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This work presents the automated projection spectroscopy (APSY)
method for the recording of discrete sets of j projections from
N-dimensional (N > 3) NMR experiments at operator-selected
projection angles and automatic identification of the correlation
cross peaks. The result from APSY is the fully automated genera-
tion of the complete or nearly complete peak list for the N-
dimensional NMR spectrum from a geometric analysis of the j
experimentally recorded, low-dimensional projections. In the
present implementation of APSY, two-dimensional projections of
the N-dimensional spectrum are recorded by using techniques
developed for projection–reconstruction spectroscopy [Kupče, E. &
Freeman, R. (2004) J. Am. Chem. Soc. 126, 6429–6440]. All projec-
tions are peak-picked with the available automated routine ATNOS.
The previously undescribed algorithm GAPRO (geometric analysis
of projections) uses vector algebra to identify subgroups of peaks
in different projections that arise from the same resonance in the
N-dimensional spectrum, and from these subgroups it calculates
the peak positions in the N-dimensional frequency space. Unam-
biguous identification thus can be achieved for all cross peaks that
are not overlapped with other peaks in at least one of the N
dimensions. Because of the correlation between the positions of
corresponding peaks in multiple projections, uncorrelated noise is
efficiently suppressed, so that APSY should be quite widely appli-
cable for correlation spectra of biological macromolecules, which
have intrinsically low peak density in the N-dimensional spectral
space.

GAPRO � multidimensional � NMR � peak picking

In NMR studies of biological macromolecules in solution (1–4),
multidimensional NMR data are commonly acquired by sam-

pling the time domain in all dimensions equidistantly at a
resolution adjusted to the populated spectral regions (5). With
recent advances in sensitivity, due to high field strengths and�or
cryogenic detection devices, the time required to explore the
time domain in the conventional way typically exceeds by far the
time needed for sensitivity considerations, so that the desired
resolution in the indirect dimensions determines the duration of
the experiment. In this situation of the ‘‘sampling limit,’’ which
is common in 3D and higher-dimensional experiments with small
and medium-size proteins (6), the desired chemical shift infor-
mation has been collected by using ‘‘unconventional’’ experi-
mental schemes, such as nonuniform sampling of the time
domain (7, 8) or combination of two or more indirect dimensions
(9, 10).

The concept of combining indirect dimensions has lead to
reduced-dimensionality experiments (9) and G-matrix Fourier
transform NMR (11, 12). In G-matrix Fourier transform NMR,
several evolution periods of a multidimensional NMR experi-
ment are combined, the data are processed by using a G-matrix,
and the resulting set of spectra is analyzed jointly to identify the
peaks that arise from the same spin system and to calculate their
resonance frequencies (11). In another approach, projection–
reconstruction NMR (13–16), the projection–cross-section the-
orem (17, 18) is combined with reconstruction methods from
imaging techniques (19, 20). In particular, a scheme for quadra-
ture detection along tilted planes in the time domain allows the
direct recording of orthogonal projections of any multidimen-
sional experiment at arbitrary projection angles (15). In projec-

tion–reconstruction NMR, the full multidimensional spectrum
then is reconstructed from the projections of the multidimen-
sional spectral data (13–16).

The analysis of complex NMR spectra typically involves
intensive human interaction, and automation of NMR spectros-
copy with macromolecules is still in development. Thereby the
distinction of real peaks from random noise and spectral artifacts
as well as peak overlap represent major challenges (21–23). On
grounds of principle, automated analysis benefits from higher
dimensionality of the spectra (24, 25), because the peaks are then
more widely separated, and hence peak overlap is substantially
reduced (Fig. 1).

In the present work, we combine technologies to record
projections of high-dimensional NMR experiments described
by Kupče and Freeman (15) and automated peak-picking using
a scheme of Herrmann et al. (22) with a previously undescribed
algorithm, GAPRO (geometric analysis of projections). Based
on geometrical considerations, GAPRO identifies peaks in the
projections that arise from the same resonance in the N-
dimensional frequency space and subsequently calculates the
resonance frequencies in the N-dimensional spectrum without
ever considering the high-dimensional data set itself. This
automated analysis of projected spectra, APSY (automated
projection spectroscopy), yields a peak list of the original
multidimensional experiment without any human interaction.
In the following sections, the foundations of APSY are intro-
duced, and characteristic properties of APSY are discussed.
Two examples of APSY are a 4D HNCOCA experiment (26,
27) with the 63-residue protein 434-repressor(1–63) (28) and
a 5D HACACONH experiment (11) with the 116-residue
protein TM1290 (29).

