GWAS IV: Bayesian linear (variance component) models

Dr. Oliver Stegle
Christoh Lippert
Prof. Dr. Karsten Borgwardt

Max-Planck-Institutes Tübingen, Germany

Tübingen
Summer 2011

Regression

Lineare regression:

- Making predictions
- Comparison of alternative models

Bayesian and regularized regression:

Regression

Lineare regression:

- Making predictions
- Comparison of alternative models

Bayesian and regularized regression:

- Uncertainty in model parameters

Regression

Lineare regression:

- Making predictions
- Comparison of alternative models

Bayesian and regularized regression:

- Uncertainty in model parameters
- Generalized basis functions

Further reading, useful material

- Christopher M. Bishop: Pattern Recognition and Machine learning [Bishop, 2006]
- Sam Roweis: Gaussian identities [Roweis, 1999]

Outline

Outline

Regression

Noise model and likelihood

- Given a dataset $\mathcal{D}=\left\{\mathbf{x}_{n}, y_{n}\right\}_{n=1}^{N}$, where $\mathbf{x}_{n}=\left\{x_{n, 1}, \ldots, x_{n, S}\right\}$ is S dimensional (for example S SNPs), fit parameters $\boldsymbol{\theta}$ of a regressor f with added Gaussian noise:

$$
y_{n}=f\left(\mathbf{x}_{n} ; \boldsymbol{\theta}\right)+\epsilon_{n} \quad \text { where } \quad p\left(\epsilon \mid \sigma^{2}\right)=\mathcal{N}\left(\epsilon \mid 0, \sigma^{2}\right) .
$$

- Equivalent likelihood formulation:

$$
p(\mathbf{y} \mid \mathbf{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid f\left(\mathbf{x}_{n}\right), \sigma^{2}\right)
$$

Regression

- Choose f to be linear:

$$
p(\mathbf{y} \mid \mathbf{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \mathbf{x}_{n} \cdot \boldsymbol{\theta}+c, \sigma^{2}\right)
$$

- Consider bias free case, $c=0$, otherwise inlcude an additional column of ones in each \mathbf{x}_{n}.

Regression

- Choose f to be linear:

$$
p(\mathbf{y} \mid \mathbf{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \mathbf{x}_{n} \cdot \boldsymbol{\theta}+c, \sigma^{2}\right)
$$

- Consider bias free case, $c=0$, otherwise inlcude an additional column of ones in each \mathbf{x}_{n}.

Equivalent graphical model

Linear Regression
 Maximum likelihood

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}, \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \mathbf{x}_{n} \cdot \boldsymbol{\theta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- Least squares and maximum likelihood are equivalent.

Linear Regression

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}, \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \mathbf{x}_{n} \cdot \boldsymbol{\theta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is minimized.
- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}, \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \mathbf{x}_{n} \cdot \boldsymbol{\theta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.

Linear Regression and Least Squares

(C.M. Bishop, Pattern Recognition and Machine Learning)

$$
E(\boldsymbol{\theta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}
$$

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry θ_{i}

$$
\begin{aligned}
\frac{d}{\mathrm{~d} \theta_{i}} \ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^{2}\right) & =\frac{d}{\mathrm{~d} \theta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right) x_{i}
\end{aligned}
$$

- Set gradient w.r.t to θ to zero

Pseudo inverse

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry θ_{i}

$$
\begin{aligned}
\frac{d}{\mathrm{~d} \theta_{i}} \ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^{2}\right) & =\frac{d}{\mathrm{~d} \theta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right) x_{i}
\end{aligned}
$$

- Set gradient w.r.t to $\boldsymbol{\theta}$ to zero

$$
\begin{aligned}
& \nabla_{\boldsymbol{\theta}} \ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right) \mathbf{x}_{n}^{\mathrm{T}}=0 \\
& \quad \Longrightarrow \boldsymbol{\theta}_{\mathrm{ML}}=\underbrace{\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}}_{\text {Pseudo inverse }} \mathbf{y}
\end{aligned}
$$

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry θ_{i}

$$
\begin{aligned}
\frac{d}{\mathrm{~d} \theta_{i}} \ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^{2}\right) & =\frac{d}{\mathrm{~d} \theta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right) x_{i}
\end{aligned}
$$

- Set gradient w.r.t to $\boldsymbol{\theta}$ to zero

$$
\begin{aligned}
& \nabla_{\boldsymbol{\theta}} \ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\mathbf{x}_{n} \cdot \boldsymbol{\theta}\right) \mathbf{x}_{n}^{\mathrm{T}}=0 \\
& \quad \Longrightarrow \boldsymbol{\theta}_{\mathrm{ML}}=\underbrace{\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}}_{\text {Pseudo inverse }} \mathbf{y}
\end{aligned}
$$

- Here, the matrix \mathbf{X} is defined as $\mathbf{X}=\left[\begin{array}{ccc}x_{1,1} & \ldots & x 1, D \\ \ldots & \ldots & \ldots \\ x_{N, 1} & \ldots & x_{N, D}\end{array}\right]$

Polynomial Curve Fitting

Motivation

- Non-linear relationships.
- Multiple SNPs playing a role for a particular phenotype.

