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Gene expression data
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Microarray technology

High density arrays

Probes (or “reporters”,
“oligos”)

Detect probe-target hybridization

Fluorescence, chemiluminescence
E.g. Cyanine dyes: Cy3 (green) / Cy5 (red)



Gene expression data
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Data

X : n×m matrix

n genes

m experiments:

conditions
time points
tissues
patients
cell lines



Clustering gene expression data
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Group samples

Group together tissues that are similarly affected by a
disease
Group together patients that are similarly affected by a
disease

Group genes

Group together functionally related genes
Group together genes that are similarly affected by a
disease
Group together genes that respond similarly to an ex-
perimental condition



Clustering gene expression data
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Applications

Build regulatory networks
Discover subtypes of a disease
Infer unknown gene function
Reduce dimensionality

Popularity

Pubmed hits: 33 548 for “microarray AND clustering”,
79 201 for “"gene expression" AND clustering”
Toolboxes: MatArray, Cluster3, GeneCluster, Bioconductor,
GEO tools, . . .



Pre-processing
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Pre-filtering
Eliminate poorly expressed genes
Eliminate genes whose expression remains constant

Missing values
Ignore
Replace with random numbers
Impute

Continuity of time series
Values for similar genes



Pre-processing
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Normalization
log2(ratio)
particularly for time series
log2(Cy5/Cy3)
→ induction and repression have
opposite signs
variance normalization
differential expression



Distances
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Euclidean distance
Distance between gene x and y, given n samples
(or distance between samples x and y, given n genes)

d(x, y) =

n∑
i=1

√
(xi − yi)2

Emphasis: shape

Pearson’s correlation

Correlation between gene x and y, given n samples
(or correlation between samples x and y, given n genes)

ρ(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

Emphasis: magnitude



Distances
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d = 8.25

ρ = 0.33

d = 13.27

ρ = 0.79



Clustering evaluation
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Clusters shape
Cluster tightness (homogeneity)

k∑
i=1

1

|Ci|
∑
x∈Ci

d(x, µi)︸ ︷︷ ︸
Ti

Cluster separation
k∑
i=1

k∑
j=i+1

d(µi, µj)︸ ︷︷ ︸
Si,j

Davies-Bouldin index

Di := max
j:j 6=i

Ti + Tj
Si,j

DB :=
1

k

k∑
i=1

Di



Clustering evaluation
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Clusters stability

image from [von Luxburg, 2009]

Does the solution change if we perturb the data?

Bootstrap
Add noise



Quality of clustering

Karsten Borgwardt: Data Mining in Bioinformatics, Page 12

The Gene Ontology
“The GO project has developed three structured controlled vocabularies (on-

tologies) that describe gene products in terms of their associated biological pro-

cesses, cellular components and molecular functions in a species-independent

manner”

Cellular Component: where in the cell a gene acts
Molecular Function: function(s) carried out by a gene
product
Biological Process: biological phenomena the gene is
involved in (e.g. cell cycle, DNA replication, limb forma-
tion)
Hierarchical organization (“is a”, “is part of”)



Quality of clustering
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GO enrichment analysis: TANGO
[Tanay, 2003]

Are there more genes from a given GO class in a given
cluster than expected by chance?
Assume genes sampled from the hypergeometric dis-
tribution

Pr(|C ∩G| ≥ t) = 1−
t∑
i=1

(|G|
i

)(n−|G|
|C|−i

)( n
|C|
)

Correct for multiple hypothesis testing
Bonferroni too conservative (dependencies between
GO groups)
Empirical computation of the null distribution



Quality of clustering
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Gene Set enrichment analysis (GSEA)
[Subramanian et al., 2005]

Use correlation to a phenotype y
Rank genes according to the correlation ρi of their ex-
pression to y → L = {g1, g2, . . . , gn}
Phit(C, i) =

∑
j:j≤i,gj∈C

|ρj |∑
gj∈C |ρj |

Pmiss(C, i) =
∑

j:j≤i,gj /∈C
1

n−|C|

Enrichment score: ES(C) = maxi |Phit(C, i)− Pmiss(C, i)|



Hierarchical clustering
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Linkage
single linkage: d(A,B) = minx∈A,y∈B d(x, y)

complete linkage: d(A,B) = maxx∈A,y∈B d(x, y)

average (arithmetic) linkage:
d(A,B) =

∑
x∈A,y∈B d(x, y)/|A||B|

also called UPGMA
(Unweighted Pair Group Method with Arithmetic Mean)

average (centroid) linkage:
d(A,B) = d(

∑
x∈A x/|A|,

∑
y∈B y/|B|)

also called UPGMC
(Unweighted Pair-Group Method using Centroids)



Hierarchical clustering
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Construction
Agglomerative approach (bottom-up)
Start with every element in its own cluster, then iteratively join
nearby clusters