Theoretical Background
Recording of Projection Spectra. The projection–cross-section the-
orem by Bracewell (17), which was introduced into NMR by
Nagayama et al. (18), states that an m-dimensional (m � N) cross
section, cm(t), through N-dimensional time domain data is
related by an m-dimensional Fourier transformation, Ft, and its
inverse, F�, to an m-dimensional orthogonal projection of the
N-dimensional NMR spectrum, Pm(�), in the frequency domain.
Thereby, Pm(�) and cm(t) are oriented by the same angles with
regard to their corresponding coordinate systems (Fig. 2). On
this basis, Kupče and Freeman proposed to record projections
Pm(�) by sampling the corresponding time domain data, cm(t),
along a straight line (dashed line in Fig. 2). Quadrature detection
is obtained from corresponding positive and negative projection
angles for the subsequent hypercomplex Fourier transformation
(15).

Projections of Cross Peaks. We describe here 2D projections,
P2(�), of an N-dimensional spectrum (N � 2). P2(�) represents
spectral data in a 2D plane, which is spanned by an indirect
dimension with unit vector p�1, and the direct dimension, with p�2.

Abbreviations: APSY, automated projection spectroscopy; GAPRO, geometric analysis of
projections.
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The indirect dimension is a 1D projection of the N � 1 indirect
dimensions. The same projection angles that parametrize the 2D
time domain cross section, c2(t), with respect to the N time
domain axes, define the position of P2(�) with respect to the N
frequency axes (Table 1). For example, with N � 5, the two unit
vectors p�1 and p�2 are expressed in the coordinate system of the
N-dimensional frequency space by

p�1
N�5 � �

sin���
sin��� �cos���
sin��� �cos��� �cos���
cos��� �cos��� �cos���
0

� and p�2
N�5 � �

0
0
0
0
1
� .

[1]

In the coordinate system of a 2D projection spectrum, P2(�), a
projected cross peak Qf

i has the position vector Q� f
i � [vf,1

i , vf,2
i ],

with vf,1
i and vf,2

i being the chemical shifts along the projected
indirect dimension and the direct dimension, respectively. If the
origins of both the N-dimensional coordinate system and the 2D
coordinate system are in all dimensions in the center of the
spectral range, the position vector Q� f

i in the N-dimensional
frequency space is

Q� f
i � vf,1

i �p�1 � vf,2
i �p�2. [2]

The N-dimensional cross peak Qi is located in an (N � 2)-
dimensional subspace L, which is orthogonal to the projection

plane at the point Qf
i (see Fig. 2). In APSY, a set of j projections

is recorded. From each N-dimensional cross peak Qi, a projected
peak Qf

i ( f � 1, . . . , j) appears in each of the j projections. The
set of projected peaks that arise from the same N-dimensional
peak Qi, {Q1

i , . . . , Qj
i}, is defined as a peak subgroup of Qi. Once

the subgroup is known and contains a sufficiently large number
of elements, the coordinates of Qi can be calculated from the
intersections of the subspaces from all subgroup elements. For
2D projections, at least N � 1 elements are needed.

The APSY Procedure. The procedure is outlined in Fig. 3 and
illustrated in Fig. 4. The operator selects the desired N-
dimensional NMR experiment, the dimension of the projection
spectra, and j sets of projection angles (j � N � 1) and records
the projection spectra. These spectra are automatically peak
picked by using the program ATNOS (22), which yields j peak lists.
These lists contain the peaks Qgf, where g is an arbitrary
numeration of the peaks in each projection f ( f � 1, . . . , j).
GAPRO arbitrarily selects N � 1 from among these peak lists
and generates the subspaces Lgf that are associated with the
peaks Qgf in these projections (Fig. 4a). The intersections of the
subspaces Lgf in the N-dimensional space are candidates for the
positions of N-dimensional cross peaks (open circles in Fig. 4a),
where the number of candidate points typically exceeds the
number of peaks in the spectrum. For each of these candidate
points, the support, S, is then calculated as the number of
subspaces from all j projections that intersect at this point.
Thereby at most one subspace from each projection is consid-
ered (Fig. 4b; see text below), so that N � 1 � S � j. The peaks
Qf

i associated with the subspaces that contribute to the support
of a given candidate point form a ‘‘peak subgroup.’’ The
subgroups are ranked for high S-values, and the top-ranked
subgroup is selected (in case of degeneracy, one of the top-
ranked subgroups is arbitrarily selected). The subspaces origi-
nating from the peaks Qf

i in this subgroup are removed, and new
S-values for the residual candidate points are calculated from the