Polynomial Curve Fitting

Univariate input x

- Use the polynomials up to degree K to construct new features from x

$$
\begin{aligned}
f(x, \boldsymbol{\theta}) & =\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\cdots+\theta_{K} x^{K} \\
& =\sum_{k=1}^{K} \theta_{k} \phi_{k}(x)=\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(x)
\end{aligned}
$$

where we defined $\boldsymbol{\phi}(x)=\left(1, x, x^{2}, \ldots, x^{K}\right)$.

- ϕ can be any feature mapping.

Polynomial Curve Fitting

Univariate input x

- Use the polynomials up to degree K to construct new features from x

$$
\begin{aligned}
f(x, \boldsymbol{\theta}) & =\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\cdots+\theta_{K} x^{K} \\
& =\sum_{k=1}^{K} \theta_{k} \phi_{k}(x)=\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(x)
\end{aligned}
$$

where we defined $\boldsymbol{\phi}(x)=\left(1, x, x^{2}, \ldots, x^{K}\right)$.

- ϕ can be any feature mapping.
- Possible to show: the feature map ϕ can be expressed in terms of kernels (kernel trick).

Polynomial Curve Fitting

Overfitting

- The degree of the polynomial is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The degree of the polynomial is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The degree of the polynomial is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The degree of the polynomial is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Multivariate regression

Polynomial curve fitting

Multivariate regression (SNPs)

$$
\begin{aligned}
f(x, \boldsymbol{\theta}) & =\theta_{0}+\theta_{1} x+\cdots+\theta_{K} x^{K} \\
& =\sum_{k=1}^{K} \theta_{k} \phi_{k}(x) \\
& =\phi(x) \cdot \boldsymbol{\theta}
\end{aligned}
$$

$$
f(x, \boldsymbol{\theta})=\sum_{s=1}^{S} \theta_{s} x_{s}
$$

$$
=\mathrm{x} \cdot \boldsymbol{\theta}
$$

Multivariate regression

Polynomial curve fitting

Multivariate regression (SNPs)

$$
\begin{aligned}
f(x, \boldsymbol{\theta}) & =\theta_{0}+\theta_{1} x+\cdots+\theta_{K} x^{K} \\
& =\sum_{k=1}^{K} \theta_{k} \phi_{k}(x) \\
& =\phi(x) \cdot \boldsymbol{\theta}
\end{aligned}
$$

$$
\begin{aligned}
f(x, \boldsymbol{\theta}) & =\sum_{s=1}^{S} \theta_{s} x_{s} \\
& =\mathbf{x} \cdot \boldsymbol{\theta}
\end{aligned}
$$

- Note: When fitting a single binary SNP genotype \mathbf{x}_{i}, a linear model is most general!

Regularized Least Squares

- Solutions to avoid overfitting:

1. Intelligently choose number of dimensions
2. Regularize the regression weights $\boldsymbol{\theta}$

Quadratically regularized objective function

Regularized Least Squares

- Solutions to avoid overfitting:

1. Intelligently choose number of dimensions
2. Regularize the regression weights $\boldsymbol{\theta}$

- Quadratically regularized objective function

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}_{\text {Regularizer }}
$$

Regularized Least Squares

- More general regularization:

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\theta_{d}\right|^{q}}_{\text {Regularizer }}
$$

Regularized Least Squares

More general regularizers

- More general regularization:

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\theta_{d}\right|^{q}}_{\text {Regularizer }}
$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

Regularized Least Squares

More general regularizers

- More general regularization:

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\theta_{d}\right|^{q}}_{\text {Regularizer }}
$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\theta_{d}\right|^{q}}_{\text {Regularizer }}
$$

Many state-of-the-art machine learning methods can be expressed within this framework.

- Linear Regression: squared loss, squared regularizer
- Support Vector Machine: hinge loss, squared regularizer - Lasso: squared loss, L1 regularizer.

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\theta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- Many state-of-the-art machine learning methods can be expressed within this framework.
- Linear Regression: squared loss, squared regularizer.
- Support Vector Machine: hinge loss, squared regularizer.
- Lasso: squared loss, L1 regularizer.

