three homologous proteins are potent protease inhibitors, whereas inhibitor K has practically no protease inhibitory action (Joubert \& Strydom, 1978). Finally, work with these three proteins was ideal for further elaboration of the recently proposed novel techniques for spatial protein structure determination in solution (Wüthrich et al. 1982 ; Billeter et al., 1982 ; Wagner \& Wüthrich, 1982 ; Wider et al., 1982). While this new n.m.r. approach resulted largely from work with BPTI (Dubs et al., 1979: Nagayama \& Wüthrich, 1981 ; Wagner et al., 1981), the analysis of the inhibitors E and K , for which no data on the spatial structure are available, provided important tests for a variety of different aspects of the new procedures. With regard to future developments of protein ${ }^{1} \mathrm{H}$ n.m.r. studies, structural comparisons of the three inhibitors based on nearly complete individual resonance assignments should also provide new information on correlations between structure and n.m.r. parameters.
This paper describes and documents the assignment of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the inhibitor E with two-dimensional n.m.r. experiments. In contrast to the previously described corresponding results for BPTT (Wagner \& Wüthrich, 1982). where numerous resonance assignments had been obtained with conventional. onedimensional n.m.r. techniques (Wüthrich \& Wagner, 1979), all the assignments for the inhibitor E resulted from analysis of a small number of two-dimensional ${ }^{1} \mathrm{H}$ n.m.r. spectra recorded with a single sample of about 16 mg of the protein.

2. Materials and Methods

Trypsin inhibitor E was isolated from the venom of 1 . polylepis polylepis and purified as described (Strydom, 1976). In all, 18 mg of the toxin were available for the n.m.r. experiments. The total amount of the toxin was repeatedly dissolved and lyophilized to obtain approx. 0.007 m -solutions in 035 ml of the following solvents: (1$)^{2} \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{p}^{2} \mathrm{H} 27$. This sample was measured immediately after dissolving the protein in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$. so that the slowly exchanging interior amide protons could be observed (Wüthrich, 1976). (2) ${ }^{2} \mathrm{H}_{2} \mathrm{O}, \mathrm{p}^{2} \mathrm{H} 3 \cdot 2$. In this sample, the labile protons of the protein were replaced with ${ }^{2} \mathrm{H}$ by heating the solution to $55^{\circ} \mathrm{C}$ for I h , and the residual water protons were minimized by repeated lyophilization from ${ }^{2} \mathrm{H}_{2} \mathrm{O}$. (3) $90 \% \mathrm{H}_{2} \mathrm{O}+10 \%{ }^{2} \mathrm{H}_{2} \mathrm{O}$. pH $3 \cdot 2$.

The three 2 -dimensional n.m.r. experiments used to obtain the resonance assignments have been described in detail. They are 2 -dimensional correlated spectroscopy (COSY). which was recorded with the pulse sequence (Aue et al., 1976; Nagayama et al., 1980; Bax \& Freeman, 1981):

$$
\left[90^{\circ}-t_{1}-90^{\circ}-t_{2}\right]_{n} .
$$

where t_{1} and t_{2} are the evolution period and the observation period, respectively. To obtain a 2 -dimensional n.m.r. spectrum, the measurement is repeated for a set of equidistant t_{1} values. To improve the signal-to-noise ratio, n transients were accumulated for each value of t_{1}. At the end of each recording, the system was allowed to reach equilibrium during a fixed delay of 1.2 s . All the COSY spectra for this study were obtained from 512 measurements, with t_{1} values from 0 to 47 ms . Two-dimensional spin echo correlated spectroscopy (SECSY) used the pulse sequence (Nagayama et al., 1979,1980):

$$
\left[90^{\circ}-\frac{t_{1}}{2}-90^{\circ}-\frac{t_{1}}{2}-t_{2}\right]_{n} .
$$

The SECSY spectra were obtained from 512 measurements, with t_{1} values from 0 to 197 ms . Two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) used a sequence of 3 pulses (Jeener et al., 1979; Anil Kumar et al., 1980a):

$$
\left[90^{\circ}-t_{1}-90^{\circ}-\tau_{\mathrm{m}}-90^{\circ}-t_{2}\right]_{\mathrm{n}} .
$$

where τ_{m} is the so-called mixing time. The NOESY spectra used here were obtained from 512 measurements, with t_{1} values from 0 to 47 ms . Mixing times of 50,100 and 200 ms were used. To suppress contributions from coherent magnetization transfer to the cross peak intensities, the 50 ms and 100 ms mixing times were stochastically modulated with a modulation amplitude corresponding to 10% and 5% of τ_{m}, respectively (Macura et al., 1981).

The 2 -dimensional n.m.r. spectra were recorded at 500 MHz on a Bruker WM 500 spectrometer. Quadrature detection was used, with the carrier frequency at the low field end of the spectrum. To eliminate experimental artifacts, groups of 16 recordings with different phases were added for each value of t_{1} (Nagayama et al., 1979,1980). For measurements in $\mathrm{H}_{2} \mathrm{O}$. the solvent resonance was suppressed by selective, continuous irradiation at all times except during data acquisition (Anil Kumar et al., 1980b). To end up with a 1024×1024 point frequency domain data matrix for COSY and NOESY, which corresponds to the digital resolution given in the Figure legends, the time domain matrix was expanded to 2048 points in t_{1} and 4096 points in t_{2} by "zero-filling". For the SECSY spectra, the time domain matrix was expanded to 2048×4096 data points. Prior to Fourier transformation, the time domain data matrix was multiplied in the t_{1} direction with a phase shifted sine bell, $\sin \left(\pi\left(t+t_{0}\right) / t_{\mathrm{s}}\right)$, and in the t_{2} directions with a phase shifted sine-squared bell. $\sin ^{2}\left(\pi\left(t+t_{0}\right) / t_{\mathrm{s}}\right)$. The length of the window functions, t_{s}, was adjusted for the bells to reach zero at the last experimental data point in the t_{1} or t_{2} direction, respectively. The phase shifts, t_{0} / t_{s}, were $1 / 16$ and $1 / 64$ in the t_{1} and t_{2} directions, respectively. All the spectra are shown in the absolute value representation.

3. Results and Discussion

The complete primary structure of the inhibitor \mathbf{E} from D. polylepis polylepis is known (Joubert \& Strydom, 1978), but no spectroscopic data have been published. This section therefore starts with a qualitative survey of the n.m.r. spectral properties, followed by a description of the experiments used to obtain individual ${ }^{1} \mathrm{H}$ n.m.r. assignments.

(a) ${ }^{\prime} H$ n.m.r. spectra of the inhibitor E '

The ${ }^{1} \mathrm{H}$ n.m.r. spectra used for the resonance assignments were recorded from solutions in $\mathrm{H}_{2} \mathrm{O}$ or ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ at $\mathrm{pH} 3 \cdot 2$ and at temperatures between 25 and $50^{\circ} \mathrm{C}$. At this slightly acidic pH value, one is at or near the minimum rates for the exchange of the polypeptide amide protons with the solvent (Englander et al., 1972; Richarz et al., 1979). The denaturation temperature at $\mathrm{pH} 3 \cdot 2$ was found to be $79^{\circ} \mathrm{C}$ from the temperature dependence of the circular dichroism spectrum. Thus, the globular conformation of the protein was preserved under the conditions used for the n.m.r. experiments. The temperature dependence of the aromatic resonances further showed that at $50^{\circ} \mathrm{C}$ and $\mathrm{pH} 3 \cdot 2$ all the phenylalanine and tyrosine rings in the inhibitor E are, with the single exception of Tyr35, sufficiently mobile to give symmetric $\mathrm{A}_{2} \mathrm{M}_{2} \mathrm{X}$ and $\mathrm{A}_{2} \mathrm{X}_{2}$ spin systems (Wüthrich, 1976). At $25^{\circ} \mathrm{C}$, asymmetric spin systems were observed for Phe21, Tyr23, Tyr35 and Phe 45 , which thus have only limited rotational mobility at this temperature (Campbell et al., 1975,1976; Wüthrich \& Wagner, 1975; Wagner et al., 1976).