Divisive approach (top-down)
Start with a single cluster containing all elements, then recur-
sively divide it into smaller clusters



Hierarchical clustering
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Advantages
Does not require to set the number of clusters
Good interpretability

Drawbacks
Computationally intensive O(n2log n2)

Hard to decide at which level of the hierarchy to stop
Lack of robustness
Risk of locking accidental features (local decisions)



Hierarchical clustering
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Dendrograms

abcdef

bcdef

def

de

d e f

bc

b ca

In biology
Phylogenetic trees
Sequences analysis
infer the evolutionary history
of sequences being com-
pared



Hierarchical clustering
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[Eisen et al., 1998]

Motivation
Arrange genes according to similarity in pattern of gene
expression
Graphical display of output
Efficient grouping of genes of similar functions



Hierarchical clustering
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[Eisen et al., 1998]

Data
Saccharomyces cerevisiae:

DNA microarrays containing all ORFs
Diauxic shift; mitotic cell division cycle; sporulation;
temperature and reducing shocks

Human
9 800 cDNAs representing ∼ 8 600 transcripts
fibroblasts stimulated with serum following serum star-
vation

Data pre-processing
Cy5 (red) and Cy3 (green) fluorescences→ log2(Cy5/Cy3)



Hierarchical clustering
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[Eisen et al., 1998]

Methods
Distance: Pearson’s correlation
Pairwise average-linkage cluster analysis
Ordering of elements:

Ideally: such that adjacent elements have maximal
similarity (impractical)
In practice: rank genes by average gene expression,
chromosomal position



Hierarchical clustering
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[Bar-Joseph et al., 2001]

Fast optimal leaf ordering for hierarchical clustering

n leaves→ 2n − 1 possible ordering

Goal: maximize the sum of similarities of ad-
jacent leaves in the ordering

Recursively find, for a node v, the cost
C(v, ul, ur) of the optimal ordering rooted at
v with left-most leaf ul and right-most leaf ur

Work bottom up:
C(v, u, w) = C(vl, u,m)+C(vr, k, w)+σ(m, k),
where σ(m, k) is the similarity between m

and k

O(n4) time, O(n2) space

Early termination→ O(n3)



Hierarchical clustering
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[Eisen et al., 1998]

Genes “represent” more than a mere cluster
together

Genes of similar function cluster together

cluster A: cholesterol biosyntehsis

cluster B: cell cycle

cluster C: immediate-early response

cluster D: signaling and angiogenesis

cluster E: tissue remodeling and wound
healing



Hierarchical clustering

Karsten Borgwardt: Data Mining in Bioinformatics, Page 24

[Eisen et al., 1998]

cluster E: genes encoding glycolytic enzymes
share a function but are not members of large pro-
tein complexes

cluster J: mini-chromosomoe maintenance DNA
replication complex

cluster I: 126 genes strongly down-regulated in response to stress
112 of those encode ribosomal proteins
Yeast responds to favorable growth conditions by increasing the pro-
duction of ribosome, through transcriptional regulation of genes en-
coding ribosomal proteins



Hierarchical clustering
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[Eisen et al., 1998]

Validation
Randomized data does not cluster



Hierarchical clustering
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[Eisen et al., 1998]

Conclusions
Hierarchical clustering of gene expression data groups
together genes that are known to have similar functions
Gene expression clusters reflect biological processes
Coexpression data can be used to infer the function of
new / poorly characterized genes



Hierarchical clustering

Karsten Borgwardt: Data Mining in Bioinformatics, Page 27

[Bar-Joseph et al., 2001]



K-means clustering
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source: scikit-learn.org



K-means clustering
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Advantages
Relatively efficient O(ntk)
n objects, k clusters, t iterations
Easily implementable

Drawbacks
Need to specify k ahead of time
Sensitive to noise and outliers
Clusters are forced to have convex shapes
(kernel k-means can be a solution)
Results depend on the initial, random partition (k-
means++ can be a solution)



K-means clustering
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[Tavazoie et al., 1999]

Motivation
Use whole-genome mRNA data to identify transcrip-
tional regulatory sub-networks in yeast
Systematic approach, minimally biased to previous
knowledge
An upstream DNA sequence pattern common to all
mRNAs in a cluster is a candidate cis-regulatory ele-
ment



K-means clustering
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[Tavazoie et al., 1999]

Data
Oligonucleotide microarrays, 6 220 mRNA species
15 time points across two cell cycles

Data pre-processing
variance-normalization
keep the most variable 3 000 ORFs



K-means clustering
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[Tavazoie et al., 1999]

Methods
k-means, k = 30→ 49–186 ORFs per cluster
cluster labeling:

map the genes to 199 functional categories (MIPSa

database)
compute p-values of observing frequencies of genes
in particular functional classes
cumulative hypergeometric probability distribution for finding at least k
ORFs (g total) from a single functional category (size f ) in a cluster of
size n