Fig. 2. Illustration of the projection–cross-section theorem (17–19) for a 2D
subspace of an N-dimensional frequency space with two indirect dimensions
x and y. A 1D signal c1

xy(t) on a straight line in the time domain (tx, ty) (Left) is
related to a 1D orthogonal projection P1

xy(�) of the spectrum (�x, �y) in the
frequency domain (Right) by a 1D Fourier transformation, Ft, and the inverse
transformation, F�. The projection angle � describing the slope of c1

xy(t)
defines also the slope of P1

xy(�). The cross peak Qi appears at the position Qf
i in

the projection f. Further indicated are the spectral widths in the two dimen-
sions of the frequency domain, SWx and SWy.

Table 1. Coordinates of the unit vector p�1 used in this work

Dimension N � 5 N � 4 N � 3

�1 sin(�) sin(�) sin(�)
�2 sin(�)�cos(�) sin(�)�cos(�) cos(�)
�3 sin(�)�cos(�)�cos(�) cos(�)�cos(�) —
�4 cos(�)�cos(�)�cos(�) — —

Fig. 1. Distribution of frequency differences, d, up to 1,000 Hz between pairs
of nearest cross peaks in multidimensional NMR spectra of the protein TM1290
for the following triple resonance experiments: 3D HNCO (a), 4D HNCOCA (b),
and 5D HACACONH (c). E is the number of times a given value of d is expected.
The calculations were based on the published chemical shift assignment of
TM1290 (BioMagResBank entry 5560) and assumed a field strength of 750
MHz.
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remaining subspaces (Fig. 4c). This procedure is repeated until
the value of S for all remaining candidate points falls below a
user-defined threshold, Smin,1, at which point a list of peak
subgroups is generated. The subgroup identification is repeated
with k different, randomly chosen starting combinations of N �
1 projections (the user-defined parameter k is a small fraction of
the total number of possible combinations of N � 1 projections),
and k peak subgroup lists are thus obtained (gray box in Fig. 3).
These lists are merged into a single list, which is again subjected

to the same type of ranking procedure, so that all subgroups with
S � Smin,2 are eliminated. From the resulting ‘‘final’’ list of
subgroups, the peak positions in the N-dimensional space are
calculated (Fig. 4d). Below, the computational techniques used
for individual steps in Fig. 3 are described.

Intersection of Subspaces. To simplify the mathematical treat-
ment, we describe a (N � l)-dimensional subspace L (1 � l � N)
by a point QL in this subspace and a set of orthonormal vectors,
{p�1

L, . . . , p� l
L}, orthogonal to L. To intersect, for example, four 3D

subspaces in 5D frequency space, two of the 3D subspaces can
intersect to a 2D subspace, which can then intersect with one of
the remaining 3D subspaces to a 1D subspace, which can
intersect with the fourth 3D subspace to a point.

L and M are two subspaces of dimensionality (N � l) and (N �
m), with (1 � l � N) and (1 � m � N). L is described by {p�1

L, . . . ,
p� l

L} and the point QL; M is described by {p�1
M, . . . , p�m

M} and QM.
Both L and M are orthogonal to the direct dimension, and
therefore both {p�1

L, . . . , p� l
L} and {p�1

M, . . . , p�m
M} include the unit

vector of the direct dimension. If Eqs. 3 and 4 are satisfied, the
subspaces L and M intersect in a subspace K of dimensionality
(N � k), with k � l � m � 1 as follows:

�QL�N� 	 QM�N� � � �
min [3]

dim	p�1
L, . . . , p� l

L, p�1
M, . . . , p�m

M
 � l � m 	 1. [4]

QL(N) and QM(N) are the Nth coordinates of QL and QM,
respectively; �
min is a user-defined intersection tolerance in the
direct dimension; and dim stands for ‘‘dimension of.’’ Eq. 4
implies that {p�1

L, . . . , p� l
L} and {p�1

M, . . . , p�m
M} share only the direct

dimension. The subspace K is then described by the orthonormal
basis {p�1

K, . . . , p�k
K}, and by a point QK with its coordinates 1 to

(N � 1) given by the l � m scalar products of Eq. 5

p� z
L�� QKQL
➝ � � 0 z � 1, . . . , l

p� z
M�� QKQM

➝ � � 0 z � 1, . . . , m .