A survey of the n.m.r. spectral properties of the inhibitor E is presented in Figures 1 to 6 (the resonance assignments indicated in these Figures will be discussed later). COSY and SECSY spectra recorded in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ after complete exchange of all labile hydrogen atoms (Figs 1 to 4) were used to identify the spin systems of the amino acid side-chains. As discussed in detail elsewhere (Aue et al.. 1976; Bax \& Freeman, 1981; Nagayama \& Wüthrich, 1981; Wider et al., 1982), both COSY and SECSY manifest connectivities between J-coupled protons. While fundamentally the two experiments thus provide the same information, practical experience has shown that more extensive and more reliable information on the amino acid spin systems in proteins is obtained from combined use of the two techniques. This is mainly a consequence of the different spectral resolution that arises from the combined effects of the different geometric arrangement of the J coupling fine structure components in COSY and SECSY cross peaks (Nagayama et al., 1980) and the higher digital resolution that is generally applied for SECSY (Nagayama et al., 1979). Figures 1 and 2 show the complete COSY spectrum, and Figures 3 and 4 show the complete SECSY spectrum of the inhibitor E in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$. It is seen that both spectra contain a large number of resolved cross peaks, which connect individual groups of J -coupled protons. At the digital resolution selected for these experiments, the cross peaks in COSY have largely unstructured, square shapes, whereas the \mathbf{J} coupling fine structure is readily apparent in most of the SECSY cross peaks.

A COSY spectrum was also obtained from a freshly prepared solution of the inhibitor E in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$, where only the solvent-accessible labile protons of the polypeptide were replaced by deuterium before the spectrum was recorded. Compared to the spectrum in Figures 1 and 2, the only additional cross peaks in a COSY spectrum obtained from such a sample are those linking unexchanged amide protons with the C^{α} protons of the same residues. The spectral region that contains these cross peaks is shown in Figure 5. Since each amino acid residue can give rise to only one NH-C ${ }^{\alpha} \mathrm{H}$ cross peak (except for Gly, which gives generally 2 peaks with identical NH chemical shifts, and Pro and the N -terminal residue, which give

Fiti, 1. Contour plot of the spectral region for -0.8 to 6 p.p.m. of a $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ COSY spectrum of a 0.007 m solution of trypsin inhibitor E from D , polylepis polylepis in ${ }^{2} \mathrm{H}_{2} \mathrm{O}, \mathrm{p}^{2} \mathrm{H} 3-2$ at $50^{\circ} \mathrm{C}$. The digital resolution is 53 Hz point. The spectrum was recorded in approx. 22 h . The strong vertical noise band at 4.5 p.p.m. is at the chemical shift of the residual water protons. Proton-proton J connectivities are indicated for the following amino acid side-chains: Thr3 (---) Ala9 (\cdots) Alalf. Ala20, Asn24 (- - -), Ala26. Ala27, Ala42, His53, Ala54, Val56 (--). In order not to overcrowd the Figure, only the $C^{\alpha} H-C^{\beta} \mathrm{H}_{\mathrm{n}}$ cross peaks are identified for the $\mathrm{A}_{2} \mathrm{X}$ and $\mathrm{A}_{3} \mathrm{X}$ spin systems in the lower right triangle.

Fif. 2. Confour plot of the region from 62 to 7 g p.p.m. of the same (OSY spectrum as in Fig. \& J connectivities are indicated for the following aromatic spin
 observed in a NOESY spectrum resorded in $\mathrm{H}_{2} \mathrm{O}$ and with identical parameters as Fig. 6. except that the temperature was 50 C and the mixing time was

($w \cdot d$ d $) ~ \& \nabla$

$$
88-\bar{N}
$$

Fig. 4. Contour plot of the region from 6.3 to 8.7 p.p.m. of the same SECSY spectrum as in Fig. 3. The J connectivities are indicated for the following aromatic spin systems: Phe21 (---). Tyr22 ($\cdot \cdots$). Tyr23 (----). Phe4 or Phe33 (——: see the text and Table 1) and the 3 histidyl residues, which have not been assigned individually and are therefore marked HI (---). HII (---) and HIII (----). At the top of the Figure, the spin system of Tyr35, which was identified in the 1 -dimensional spectra (see the text), is indicated.
none), we conclude that at $25^{\circ} \mathrm{C}$ and $\mathrm{p}^{2} \mathrm{H} 2 \cdot 7$ (Fig. 5), the inhibitor E contains 24 slowly exchanging amide protons. In a COSY spectrum recorded in slightly acidic $\mathrm{H}_{2} \mathrm{O}$, where all the polypeptide backbone amide protons are preserved, the number of $\mathrm{NH}-\mathrm{C}^{\alpha} \mathrm{H}$ cross peaks coincided closely with that expected from the amino acid sequence of the inhibitor \mathbf{E} (see Figs 11 and 17). This "fingerprint" of the protein structure thus showed that nearly all the residues could be resolved in the ${ }^{1} \mathrm{H}$ n.m.r. spectra.

NOESY spectra of the inhibitor E recorded in $\mathrm{H}_{2} \mathrm{O}$ (Fig. 6) or ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ contain numerous cross peaks in all the different regions. For example, it is readily seen in

NH
Fuc. 5. Spectral region ($\omega 1=19$ to 60 p.p.m.. $\omega 2 \doteq 63$ to 10.7 p.p.m.) of a $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ COSY spectrum of a 0.007 m solution of the trypsin inhibitor E in ${ }^{2} \mathrm{H}_{2} \mathrm{O}, \mathrm{p}^{2} \mathrm{H}=2.7$ at $25^{\circ} \mathrm{C}$; digital resolution $53 \mathrm{~Hz} /$ point. The spectrum was recorded from 20 to 44 h after the solution had been prepared. The resonance of the residual solvent protons was suppressed by weak, selective irradiation so that no cross peaks were bleached out. The assignments for the individual cross peaks are indicated by the 1 -letter symbol for the amino acid residue and the position in the amino acid sequence.

Figure 6 that there are nuclear Overhauser enhancement connectivities linking the high field methyl resonance at -0.56 p.p.m. with aromatic protons near 7 p.p.m., and aromatic protons and backbone amide protons between 6.5 and 10.6 p.p.m., with a large number of aliphatic side-chain protons and C^{α} protons between 0 and 6 p.p.m. Since the through-space proton-proton connectivities determined by NOESY have a pivotal role for both the individual resonance assignments and the determination of the conformation, a good NOESY spectrum, such as that in Figure 6, is an essential spectral property for a protein to be amenable for structure determination by ${ }^{1} \mathrm{H}$ n.m.r.

FIf, 6 Contour piot of a $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NOESY spectrum of a 0.007 m solution of trypsin inhibitor E in $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 32$ at $45^{\circ} \mathrm{C}$. The digital resolution is $53 \mathrm{~Hz} /$ point. The spectrum was recorded in approx, 22 h and a mixing time of 200 ms was used. The strong vertical noise band at $45 \mathrm{p} . \mathrm{p} . \mathrm{m}$. is at the chemical shift of the water, which was suppressed by selective irradiation as described in Materials and Methods.
(b) Identification of complete amino acid side-chain spin systems before sequential assignment of the polypeptide backbone protons

Here, the spin systems of different types of amino acid residues are identified. From this first step of the spectral analysis, assignments to specific positions in the amino acid sequence are obtained only when there are single residues of a given type, such as Val56 in the inhibitor E .