P = 1−
k∑

i=1

(
f
i

)(
g−f
n−i
)(

g
n

)
correct for 199 tests

aMartinsried Institute of Protein Science



K-means clustering
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[Tavazoie et al., 1999]



K-means clustering
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[Tavazoie et al., 1999]

Periodic cluster

Aperiodic cluster



K-means clustering
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[Tavazoie et al., 1999]

Conclusions
Clusters with significant functional enrichment tend to be
tighter (mean Euclidean distance)
Tighter clusters tend to have significant upstream motifs
Discovered new regulons



Self-organizing maps
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a.k.a. Kohonen networks
Impose partial structure on the clusters

Start from a geometry of nodes {N1, N2, . . . , Nk}
E.g. grids, rings, lines

At each iteration, randomly select a data point P , and move
the nodes towards P .

The nodes closest to P move the most, and the nodes
furthest from P move the least.

f (t+1)(N) = f (t)(N)+τ (t, d(N,NP ))(P−f (t)(N)) NP : node closest to P

The learning rate τ decreases with t and the distance
from NP to N



Self-organizing maps
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Source: Wikimedia Commons – Mcld



Self-organizing maps
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Advantages
Can impose partial structure
Visualization

Drawbacks
Multiple parameters to set
Need to set an initial geometry



Self-organizing maps
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[Tamayo et al., 1999]

Motivation
Extract fundamental patterns of gene expression
Organize the genes into biologically relevant clusters
Suggest novel hypotheses



Self-organizing maps
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[Tamayo et al., 1999]

Data
Yeast

6 218 ORFs

2 cell cycles, every 10 minutes

SOM: 6× 5 grid

Human

Macrophage differentiation in HL-60 cells (myeloid leukemia cell line)

5 223 genes

cells harvested at 0, 0.5, 4 and 24 hours after PMA stimulation

SOM: 4× 3 grid



Self-organizing maps
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[Tamayo et al., 1999]

Results: Yeast

Periodic behavior

Adjacent clusters have similar
behavior



Self-organizing maps
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[Tamayo et al., 1999]

Results: HL-60
Cluster 11:

gradual induction as cells lose
proliferative capacity and acquire
hallmarks of the macrophage lin-
eage

8/32 genes not expected given
current knowledge of hematopoi-
etic differentiation

4 of those suggest role of
immunophilin-mediated pathway
in macrophage differentiation



Self-organizing maps
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[Tamayo et al., 1999]

Conclusions
Extracted the k most prominent patterns to provide an
“executive summary”
Small data, but illustrative:

Cell cycle periodicity recovered
Genes known to be involved in hematopoietic differ-
entiation recovered
New hypotheses generated

SOMs scale well to larger datasets



Biclustering
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Biclustering, co-clustering, two-ways clustering
Find subsets of rows that exhibit similar behaviors
across subsets of columns
Bicluster: subset of genes that show similar expression
patterns across a subset of conditions/tissues/samples

source: [Yang and Oja, 2012]



Biclustering
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[Cheng and Church, 2000]

Motivation
Simultaneous clustering of genes and conditions
Overlapped grouping
More appropriate for genes with multiple functions or regulated by multiple

factors



Biclustering
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[Cheng and Church, 2000]

Algorithm
Goal: minimize intra-cluster variance

Mean Squared Residue:

MSR(I, J) =
1

|I||J |
∑

i∈I,j∈J

(xij − xiJ − xIj + xIJ)
2

xiJ , xIj, xIJ : mean expression values in row i, column j, and over the whole
cluster

δ: maximum acceptable MSR

Single Node Deletion: remove rows/columns of X with largest variance(
1
|J |
∑

j∈J(xij − xiJ − xIj + xIJ)
2
)

until MSR < δ

Node Addition: some rows/columns may be added back without increasing
MSR

Masking Discovered Biclusters: replace the corresponding entries by ran-
dom numbers



Biclustering
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[Cheng and Church, 2000]

Results: Yeast

Biclusters 17, 67, 71, 80, 90
contain genes in clusters 4, 8,
12 of [Tavazoie et al., 1999]

Biclusters 57, 63, 77, 84,
94 represent cluster 7
of [Tavazoie et al., 1999]



Biclustering
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[Cheng and Church, 2000]

Results: Human B-cells
Data: 4 026 genes, 96 samples of normal and malignant
lymphocytes

Cluster 12: 4 genes, 96 condi-
tions

19: 103, 25 22: 10, 57
39: 9, 51 44:10, 29
45: 127, 13 49: 2, 96
52: 3, 96 53: 11, 25
54: 13, 21 75: 25, 12
83: 2, 96



Biclustering
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[Cheng and Church, 2000]

Conclusion
Biclustering algorithm that does not require computing
pairwise similarities between all entries of the expres-
sion matrix
Global fitting
Automatically drops noisy genes/conditions
Rows and columns can be included in multiple biclusters
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