[5]

The Nth coordinate of QK is the arithmetic average of the Nth
coordinates of QL and QM.

Distance Between a Point and a Subspace. The distance r between
a point Q and a (N � l)-dimensional subspace L, as described by
a point QL and an orthonormal set of vectors orthogonal to L,
{p�1

L, . . . , p� l
L}, is given by

r � ��
z�1

l �p� z
L�� QQL

➝ � � 2

. [6]

Peak Positions in the N-Dimensional Space. The fact that the peak
positions are generally overdetermined by the experimental data
are used to refine the peak coordinates. From each subgroup,
N � 1 elements are arbitrarily chosen, and their associated
subspaces are intersected to yield the position of the N-
dimensional peak (Fig. 4). This procedure is repeated w times,
where w is a user-defined parameter. Because of the limited
precision of the individual chemical shift measurements, this
procedure results in w slightly different peak positions, which
then are averaged in each dimension to obtain the final posi-
tioning of the N-dimensional peak Qi.

Materials and Methods
Sample Preparation. [U-13C,15N]-labeled 434-repressor(1–63) was
produced following procedures described in refs. 28 and 30. For

Fig. 3. Flowchart of APSY. Square boxes indicate processes, and boxes with
rounded corners denote intermediate or final results. The steps underlayed in
gray are repeated k times and thus generate k lists of peak subgroups.
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the NMR measurements, a 0.9 mM sample was prepared in 20
mM sodium phosphate buffer (pH 6.5). [U-13C,15N]-labeled
TM1290 was produced as described in ref. 31. A NMR sample
with 3.2 mM protein concentration in 20 mM phosphate buffer
(pH 6.0) was prepared. Both NMR samples contained 95%�5%
H2O�D2O and 0.1% NaN3.

NMR Spectroscopy. The NMR experimental schemes used are
described in Supporting Materials and Methods, which is pub-
lished as supporting information on the PNAS web site. A 4D
APSY-HNCOCA experiment was recorded with the 434-
repressor(1–63) at 30°C on a DRX 750 MHz spectrometer
(Bruker, Fällanden, Switzerland) equipped with a z-gradient
triple resonance probe. The GAPRO algorithm was applied with
the parameters Smin,1 � Smin,2 � 3 (Fig. 3), k � 100 (Fig. 3), w �
400 (Fig. 3), �
min � 7.5 Hz (Eq. 3), a signal-to-noise threshold
for ATNOS peak picking of Rmin � 4.0 (22), and a minimal
distance for subspace intersection of rmin � 100 Hz. The calcu-
lation time for GAPRO on a standard PC running LINUX with
a 2.8-GHz Pentium 4 processor was �10 min.

A 5D APSY-HACACONH experiment (11) was recorded
with the protein TM1290 at 40°C on a Bruker DRX 500 MHz
spectrometer equipped with a z-gradient triple resonance cryo-
genic probehead. The GAPRO algorithm was applied with the
following parameters: Smin,1 � Smin,2 � 4, k � 100, w � 800,
�
min � 5 Hz, Rmin � 8.0, rmin � 50 Hz. The GAPRO calculation
time was �30 min.

Peak Picking. Automated peak picking of 2D projection spectra
was performed with a peak picking routine derived from ATNOS
(22), which recognizes all local maxima in the spectrum. In the
4D APSY-HNCOCA experiment, peaks from glutamine and
asparagine side chains were eliminated by removing all pairs of
peaks with the following parameters: proton chemical shifts in
the range of 6.5–8.2 ppm, with chemical shift differences in the
indirect dimension �10 Hz, and chemical shift differences in the
direct dimension between 400 and 700 Hz.

Results
APSY-NMR spectroscopy is illustrated here with a 4D APSY-
HNCOCA and a 5D APSY-HACACONH experiment. The 4D
APSY-HNCOCA experiment was recorded with the 6.9-kDa
protein 434-repressor(1–63). The pulse sequence used and fur-
ther experimental details are given in Materials and Methods,
Supporting Materials and Methods, Figs. 6–9, and Table 2, which
are published as supporting information on the PNAS web site.
In a total spectrometer time of 4 h, j � 27 2D projections were
recorded with the following projection angles (Table 1): (�, �) �
(0°, 0°), (0°, 90°), (90°, 0°), (�30°, 0°), (�60°, 0°), (0°, �30°), (0°,