The COSY and SECSY spectra of the inhibitor E in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ solution were sereened for the cross peak patterns that are characteristic for the different types of amino acid residues (Wider et al., 1982; Nagayama \& Wüthrich, 1981). The identifications of the non-aromatic amino acid spin systems are documented in Figures 1, 3 and 7 to 9 , and those for the aromatic rings in Figures 2 and 4. In these Figures, the individual assignments obtained as a final result of all the experiments described in this paper are given, and the connectivities are also indicated for the spin systems that were identified only after the sequential assignments of the backbone protons had been obtained.

Flic. 7 . Contour plot of the region from 1.6 to 51 p.p.m. of the same SECSY spectrum as in Fig. 3. The
 residues the $\left({ }^{\beta} \mathrm{H}_{2}-\mathrm{Cl}^{y} \mathrm{H}_{2}\right.$ connectivities are shown in Fig. 8, Cys $(--)$. Cysl4 (---) and Trp25 (\cdots). In order not to overcrowd the Figure. only the (${ }^{\alpha} \mathrm{H}-\mathrm{C}^{\beta} \mathrm{H}_{2}$ cross peaks of the AMX spin systems of serl7. His 34 . Asn41, Asn43 and Cys51, and the $A_{2} X$ spin system of Phe4 are identified.

Firi. 8. Contour plot of the region from 1.6 to 24 p.p.m. of the same SE 2 (s) spectrum as in Fig. 3. The
 for the (${ }^{\alpha} \mathrm{H}-\left({ }^{\rho} \mathrm{H}_{2}\right.$ connectivities of these residues.)

The spin systems that were identified completely in the initial analysis of the COSY and SECSY spectra are those of the five glyeyl (Fig. 9), seven alanyl (Fig. 1), and two threonyl residues (Figs 1 and 3). Val56 (Fig. 1), the five-proton system that was later assigned to Glul0 (Figs 7 and 8), and 18 of the $22\left(^{\alpha} \mathrm{H}-\mathrm{C}^{\alpha} \mathrm{H}_{2}\right.$ three-spin systems (Figs 1, 3 and 7), i.e. all except those which were later found and assigned to Phe4, Asn41. Asn43 and Cys5l (Fig. 7). All the aromatic spin systems were identified as indicated in Figures 2 and 4. An intermediate state of mobility (Wagner et al.. 1975; Wüthrich, 1976) was observed for Tyr35 at $50{ }^{\circ}$ (. where the $\mathrm{C} 3,5 \mathrm{H}$ resonances are equivalent but the $\mathrm{C} 2,6 \mathrm{H}$ lines are non-equivalent and are too broad to be seen in the spectra of Figures 2 or 4. This spin system (Fig. 4) was unravelled by one-dimensional spin decoupling difference spectra.

(c)Sequential resonance assignments for the polypeptide backbone protons

A general strategy based on stereochemical considerations of polypeptides (Dubs et al., 1979; Billeter et al., 1982) and the use of two-dimensional n.m.r. for the practical realization (Wagner et al., 1981; Wagner \& Wüthrich, 1982; Wider et al., 1982) of sequential, individual resonance assignments have been described in detail. Here, we follow closely the procedures outlined in these earlier papers. The crucial quantities for this method of assignment are the distances d_{1}, d_{2} and d_{3} between the amide proton of residue $i+1$ and the C^{α} proton, amide proton and ${ }^{\beta}$ protons. respectively, of the preceding residue i (Fig. 10). The intrinsic reliability of the identification of sequentially neighbouring amino acid residues is of the order of 80% when it is based on the observation of one of these through-space connectivities, and $\gtrsim 90 \%$ when it is based on any two of the three connectivities (Billeter et al., 1982). Additional checks of the sequential assignments are obtained with the use of the previously identified amino acid side-chain spin systems. For example, when starting with the unique valyl residue in position 56 of the inhibitor E, one knows from the amino acid sequence (Fig. 11) that sequential assignments in the direction towards the C terminus must lead to Cly, and in the N -terminal direction to Cys-Ala-His- . . . Or, once sequential assignments including any of the seven alanyl residues in the inhibitor E extend over two to four residues, these segments can be located uniquely in the sequence, and further sequential assignments can then again be checked against the amino acid sequence.

Figure 11 presents a survey of the sequential assignments obtained in the inhibitor E, and the chemical shifts for the assigned resonances are listed in Table 1. It is seen that nearly complete assignments were obtained, and that most of the sequential connectivities are based on observation of either d_{1} and d_{3}, or d_{2} and d_{3}. The first stretch of continuous assignments extends from residues -1 to 6 . Between residues 6 and 7 there are no d_{1} and d_{3} connectivities, and the d_{2} cross peak would be too close to the strong diagonal peaks to be identified unambiguously (see Table 1). The connectivities with Pro8 and Prol3 could not be

Fic: 10. Polypeptide backbone segment. The through-space distances d_{1}, d_{2} and d_{3} are indicated by arrows. The broken lines indicate through-bond I comoctivities between hydrogen atoms of the same residue.

Fic. 11. Amino acid sequence of trypsin inhibitor \mathbf{E} from D. polylepis polylepis and survey of the sequential connectivities by which the individual resonance assignments listed in Table 1 were obtained In order to have identical numbers for the homologous Cys residues as in basic pancreatic trypsin inhibitor, the numeration starts with Leu-1, Gln0, Hisl. Vertical-lined boxes, sequential assignments via d_{1} (NOE from NH_{i+1} to $\left({ }^{11} \mathrm{H}_{\mathrm{i}}\right)$; horizontal-lined boxes, sequential assignments viad $\left(\mathrm{NOE}\right.$ from NH_{i+1} to NH_{i}); hatched boxes, sequential assignments ma d_{3} (NOE from NH_{i+i} to $\mathrm{C}^{\beta} \mathrm{H}_{i}$); broken box, sequential assignments via NOEs from proline $C^{d} \mathrm{H}_{i+1}$, to $\mathrm{C}^{3} \mathrm{H}_{1}$. O and , the individual assignment relied primarily on the identification of the complete spin system of the amino acid residues without or with the amide proton. respectively. Once all but one residue of a given type have been assigned, this information is obviously sufficient for the individual assignment in the amino acid sequence. even when none of the connectivities d_{1}. d_{2} or d_{3} could be established. The arrows indicate locations where all the resonances were assigned but the connectivity between 2 neighbouring residues was not established. The signs above the sequence indicate the residues for which the amide protons were also observed in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ solution (\square) and where the sequential connectivities were obtained in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ solution (- $)$. The spectrum in ${ }^{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{Fig}$. 5) was recorded from 20 to 44 h after the solution was prepared at $25^{\circ} \mathrm{C}$ and $\mathrm{p}^{2} \mathrm{H} 2.7$.
established, but the tetrapeptide segment between these two residues was assigned completely. All backbone $\mathrm{NH}, \mathrm{C}^{\alpha} \mathrm{H}$ and $\mathrm{C}^{\beta} \mathrm{H}$ lines were assigned for the segment comprising residues 14 to 36 , but two connectivities could not be established. Between Lysl5 and Alal6, d_{3} was absent and d_{1} and d_{2} would not have been sufficiently well-resolved to provide unambiguous evidence for the connectivity. Between Trp25 and Ala26, d_{1} was absent and d_{2} and d_{3} would not have been sufficiently well-resolved. For Gly37, the amide proton-C ${ }^{\alpha} \mathrm{H}_{2} \mathrm{~J}$ cross peaks could not be observed. A final stretch of continuous assignments extends from residue 38 to the C-terminal Gly57. The sequential connectivities are documented in Figures 12 to 16. whereby at least one connectivity is shown for each pair of neighbouring residues.