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\theta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- Many state-of-the-art machine learning methods can be expressed within this framework.
- Linear Regression: squared loss, squared regularizer.
- Support Vector Machine: hinge loss, squared regularizer.
- Lasso: squared loss, L1 regularizer.
- Inference: minimize the cost function $E(\boldsymbol{\theta})$, yielding a point estimate for $\boldsymbol{\theta}$.

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\theta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- Many state-of-the-art machine learning methods can be expressed within this framework.
- Linear Regression: squared loss, squared regularizer.
- Support Vector Machine: hinge loss, squared regularizer.
- Lasso: squared loss, L1 regularizer.
- Inference: minimize the cost function $E(\boldsymbol{\theta})$, yielding a point estimate for $\boldsymbol{\theta}$.
- Q: How to determine q and the a suitable loss function?

Loss functions and related methods

For each candidate model \mathcal{H} :

- Split data into K folds
- Training-test evaluation for each fold

- Assess average loss on test set

fold 2

$$
E_{\mathcal{H}}=\frac{1}{K} \sum_{k=1}^{K} \mathcal{L}_{k}^{\text {test }}
$$

\square

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }}
$$

$$
+\underbrace{\frac{\lambda}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}_{\text {Regularizer }}
$$

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
\begin{aligned}
& E(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }} \\
&+\underbrace{\frac{\lambda}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}_{\text {Regularizer }} \\
&=-\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}, \sigma^{2}\right) \\
&-\ln \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \frac{1}{\lambda} \mathbf{I}\right)
\end{aligned}
$$

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
\begin{array}{rlr}
E(\boldsymbol{\theta}) & =\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }} & +\underbrace{\frac{\lambda}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}_{\text {Regularizer }} \\
& =-\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}, \sigma^{2}\right) & -\ln \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \frac{1}{\lambda} \mathbf{I}\right) \\
& =-\ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{\Phi}(\mathbf{X}), \sigma^{2}\right) & -\ln p(\boldsymbol{\theta})
\end{array}
$$

Most alternative choices of regularizers and loss functions can be mapped to an equivalent probabilistic representation in a similar way.

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
\begin{array}{rlr}
E(\boldsymbol{\theta}) & =\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}\right)^{2}}_{\text {Squared error }} & +\underbrace{\frac{\lambda}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}_{\text {Regularizer }} \\
& =-\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}, \sigma^{2}\right) & -\ln \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \frac{1}{\lambda} \mathbf{I}\right) \\
& =-\ln p\left(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\Phi}(\mathbf{X}), \sigma^{2}\right) & -\ln p(\boldsymbol{\theta})
\end{array}
$$

- Most alternative choices of regularizers and loss functions can be mapped to an equivalent probabilistic representation in a similar way.

Outline

Bayesian linear regression

- Likelihood as before
$p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}, \sigma^{2}\right)$

Bayesian linear regression

- Likelihood as before

$$
p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}, \sigma^{2}\right)
$$

- Define a conjugate prior over $\boldsymbol{\theta}$

$$
p(\boldsymbol{\theta})=\mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right)
$$

Bayesian linear regression

- Posterior probability of $\boldsymbol{\theta}$

$$
\begin{aligned}
p\left(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right) & \propto \prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \cdot \boldsymbol{\theta}, \sigma^{2}\right) \cdot \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right) \\
& =\mathcal{N}\left(\mathbf{y} \mid \mathbf{\Phi}(\mathbf{X}) \cdot \boldsymbol{\theta}, \sigma^{2} \mathbf{I}\right) \cdot \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right) \\
& =\mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}, \mathbf{\Sigma}_{\boldsymbol{\theta}}\right)
\end{aligned}
$$

- where

$$
\begin{aligned}
& \boldsymbol{\mu}_{\boldsymbol{\theta}}=\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{y}\right) \\
& \boldsymbol{\Sigma}_{\boldsymbol{\theta}}=\left[\mathbf{S}_{0}^{-1}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{X})\right]^{-1}
\end{aligned}
$$

Bayesian linear regression

Prior choice

- Choice of prior: regularized (ridge) regression

$$
p(\boldsymbol{\theta})=\mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right)
$$

- In this case

$$
\begin{aligned}
p\left(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right) & \propto \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right) \\
\boldsymbol{\mu}_{\boldsymbol{\theta}} & =\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{y}\right) \\
\boldsymbol{\Sigma}_{\boldsymbol{\theta}} & =\left[\mathbf{S}_{0}^{-1}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{X})\right]^{-1}
\end{aligned}
$$

Bayesian linear regression

Prior choice

- Choice of prior: regularized (ridge) regression

$$
p(\boldsymbol{\theta})=\mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \frac{1}{\lambda} \mathbf{I}\right) .
$$

- In this case

$$
\begin{aligned}
& p\left(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right) \propto \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right) \\
& \boldsymbol{\mu}_{\boldsymbol{\theta}}=\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\left(\begin{array}{l}
\left.\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{y}\right) \\
\boldsymbol{\Sigma}_{\boldsymbol{\theta}}
\end{array}\right. \\
&=\left[\lambda \mathbf{I}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{X})\right]^{-1}
\end{aligned}
$$

- Equivalent to maximum likelihood estimate for $\lambda \rightarrow 0$!