Fig. 4. Illustration of the algorithm GAPRO for N � 3, j � 5, k � 1, and Smin,1 �
3 (see Fig. 3). The two indirect dimensions are in the paper plane, and the
acquisition dimension �3 is orthogonal to it. The central part of each image
shows a 2D (�1, �2)-cross section at the frequency �3

0 through the 3D spectrum.
This 2D cross section is surrounded by five 1D cross sections at �3

0 through the
five experimental 2D projections of the 3D spectrum with projection angles

� � 0°, 90°, 45°, �25°, and �60°. (a) The blue dots mark the result for the cross
sections of the automatic peak picking of the 2D projections (Fig. 3). The algo-
rithm then arbitrarily selected N � 1 � 2 of the j projections for the first round of
spectral analysis (Fig. 3), with � � 0° and � � �60°. The intersections of the
subspaces corresponding to the peaks in these two projections (green lines)
identify eight candidate points in the 3D spectrum (open circles). (b) By using the
subspaces from all five projections, the support S (number of intersecting sub-
spaces, see text) is calculated for each candidate point. Yellow and red dots
indicate S � 2 and S � 5, respectively. (c) One of the three candidate points with
the highest support (S � 5) is arbitrarily selected. All peaks in the projections that
contributetotheselectedcandidatepointare identifiedasapeaksubgroup(gray
dots in the projections labeled with 1). The subspaces from this subgroup are
removed (gray dashed lines), and the support S of remaining candidate points is
recalculated (there remains one point with S � 5, and another one with S � 4 is
shown in orange). (d) After two more rounds of the procedure indicated in c, two
additional subgroups are identified and labeled with numbers 2 and 3, respec-
tively. From the three subgroups, the positions of three peaks in the 3D spectrum
are calculated (black dots).
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�60°), (90°, �30°), (90°, �60°), (�30°, �30°), (�60°, �30°), and
(�45°, �60°). The projection spectra were peak picked with
ATNOS (22) to generate the input for GAPRO. The 4D peak list
that resulted after �10 min of GAPRO computation time
contained 59 peaks, which is to be compared with a total of 60
peaks expected from the chemical structure of the molecule.
Although on average 18 � 9 noise artifacts were picked in each
projection, the final 4D peak list generated by the GAPRO
algorithm contained 59 cross peaks and not a single artifact. Only
the peak that would correlate the residues of the N-terminal
dipeptide was missing. It had a signal intensity below the noise
level in all projections. The precision of the chemical shifts in the
final APSY peak list has been estimated to be 1 Hz in the direct
dimension and 8 Hz in each of the three indirect dimensions.

The 5D APSY-HACACONH experiment was recorded with
the 12.4-kDa protein TM1290. The pulse sequence used is
described in Supporting Materials and Methods, and further
experimental details are given in Materials and Methods. In this
experiment, 28 2D projections were recorded in 11 h. The
projection angles and the spectral widths are listed in Table 2,
and the 28 2D projection spectra are shown in Fig. 9. The final
5D peak list produced from the 5D APSY-HACACONH ex-
periment with the protein TM1290 contained all of the peaks
that were expected from the chemical structure of the molecule
and the previously published NMR assignments (31), and there
were no artifacts contained in the final peak list.

Discussion
In this work, we presented the foundations of APSY and
introduced the algorithm GAPRO for automated spectral anal-
ysis. We then implemented APSY for high-dimensional hetero-
nuclear correlation NMR experiments with proteins. In two
applications without any human intervention after the initial
set-up of the experiments, we obtained complete peak lists with
high-precision chemical shifts for 4D and 5D triple resonance
spectra. For the future, we anticipate that APSY will be the first
step, after protein preparation, in a fully automated process of
protein structure determination by NMR. In addition to pro-
viding automated peak picking and computation of the corre-
sponding chemical shift lists, as described in this work, APSY is
expected to support automated sequential resonance assign-
ment. For these envisaged goals, APSY has the promise of being
a valid alternative to related NMR techniques that have recently
been introduced for similar purposes. Thus, when compared with
projection–reconstruction NMR (13–16), APSY has the advan-
tage of relying exclusively on the analysis of experimental
low-dimensional projection spectra, with no need to ever recon-
struct the parent high-dimensional spectrum. When compared
with G-matrix Fourier transform NMR (11), APSY differs in
that there are no restrictions on the selection of the number of
projections or the combinations of projection angles. The stron-
gest asset of APSY, however, is that the algorithm GAPRO
enables fully automated analysis of the experimental projection
spectra. As a primary result, complete peak picking and com-
putation of high-precision chemical shift lists are obtained
without any bias that could result from human intervention.