Figures 12 to 14 show d_{1} connectivities in the inhibitor E. In the combined COSY-NOESY connectivity diagrams (Wagner et al. 1981), the region of the NH(${ }^{\text {co }} \mathrm{H}$ cross peaks in the upper left triangle of a NOESY spectrum (Fig. 6) is

Table 1
Chemical shifts, $\delta^{\text {a }}$, of the assigned ${ }^{\prime} H$ NMR lines of the trypsin inhibitor E from D. polylepis polylepis $p H 3 \cdot 2, \mathrm{t}=50^{\circ} \mathrm{C}$.

Amino acid Residue	$\delta(\pm 0.01 \text { p.p.m. })^{\text {a,b }}$			
	NH	${ }^{(1)} \mathrm{H}$	$\left(^{\prime 3} \mathrm{H}\right.$	Others
Leu-1		400	1.62.162	(${ }^{(1)} \mathrm{H} 156$
				${ }^{(18} \mathrm{H}_{3} 0.87,0.87$
Glno	8.54	433	200.191	$\left({ }^{9} \mathrm{H}_{2} 2 \cdot 29.2 \cdot 29\right.$
				$\mathrm{N}^{4} \mathrm{H}_{2} 8.15 .791$
His!	8.53	$4 \cdot 68$	3\%26. 3114	
Arg2	8.36	424	1-15, 157	
Thr3	$8 \cdot 13$	$3 \cdot 81$	4.16	$\left({ }^{2} \mathrm{H}_{3} \mathrm{l} \cdot 20\right.$
Phe 4	$7 \cdot 16^{\text {d }}$	$4 \cdot 49$	3/13.3.13	(2.6 2 T 11
				(3.5H 7.01 or 7.48° ($4 \mathrm{H}_{6} 68$ or $7.40^{\text {e }}$
Cys5	7:35	4.46	$3 \cdot 24.296$	
Lys6	7.04	$4 \cdot 24$	134	
Leu7	$718{ }^{\text {d }}$	445	198.207	$\begin{aligned} & { }^{(9 y} \mathrm{H}_{1} 1 \cdot 88 \\ & { }^{\circ} \mathrm{C}_{3} \mathrm{I} \cdot 08 \cdot 0.96 \end{aligned}$
Pro8				
Ala 9	731	350	-0.56	
Glulo	7.73	4.94	1.93, 1.73	${ }^{9} \mathrm{H}_{2} 2 \cdot 14.2 \cdot 14$
Proll		$4 \cdot 77$	2.90, 2.30	$\mathrm{C}^{7} \mathrm{H}_{2} 2334.2 \cdot 19$
				(\% $\mathrm{H}_{2} 3998.356$
Glyl2	862	$4 \cdot 22,4.05$		
Prol3				
Crsl4	$9 \cdot 12^{\text {d }}$	4:54	3.40. $2 \cdot 84$	
Lys15	787	$4 \cdot 46$	1:58	
Alal6	8.04	434	$1 \cdot 20$	
Serl7	8.10	$4 \cdot 5$	3.66. 3.41	
Ile 18	8.79	$4 \cdot 4$	187	$\left({ }^{(7)} \mathrm{H}_{2}\right. \text { 145, 1.06 }$
				$\begin{aligned} & { }^{(y} \mathrm{H}_{3} 0.94 \\ & { }^{\dagger} \mathrm{H}_{3} 0.72 \end{aligned}$
Prol9		$4 \cdot 16$	1.99. 185	(\% $\mathrm{H}_{2} 2 \cdot 25.194$
				$\left({ }^{*} \mathrm{H}_{2} 4.03 .380\right.$
Alaz0	$8 \cdot 25$	4.40	$0 \cdot 81$	
Phe21	$9 \cdot 10$	577	2.86. $2 \cdot 72$	(2.6H 6.77
				(3.5H 7.34
				(4H $7 \cdot 34^{\text {f }}$
Tyrz2	$9 \cdot 72$	519	2.86. $2 \cdot 81$	(9,6H 7.02
				(3.5H 6.64
Tyr23	$10 \cdot 44$	436	360.283	(2.6H 7.41
				(3.5H 6.44
Asn24	8.02	4.46	2.82. $2 \cdot 04$	$\mathrm{N}^{8} \mathrm{H}_{2} 763.687$
Trp25	7.97	394	$3 \cdot 74.330$	N1H $10 \cdot 13$
				(2H 7.33
				(4H7:57
				(5H703
				66H7.18
				(7\% 7.54
Ala26	782	389	$1 \cdot 29$	
Ala27	7.05	$4 \cdot 13$	$1 \cdot 10$	
$1, \mathrm{ys} 28$	7.72	3-41	1.99.1.74	
Lys 29	6.70	457	1.71.146	
Cys30	8.80	535	343.2.59	

Table l-cont.

Amino acid residue	$\delta(\pm 0.01 \text { p.p.im. })^{\text {a.h }}$			
	NH	$\mathrm{C}^{\text {a }} \mathrm{H}$	$\mathrm{C}^{\beta} \mathrm{H}$	Others
(iln31	936	$4 \cdot 80$	2.07, 173	${ }^{(2)} \mathrm{H}_{2}$ 2.24. 2.24
				$\mathrm{N}^{c} \mathrm{H}_{2} \mathbf{7}$-46. 7110
Leu32	$8.35{ }^{\text {d }}$	450	$1.52,1.41$	$\mathrm{C}^{2} \mathrm{H} 1 \cdot 18$
				${ }^{\circ}{ }^{8} \mathrm{H}_{3} \mathbf{0} 505.049$
Phe33	$9 \cdot 69$	$4 \cdot 82$	3.11,3.11	C2,6H $7 \cdot 11$
				C3.5H 7.48 or $7.01{ }^{\text {e }}$
				C4H 681 or $7.40{ }^{\text {e }}$
His:34	$8 \cdot 19$	$4 \cdot 72$	3.00. $2 \cdot 69$	c
Tyr35	$9 \cdot 10$	$4 \cdot 62$	256. 2.35	$\begin{aligned} & \mathrm{C} 2.6 \mathrm{H} 7.11 .702 \\ & \mathrm{C} 3.5 \mathrm{H} 6.64 \end{aligned}$
(1).36	8.73	4.16. 334		
Qly37		4.19.3.00		
(Y 8388	$7 \cdot 64$	491	390. $2 \cdot 86{ }^{8}$	
Las39	$9 \cdot 10$	388	2.07, 1.91	
(ily 40	8.39	4.39, 3.88		
Asn41	$7 \cdot 15$	$4 \cdot 84$	3.18. 2.79	$\mathrm{N}^{\delta} \mathrm{H}_{2} 8.16 .7 .91$
Ala 42	7.52	396	0.98	
Asn 43	7.87	$4-82$	312, 300	$\mathrm{N}^{\delta} \mathrm{H}_{2} 8.04$
Arg44	6.52	477	151, 133	
Phe45	$9 \cdot 61$	5.06	327. $2 \cdot 69$	(2.6H 7-17
				C3,5H 7.68
				C4H 742
Ser 46	$9 \cdot 27$	4.69	413.405	
Thr47	$7 \cdot 15$	4-82	457	${ }^{(2)} \mathrm{H}_{3} 1 \cdot 26$
Ile48	$8 \cdot 26$	303	0.66	$\mathrm{C}^{2} \mathrm{H}_{2} 0779.079$
				${ }^{(2)} \mathrm{H}_{3} 0.66$
				${ }^{\circ}{ }^{\delta} \mathrm{H}_{3} 0.70$
(${ }^{\text {lu4 }} 9$	8.00	381	196.1.81	
Less 0	761	392	2.07. 1.91	
Cysal	$6 \cdot 89$	$2 \cdot 10$	319.294	
Argis	$8 \cdot 46$	$3 \cdot 66$	1.78.1.67	
1 Lisio 3	8-18	4×30	318.318	c
Alais 4	$7 \cdot 30$	$4 \cdot 22$	1.52	
Crs5\%	747	468	192.1.75	
Val56	7.97	3.91	2.17	${ }^{(2} \mathrm{H}_{3} 0 \cdot 90.0 .90$
(19.97	787	378, 360		

a The chemical shifts. δ. are relative to internal sodium 3 -trimethyl-silyl-[2,2,3,3- $\left.{ }^{2} \mathrm{H}\right]$-propionate.
${ }^{b}$ Where no numbers are given in the columns for $\mathrm{NH}_{,} \mathrm{C}^{\alpha} \mathrm{H}$ and $C^{\mu} \mathbf{H}$, and where more peripheral sidechain hydrogen atoms are not listed in the last column. no individual resonance assignment was obtained (see the text).
" The imidazole proton resonances of the 3 histidyl residues were not assigned individually. Their chemical shifts at $\mathrm{pH} 3 \cdot 2$ and $50^{\circ} \mathrm{C}$ are $\mathrm{HI}: \mathrm{C} 2 \mathrm{H}=8 \cdot 58 . \mathrm{C} 4 \mathrm{H}=7 \cdot 29 ; \mathrm{HII}: \mathrm{C} 2 \mathrm{H}=8 \cdot 53 . \mathrm{C} 4 \mathrm{H}=7 \cdot 28$; $\mathrm{HIII}: \mathrm{C} 2 \mathrm{H}=8.54, \mathrm{C} 4 \mathrm{H}=6.79$.
${ }^{d}$ Because for these residues the $\mathrm{NH}-\mathrm{C}^{\alpha} \mathrm{H}$ cross peaks in the COSY spectrum at $50^{\circ} \mathrm{C}$ were bleached out by the solvent irradiation, the amide proton chemical shifts were measured at $25^{\circ} \mathrm{C}$ for Cysl 4 and at 45° (. for the others.
"Since the C2,6 protons of Phe4 and Phe33 have identical chemical shifts. the C3.5H and C 4 H resonances of these 2 rings could not be assigned individually, even though 2 complete spin systems were identified.
${ }^{r}$ From the multiplicity of the cross peak of C 3.5 H with C 2.6 H and the absence of a cross-peak between C 3.5 H and C 4 H (Fig. 4), the chemical shifts for C 3.5 H and C 4 H of Phe 21 must be nearly identical.
${ }^{\&}$ The C^{β} proton resonances of Cys 38 could not be observed at $50^{\circ} \mathrm{C}$ and, therefore , the chemical shifts at 25 C are listed.

FG: 12 . Combined OOSY-NOESY connectivity diagram for sequential resonance assignments vin NOEs between amide protons and the (${ }^{\alpha}$ protons of the preceding residue (d_{1}). In the upper left, the region $\left(\omega 1=35\right.$ to 59 p.p.m. $\omega 2=74$ to 10% p.p.m.) of the ${ }^{2} \mathrm{H}$ NOESY spectrum of trypsin inhibitor F in Fig. 6 is presented. In the lower right. the region ($\omega 1=7.4$ to 105 p.p.m.. w2 $=3 \%$ to 5.9 p.p.m.) from a ${ }^{1} \mathbf{H}$ COSY spectrum recorded from the same sample under identical conditions. i.e. 45 (? and $\mathrm{pH}=3 \cdot 2$, is shown. The straight lines and arrows indicate the connectivities between neighbouring residues in the segments 16 to 18,19 to 25,38 to 42 and 56 to 57 . The arrows and the filled circles identify the start and the end for each segment, respectively. The amide proton chemical shifts are indicated by the assignments in the lower left corner, those for the (${ }^{\alpha}$ protons by the assignments in the upper right corner of the Figure.

Fis. 13. Combined COSY-NOESY connectivity diagram for sequential resonance assignments via NOEs between amide protons and C^{α} protons of the preceding residues $\left(d_{1}\right)$. In the upper left the region ($\omega 1=29$ to 5.5 p.p.m.. $\omega 2=64$ to 9.8 p.p.m.) of the ${ }^{1} \mathrm{H}$ NOESY spectrum of trypsin inhibitor E in Fig. f is presented. In the lower right, the region ($\omega 1=6.4$ to $9.8 \mathrm{p} . \mathrm{p} . \mathrm{m}$., $\omega 2=2.9$ to $5.5 \mathrm{p} . \mathrm{p} . \mathrm{m}$.) from a ${ }^{1} \mathrm{H}$ COSY spectrum recorded from the same sample under identical conditions, i.e. $45^{\circ} \mathrm{C}$ and $\mathrm{pH}=32$, is shown. The straight lines and arrows indicate the connectivities between neighbouring residues in the segments 2 to 3.9 to 10,30 to 36,43 to 46 and 47 to 48 of trypsin inhibitor E. Arrows and filled circles identify the start and end point of the d_{1} connectivity patterns, respectively. The amide proton chemical shifts are indicated by the assignments in the lower left corner and those for the c^{α} protons by the assignments in the upper right corner of the Figure.