APSY and Protein Size. APSY has so far been applied to the
6.9-kDa protein 434-repressor(1–63) and the 12.4-kDa protein
TM1290. To obtain an estimate of possible limitations for APSY
applications with larger proteins due to spectral overlap, we
analyzed the peak separations in 4D and 5D triple resonance
spectra of a sample of 54 proteins with sizes from n � 50 to 300
residues, which were simulated from the BioMagResBank (32)
chemical shift deposits. Considered were the average of the
distances from each peak to its nearest-by neighbor, dav, and the
distance between the two most closely spaced peaks in the entire
spectrum, dmin. Fig. 5 represents the data for the two experi-

ments 4D HNCOCA and 5D HACACONH. There is no obvious
correlation between n and either dav or dmin, indicating that close
approach of peaks is distributed statistically and depends on
particular properties of the protein, irrespective of its size. In Fig.
5, the statistical probability to encounter pairs of peaks that
could not be resolved by APSY is �1% for protein sizes up to
at least 300 residues, which is representative for 4D and 5D triple
resonance data sets that contain one peak per residue. Foresee-
ably, sensitivity of signal detection therefore will be a more
stringent limitation for APSY applications than spectral crowd-
ing. From our experience to-date, projection spectra with a
signal-to-noise ratio of �3:1 are required for efficient use of
APSY with automated peak picking.

For the few expected closely spaced pairs of peaks, APSY is
in a good position to resolve potential difficulties, because it is
not required that a given N-dimensional resonance is found in all
projection spectra. Peaks with overlap in one or several projec-
tions usually will be resolved in many other projections (Fig. 4).
Similar to G-matrix Fourier transform NMR (11), APSY is also
well prepared to deal with inaccurate peak positions from
automated peak picking, which may arise from peak overlap.
Because the final N-dimensional APSY peak list is computed as
the average of a large number of measurements (Fig. 3),

Fig. 5. Plots of peak separation in hertz vs. protein size (n is the number of
residues). dav is the average distance to the closest peak, and dmin is the
distance between the closest pair of peaks. (a and b) 4D HNCOCA. (c and d) 5D
HACACONH. The calculations were based on the BioMagResBank chemical
shift deposits of 54 proteins (see Table 3, which is published as supporting
information on the PNAS web site) and assumed a 1H frequency of 750 MHz.
Gly residues are included only in a and b.
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inaccurate peak positions in some of the projections have only a
small influence on the overall precision.

APSY and Spectral Artifacts. The positions of the peaks belonging
to a peak subgroup (Fig. 3) are correlated in all of the projection
spectra, whereas, in contrast, the positions of random noise are
uncorrelated. This different behavior of the two types of peaks,
which cannot readily be distinguished in the initial automatic
peak picking, efficiently discriminates against artifacts. Artifacts
are therefore unlikely to pass through the ranking filters (Fig. 3)
and thus unlikely to appear in the final peak list. For the two
APSY applications presented in this work, the final peak lists
contained no artifacts, although the initial peak-picking routine
was applied with low signal-to-noise thresholds, Rmin, and in-
cluded a large number of spurious signals in the initial peak lists.
This result supports that the presently used ranking criteria (Fig.
3) were well chosen.

Outlook to Future Implementations of APSY. The present set-up of
an APSY experiment (Fig. 3) requires the operator to define
seven parameters, in addition to the selection of the N-
dimensional experiment, the number and dimension of the
projections, and the projection angles. These parameters are
the signal-to-noise threshold, Rmin, for ATNOS peak picking; the
thresholds for the two ranking filters, Smin,1 and Smin,2; the
number of subgroup list calculations, k; the number of final

peak coordinates calculations, w; the minimal distance for
intersections, rmin; and the intersection tolerance in the direct
dimension, �vmin. For routine use of APSY, optimized sets of
these parameters will emerge, and some of the free variables
might be replaced by novel convergence criteria. Further
refinements also will apply to selecting optimal numbers of and
dimensions for the projections, as well as to identifying optimal
combinations of projection angles for given experimental
situations. This selection and identification may include con-
sideration of the different relaxation properties of the nuclei
involved, leading to the use of projection angles with short
evolution times for the most rapidly relaxing spins. Further
technical improvements may lead, for example, to higher
spectral resolution by linear prediction or to improved spec-
trometer time usage by concurrent data acquisition and data
analysis, with feedback to prevent unneeded data accumula-
tion once the final peak list converges.
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