FIG. 14. Combined COSY-NOESY connectivity diagram for sequential resonance assigmments pin NOEs between amide protons and the C^{α} protons of the preceding residue (d_{1}). In the upper left. the region ($\omega 1-37$ to $55 \mathrm{p} . \mathrm{p} . \mathrm{m} ., \omega 2=66$ to 9.3 p.p.m.) of a ${ }^{1} \mathrm{H}$ NOESY spectrum of trypsin inhibitor E in $\mathrm{H}_{2} \mathrm{O}$ recorded at $\mathrm{pH} 3 \cdot 2$ and $25^{\circ} \mathrm{C}$ with a mixing time of 100 ms and a digital resolution of $5 \cdot 3 \mathrm{~Hz} /$ point is presented. In the lower right, the region ($\omega 1=6.6$ to 9.3 p.p.m.. $\omega 2=3.7$ to 5.5 p.p.m.) of a ${ }^{1} \mathrm{H}$ COSY spectrum recorded from the same sample, under identical conditions is shown. The straight lines and arrows indicate the connectivities between neighbouring residues in the segments -1 to 2,3 to 5,14 to 15 and 29 to 30 of trypsin inhibitor E. Arrows and filled circles identify the start and end point of the connectivity patterns. respectively. The amide proton chemical shifts are indicated by the assignments in the lower left corner, and those for the C^{α} protone by the assignments in the upper right eorner of the Figure.
combined with the corresponding spectral region from the lower right triangle of a COSY spectrum recorded under identical conditions. \dagger Such a plot contains both the d_{1} connectivities between NH_{i+1} and $\mathrm{C}^{\alpha} \mathrm{H}_{i}$ and the J connectivities between ${ }^{\mathrm{C}} \mathrm{H}_{i}$ and NH_{i} (Fig. 10). When one follows the polypeptide chain in the direction from the N to the C terminus, the lines that connect successive COSY and NOESY cross peaks (Fig. 10) describe a counterclockwise spiral. The data in Figures 12 and 13 are at $45^{\circ} \mathrm{C}$, those in Figure 14 at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$. To this it may be added that, while the most complete assignments were obtained at $45^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ (Table 1), nearly complete assignments resulted also at $25^{\circ} \mathrm{C}$. For the polypeptide segments in Figure 14, the COSY and NOESY peaks were, as a result of small temperature variations of the chemical shifts, better resolved at $25^{\circ} \mathrm{C}$ than at the higher temperatures.
d_{2} and d_{3} connectivities are documented entirely in the NOESY spectrum (Wagner \& Wüthrich, 1982). In the presentation of d_{2} connectivities (Fig. 15), the diagonal amide proton resonances of neighbouring residues are connected via the NOE cross peaks. In the plots of d_{3} connectivities (Fig. 16), one uses also information obtained from the COSY and SECSY spectra (Wider et al., 1982). For example, the assignments for the peptide segment Ala26-Ala27-Lys28 started with the observation of the NOE cross peak between Lys28 NH and Ala27 $\mathrm{C}^{\beta} \mathrm{H}_{3}$. A connecting line was then drawn to the NOE cross peak between NH and $\mathrm{C}^{\beta} \mathrm{H}_{3}$ of Ala27, of which the location was known from the J connectivities between $\mathrm{NH}, \mathrm{C}^{\alpha} \mathrm{H}$ and ${ }^{\beta}{ }^{\beta} \mathrm{H}_{3}$ of Ala27 observed in the COSY spectra in $\mathrm{H}_{2} \mathrm{O}$. Next, the d_{3} connectivity from Ala27 NH to Ala26 ${ }^{\beta} \mathrm{H}_{3}$ was detected in the NOESY spectrum, and then the location of the NOE cross peak between NH and $\mathrm{C}^{\beta} \mathrm{H}_{3}$ of Ala26 was again obtained from COSY. When checking the d_{3} connectivities involving residues with nonequivalent C^{β} methylene protons, it is helpful to remember that the NOEs between the two methylene protons and a given amide proton may have different intensities. For example for the two C^{β} methylene protons of Glu49, a strong NOE cross peak with NH of Glu49 is observed only for the resonance at 1.96 p.p.m., and a strong NOESY cross peak with NH of Lys50 only for the resonance at 1.81 p.p.m. (Fig. 16).

The COSY spectrum in Figure 17 provides a final check of the sequential resonance assignments. All the strong $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{NH} \mathrm{J}$ cross peaks in the typical $\mathrm{C}^{\alpha} \mathrm{H}$ chemical shift range from 3.5 to 5 p.p.m. have been assigned and each cross peak has been assigned only once.

Two practical aspects are not documented explicitly. The first is that initial sequential assignments of short peptide segments were obtained in a freshly prepared ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ solution of the inhibitor E (Fig. 5). Obviously, because of the lesser number of resonances present (e.g. compare Figs 5 and 17), the analysis of this spectrum was somewhat easier. The data obtained in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ then served as starting points for the spectral analysis in $\mathrm{H}_{2} \mathrm{O}$. Secondly, once any one of the three connectivities d_{1}, d_{2} or d_{3} is established, the locations of the NOESY peaks that manifest the other two connectivities can be predicted from the J connectivities

[^1]

Fia. 15. Contour plot of the spectral region from 65 to 94 p.p.m. of the $500 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NOEN}$ spectrum of Fig. 6. which was recorded from a solution of the inhibitor E in $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{pH} 3 \cdot 2$ and 45 (. with a mixing time of 200 ms . This spectral region contains the diagonal peaks of the bulk of the backbone amide protons and many cross peaks manifest NOEs between different amide protons. d_{2} connectivities between the amide protons of neighbouring residues are indicated by the unbroken and broken lines. and the resonance positions of the connected amide protons are indicated on the margins of the Figure. The upper left triangle contains the connectivities for the polypeptide segments 5 to 6 and 42 to $43(---$. chemical shifts δ indicated at the top of the Figure), and 48 to 56 (.$- \delta$ on the left). The lower right triangle contains the sequential resonance assignments for the segments 26 to 29 (-_-. δ on the right) and 46 to 47 (.$--- \delta$ at the bottom). Filled and empty eircles indicate the start and the end for the d_{2} connectivity patterns. respectively.
${ }^{1}$ H N.M.R. ASSIGNMENTS FOR INHIBITOR E

NH
Fic: 16. Contour plot of the spectral region ($\omega 1=-0.7$ to 3.3 p.p.m., $\omega 2=6.5$ to $8.7 \mathrm{p} . \mathrm{p} . \mathrm{m}$.) of the $500 \mathrm{MHz}^{1} \mathrm{H}$ NOESY spectrum in Fig. 6, which was recorded from a solution of the inhibitor E in $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{pH} 3 \cdot 2$ and $45^{\circ} \mathrm{C}$ with a mixing time of 200 ms . The unbroken lines with arrows indicate the sequential resonance assignments for the polypeptide segments 9 to 10.11 to 12,26 to 28 and 48 to 55 , which were obtained from NOE's between amide protons and C^{β} protons of the preceding residues (d_{3}). Arrows and arrow heads indicate the start and the end of each d_{3} connectivity pattern, respectively. The resonance assignments at the top and at the bottom of the Figure indicate the amide proton chemical shifts; those on the left and the right margins. the C^{β} proton chemical shifts.

Fifi. 17. Spectral region ($\omega \mathrm{l}=1.7$ to 59 p.p.m., $\omega 2=6.3$ to 106 p.p.m.) of a $500 \mathrm{MHz}{ }^{4} \mathrm{H}$ (OSY spectrum recorded in a 0.007 m -solution of trypsin inhibitor E in $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{pH} 3 \cdot 2$ and $45^{\circ} \mathrm{C}$. The digital resolution is 53 Hz /point, and the spectrum was recorded in approx. 23 h . The letters and numbers indicate the assignments for the $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{NH} J$ eross peaks in the inhibitor E. Peaks are present for all the assigned residues except Leu - 1 and Gly37. which have not been observed. and Cys14 and Lys29. which are not visible in this spectrum since their peaks coincide in the ωl direction with the water signal and are therefore bleached out by the solvent irradiation (see Table 1). The unassigned peaks in the upper right correspond to arginine and lysine side-chains (Bundi \& Wüthrich, 1979).
between NH, $\mathrm{C}^{\alpha} \mathrm{H}$ and $\mathrm{C}^{\beta} \mathrm{H}$ (Fig. 10) obtained from COSY and SECSY. Checks for multiple connectivities between neighbouring residues can then be based on comparison of these predicted cross-peak positions with the experimental NOESY spectra. The predicted positions may coincide with a resolved cross peak, which would unambiguously determine a connectivity, fall into an empty region of the spectrum, which would rule out that there is a connectivity, or fall into a spectral region that is too crowded with cross peaks or too close to the diagonal for an
unambiguous identification of individual cross peaks (see Wider ei al., 1982, for an illustration. All the connectivities included in Fig. 11 rely on unambiguously identified NOESY cross peaks). Finally, it should be added that, while the NOESY spectra shown in Figures 12, 13, 15 and 16 were recorded with a mixing time of 200 milliseconds, all connectivities indicated in Figure 11 have been confirmed with NOESY spectra recorded with a mixing time of 100 milliseconds.

(d) Further assignments of amino acid side-chain spin systems after sequential assignments of the polypeptide backbone

After the sequential assignments of the $\mathrm{NH}, \mathrm{C}^{\alpha} \mathrm{H}$ and $\mathrm{C}^{\beta} \mathrm{H}_{n}$ resonances, there remained only relatively few unidentified cross peaks in the COSY and SECSY spectra of Figures 1 to 4. Further, it was known for each $C^{\alpha} \mathrm{H}-\mathrm{C}^{\beta} \mathrm{H}_{n}$ fragment to which type of amino acid residue it belonged. While most of the simple amino acid side-chain spin systems were completely identified before the sequential assignments. many of the more complex side-chains could now, with the availability of this additional information, be assigned. As an illustration, some examples are now described and documented.

The peripheral methyl groups and the $\mathrm{C}^{\gamma} \mathrm{H}-\mathrm{C}^{\delta} \mathrm{H}_{3} \mathrm{~J}$ connectivities were readily identified for all three leucyl residues. For Leu-1 and Leu32, these were then connected to the sequentially assigned $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{C}^{\beta} \mathrm{H}_{2}$ fragments (Fig. 3). For Leu7, no sequential connectivity was available (Fig. 11). However, towards the end of the spectral analysis there was only one unidentified COSY cross peak left in the (${ }^{\alpha} \mathrm{H}$ NH region (Fig. 17). Starting from the $\mathrm{C}^{\alpha} \mathrm{H}$ chemical shift of this cross peak, the connectivities with the third and last leucine $\mathrm{C}^{\gamma} \mathrm{H}-\left(\mathrm{C}^{\delta} \mathrm{H}_{3}\right)_{2}$ fragment could be established in SECSY (Fig. 3).

For Ile 18, the J connectivities $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{C}^{\rho} \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}-\mathrm{C}^{\gamma} \mathrm{H}_{3}$ and $\mathrm{C}^{\delta} \mathrm{H}_{3}-\mathrm{C}^{\gamma} \mathrm{H}_{2}$ were readily apparent, and these three fragments could be connected to the complete spin system (Fig. 18). For Ile48, the $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{C}^{\beta} \mathrm{H}$ fragment with the unusual $\mathrm{C}^{\alpha} \mathrm{H}$ high field
 identical chemical shifts (Table 1). This degeneracy was confirmed by the observation of a singlet methyl resonance at $066 \mathrm{p} . \mathrm{p} . \mathrm{m}$. in the conventional, onedimensional spectrum and in the two-dimensional, J-resolved spectrum. There was only one unidentified methyl triplet left, which thus had to come from ${ }^{[}{ }^{\delta} \mathrm{H}_{3}$ of Ile48. The connectivity of $\mathrm{C}^{\gamma} \mathrm{H}_{2}$ was determined by SECSY (Fig. 3). The $\mathrm{C}^{\mu} \mathrm{H}-\mathrm{C}^{\gamma} \mathrm{H}_{2}$ connectivity for this residue, however, was not observed.

For Proll, the ${ }^{\delta} \mathrm{H}_{2}$ resonances were sequentially assigned wia NOFs with the C^{α} proton of Clul0 (Fig. 18) and one $\mathrm{C}^{\beta} \mathrm{H}$ resonance was assigned via a NOE with the amide proton of Glyl 2 (Fig. 16). For Prol9, the $\mathrm{C}^{\delta} \mathrm{H}_{2}$ resonances were assigned via NOE with $\mathrm{C}^{\alpha} \mathrm{H}$ of Ile18 (Fig. 18) and the $\mathrm{C}^{\alpha} \mathrm{H}$ via NOE with NH of Ala20 (Fig. 12). As described in detail in the legend to Figure 18, the complete spin systems of these two prolyl residues could then be identified.

Individual assignments for the previously identified (Figs 2 and 4) aromatic spin systems were obtained on the basis of NOE connectivities between aromatic protons and the sequentially assigned $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{C}^{\beta} \mathrm{H}_{2}$ fragments (Fig. 19). The only ambiguity left in the assignments of the aromatios is that between Phe4 and Phe33.

Flif. 18. Resonance assignments for the peptide segments (ilulo to Proll and Ilel8 to Proly in the inhibitor E . A combined plot is shown, which was obtained from the regions 0.5 to $5 \mathrm{p} . \mathrm{p} . \mathrm{m}$. of the spectra in Figs 1 and 19 and where the upper left triangle comes from NOESY and the lower right triangle from COSY. The chemical shifts for the residucs Glullo and Proll are indicated at the bottom, those for Ilel8 and Prol9 on the right of the Figure. The connectivities in the segment Glul0-Proll are indicated by unbroken lines. They start from the previously assigned $\mathrm{C}^{\beta} \mathrm{H}_{2}-{ }^{\alpha}{ }^{\alpha} \mathrm{H}$ resonances of Glul0 (Fig. 7) from which the NOE connectivity to $\mathrm{C}^{\delta} \mathrm{H}_{2}$ of Proll was obtained. Within the lroll spin srstem. the connectivities via J coupling eould be established in all cases except from $\left({ }^{\gamma} \mathrm{H}_{2}\right.$ to $\mathrm{C}^{\rho /} \mathrm{H}_{2}$. where a NoE connectivity was used. The J connectivities within the spin system of $1 l e 18$ are indicated by dotted lines in the COSY spectrum. The NOE connectivities from (${ }^{2} \mathrm{H}$ of Ilel8 to (${ }^{\delta} \mathrm{H}_{2}$ of Proi9 and the .J connectivities within the spin system of Prol9 are indicated with broken lines
which arose because these two residues have identical ($2,6 \mathrm{H}$ chemical shifts (Table 1).
Complete assignments were obtained for Clno, for the previously identified fivespin system of Glu10, and for Cln31. First, the connectivities from the sequentially assigned $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{C}^{\beta} \mathrm{H}_{2}$ fragments to $\mathrm{C}^{\gamma} \mathrm{H}_{2}$ were established in SECSY (Figs 7 and 8).

Then the ε amide proton resonances of the two glutamyl residues were assigned from the NOE connectivities with $\mathrm{C}^{y} \mathrm{H}_{2}$ (Billeter et al., 1982). Similarly, the δ amide protons of Asn24, Asn4l and Asn43 were assigned from the NOE connectivities with $\mathrm{C}^{\beta} \mathrm{H}_{2}$.

4. Conclusions

The inhibitor \mathbf{E} is the first protein for which the ${ }^{1} \mathbf{H}$ n.m.r. spectrum was assigned entirely according to the recently proposed strategy of sequential assignments with the use of two-dimensional n.m.r. experiments (Nagayama \& Wüthrich, 1981 ; Wagneret al., 1981 ; Billeter et al., 1982). In contrast to the previously described BPTI (Wagner \& Wüthrich, 1982) and micelle-bound glucagon (Wider et al., 1982), where the two-dimensional n.m.r. studies were a continuation of extensive investigations by conventional one-dimensional n.m.r., this paperdescribes the first n.m.r. experiments with the inhibitor E. As may be judged from the documentation in this paper, the resonance assignments are based exclusively on the amino acid sequence and the n.m.r. spectra, and they wereobtained without reference to the corresponding dataon BPTI. With regard to future applications of the presently used assignment techniques, the experience with the inhibitor E is most encouraging. The entire analysis was performed with a single sample of about 18 mg , and we have still about 14 mg of the protein left for furtherstudies of the molecular conformation. Overall, less than one man-year of work was invested to obtain the assignments in Table 1.

Let us briefly consider why a few assignments are not given in Table 1. The missing sequential connectivities are indicated in Figure 11 and have already been discussed. Quite generally, it appears that continuous connectivities across prolyl residues can be established only under favourable conditions. Since the chemical shifts for Pro8 and Prol3 are not known, it is not clear whether for these two residues the absence of NOE connectivities with the neighbouring amino acid residues is due to lack of spectral resolution or to other reasons. It is also unclear at present why the amide proton of Cly 37 was not observed, but it seems worth noting that the amide proton resonance of Gly37 was also missing in BPTI (Wagner \& Wüthrich, 1982). Besides Pro8 and Prol3, the side-chain assignments beyond $\mathrm{C}^{\boldsymbol{\beta}} \mathrm{H}_{2}$ are also missing for Glu49, where the connectivities with $\mathrm{C}^{y} \mathrm{H}_{2}$ could not be identified unambiguously, and for the three histidyl, the three arginyl and the six lysyl residues. For the histidyl residues, the NOE connectivities between the sequentially assigned $\mathrm{C}^{\alpha} \mathrm{H}-\mathrm{C}^{\beta} \mathrm{H}_{2}$ fragments and the imidazole ring protons were not observed. This was not unexpected, since stereochemical considerations indicate that this method should work reliably for Phe, Tyr and Trp (Fig. 19), but not necessarily for His (Billeter et al., 1982). Intense cross peaks that manifest J connectivities with $\mathrm{C}^{\varepsilon} \mathrm{H}_{2}$ of Lys and $\mathrm{C}^{\delta} \mathrm{H}_{2}$ of Arg can be recognized readily, e.g. in Figures 1 and 3. However, no special effort was made to obtain individual assignments for the side-chains of Lys and Arg.

The exploitation of the resonance assignments in Table 1 for studies of the solution conformation of the inhibitor E, structural comparisons with homologous

FIG. 19. Spectral region ($\omega \mathrm{l}=2 \cdot 2$ to 4.1 p.p.m., $\omega 2=6.2$ to 7.7 p.p.m.) of a $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NOESY spectrum recorded in a 0.007 m solution of trypsin inhibitor E in ${ }^{2} \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{p}^{2} \mathrm{H} 3 \cdot 2$ at $50^{\circ} \mathrm{C}$. The mixing time was 100 ms , the digital resolution is $5 \cdot 3 \mathrm{~Hz} /$ point and the spectrum was recorded in approx. 21 h . The Figure illustrates how the connectivities between $\mathrm{C}^{\beta} \mathrm{H}_{2}$ and the rings were obtained for the aromatic side-chains. $C^{\beta} \mathrm{H}$ chemical shifts are indicated on the left and right. Themical shifts for $(2.6 \mathrm{H}$ of Phe and Tyr and C2H and C4H of Trp 25 are indicated at the top and at the bottom.
proteins and investigations of correlations between protein conformation and n.m.r. parameters, as oullined in the Introduction. is in progress in our laboratory.

We thank Dr (i. Wagner for helpful discussions. Dr L. Visser for initiating the collaboration between the laboratories in Zürich and in Pretoria. and Mrs E. Huber for thecareful preparation of the manuseript. One of us (A.S.A.) was the recipient of a fellowship from the U.S.S.R. Academy of Sciences. We acknowledge financial support by thr Schweizerischer Nationalfonds (project 3.528 .79) and by a special grant from the Eidgenössische Technische Hochschule, Zürich. for the purchase of the 500 MHz spectrometer.

REFERENCEN

Anil Kumar. Ernst. R. R. \& Wüthrich, K. (1980a). Biochem. Biophys. Res. Commun. 95. 1.6. Anil Kumar. Wagner. G.. Ernst, R. R. \& Wüthrich. K. (1980b). Biochem. Biophys. Res. Commun 96. 1156-1163.

Aut, W. P., Bartholdi, E. \& Ernst. R. R. (1976). J. Chem. Phys. 64, 2229-2246.
Bax, A. \& Freeman. R. (1981). J. Magn. Reson. 44, 542-561.
Billeter, M.. Braun. W. \& Wüthrich. K. (1982). J. Mol. Biol. 155. 321-346.
Bundi, A. \& Wüthrich, K. (1979). Biopolymers, 18, 285-297.
Campbell. I. D., Dobson, C. M. \& Williams, R. J. P. (1975). Proc. Roy. Soc. ser. B, 189, 503509.

Campbell. I. D., Dobson, C. M., Moore, (. R., Perkins. S. J. \& Williams. R. J. P. (1976). FEBS Letters, 70, 96-100.
Dubs. A., Wagner. (. \& Wüthrich, K. (1979). Biochim. Biophys. Acta, 577, 177-194.
Englander. S. W.. Downer. N. W. \& Teitelbaum, H. (1972). Annu. Rev. Biochem. 41, 903 924.

Jeener. J.. Meier, B. H., Bachmann, P. \& Ernst, R. R. (1979). J. Chem. Phys. 71, 4546-4553.
Joubert. F. J. \& Strydom, D. J. (1978). Eur. J. Biochem. 87, 191-198.
Macura, S., Huang. Y.. Suter, D. \& Ernst, R. R. (198I). J. Magn. Reson. 43. 259-281.
Nagavama, K. \& Wüthrich, K. (1981). Eur. J. Biochem. 114, 365-374.
Nagayama, K.. Wuithrich. K. \& Ernst. R. R. (1979). Biochem. Biophys. Res. Commun. 90. 305-311.
Nagayama, K., Anil Kumar, Wüthrich, K. \& Ernst. R. R. (1980). J. Magn. Reson. 40, 321334.

Richarz, R., Sehr. P., Wagner. G. \& Wüthrich, K. (1979). J. Mol. Biol. 130, 19-30.
Strydom, D. J. (1973). Nature New. Biol. 243, 88-89.
Strydom, D. J. (1976). Eur. J. Biochem. 69, 169-176.
Tschesche, H. (1974). Angew. Chemie. Int. Ed. Engl. 13, 10-28.
Wagner. (. \& Wüthrich, K. (1982). J. Mol. Biol. 155, 347-366.
Wagner. (… DeMarco, A. \& Wüthrich, K. (1975). J. Magn. Reson. 20, 565-569.
Wagner. (i., DeMarco, A. \& Wüthrich. K. (1976). Biophys. Struct. Mechan. 2, 139-158.
Wagner, (i.. Anil Kumar, \& Wuithrich. K. (1981). Eur. J. Biochem. 114, 375-384.
Wider. (i.. Lee, H. K. \& Wüthrich, K. (1982). J. Mol. Biol. 155. 367-388.
Wüthrich, K. (1976). NMR in Biological Research: Peptides and Proteins. North-Holland Publishing Company, Amsterdam.
Wüthrich. K. \& Wagner, G. (1975). FEBS Letters, 50, 265-268.
Wuthrich, K. \& Wagner. (: (1979). J. Mol. Biol. 130, 1-I8.
Wüthrich. K., Wider, (i., Wagner. (i. \& Braun. W. (1982). J. Mol. Biol. 155, 311--319.

Edited by V. Luzzati

[^0]: \dagger On leave from the Shemyakin Institute of Bioorganic Chemistry. U.S.S.R. Academy of Sciences, Moscow, LSSS.
 \ddagger Abbreviations used: n.m.r., nuclear magnetic resonance; BPTI, basic pancreatic trypsin inhibitor: p.p.m., parts per million; 2D n.m.r., two-dimensional n.m.r.; COSY, 2 D correlated spectroscopy; SECSY, 2D spin echo correlated spectroscopy; NOESY, 2D nuclear Overhauser enhancement spectroscopy; NOE, nuclear Overhauser enhancement.

[^1]: 1 In prative to evade interference with the strong, vertical tail of the waler resonance (F ig. 6), the mirror image of the upper left triangle of the CONY spectrum was used.