Bayesian linear regression

Prior choice

- Choice of prior: regularized (ridge) regression
- In this case

$$
\begin{aligned}
& p\left(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right) \propto \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right) \\
& \boldsymbol{\mu}_{\boldsymbol{\theta}}=\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\left(\begin{array}{l}
\left.\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{y}\right) \\
\boldsymbol{\Sigma}_{\boldsymbol{\theta}}
\end{array}\right. \\
&=\left[\lambda \mathbf{I}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{X})\right]^{-1}
\end{aligned}
$$

- Equivalent to maximum likelihood estimate for $\lambda \rightarrow 0$!

Bayesian linear regression

Example

0 Data points

(C.M. Bishop, Pattern Recognition and Machine Learning)

Bayesian linear regression

Example

(C.M. Bishop, Pattern Recognition and Machine Learning)

Bayesian linear regression

Example

20 Data points

(C.M. Bishop, Pattern Recognition and Machine Learning)

Making predictions

- Prediction for fixed weight $\hat{\boldsymbol{\theta}}$ at input \mathbf{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \mathbf{x}^{\star}, \hat{\boldsymbol{\theta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right) \hat{\boldsymbol{\theta}}, \sigma^{2}\right)
$$

- Integrate over θ to take the posterior uncertainty into account

Making predictions

- Prediction for fixed weight $\hat{\boldsymbol{\theta}}$ at input \mathbf{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \mathbf{x}^{\star}, \hat{\boldsymbol{\theta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right) \hat{\boldsymbol{\theta}}, \sigma^{2}\right)
$$

- Integrate over $\boldsymbol{\theta}$ to take the posterior uncertainty into account

$$
\begin{aligned}
p\left(y^{\star} \mid \mathbf{x}^{\star}, \mathcal{D}\right) & =\int_{\boldsymbol{\theta}} p\left(y^{\star} \mid \mathbf{x}^{\star}, \boldsymbol{\theta}, \sigma^{2}\right) p\left(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y}, \sigma^{2}\right) \\
& =\int_{\boldsymbol{\theta}} \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right) \boldsymbol{\theta}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}, \mathbf{\Sigma}_{\boldsymbol{\theta}}\right) \\
& =\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right) \cdot \boldsymbol{\mu}_{\boldsymbol{\theta}}, \sigma^{2}+\boldsymbol{\phi}\left(\mathbf{x}^{\star}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}} \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right)\right)
\end{aligned}
$$

Making predictions

- Prediction for fixed weight $\hat{\boldsymbol{\theta}}$ at input \mathbf{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \mathbf{x}^{\star}, \hat{\boldsymbol{\theta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right) \hat{\boldsymbol{\theta}}, \sigma^{2}\right)
$$

- Integrate over $\boldsymbol{\theta}$ to take the posterior uncertainty into account

$$
\begin{aligned}
p\left(y^{\star} \mid \mathbf{x}^{\star}, \mathcal{D}\right) & =\int_{\boldsymbol{\theta}} p\left(y^{\star} \mid \mathbf{x}^{\star}, \boldsymbol{\theta}, \sigma^{2}\right) p\left(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y}, \sigma^{2}\right) \\
& =\int_{\boldsymbol{\theta}} \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right) \boldsymbol{\theta}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right) \\
& =\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\mathbf{x}^{\star}\right) \cdot \boldsymbol{\mu}_{\boldsymbol{\theta}}, \sigma^{2}+\phi\left(\mathrm{x}^{\star}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}} \boldsymbol{\phi}\left(\mathrm{x}^{\star}\right)\right)
\end{aligned}
$$

- Key:
- prediction is again Gaussian
- Predictive variance is increase due to the posterior uncertainty in $\boldsymbol{\theta}$.

Outline

Model comparison

- What degree of polynomials describes the data best?
- Is the linear model at all appropriate?

Model comparison

Motivation

- What degree of polynomials describes the data best?
- Is the linear model at all appropriate?
- Association testing.

Bayesian model comparison

- How do we choose among alternative models?
- Assume we want to choose among models $\mathcal{H}_{0}, \ldots, \mathcal{H}_{M}$ for a dataset \mathcal{D}.

Posterior probability for a particular model i

Bayesian model comparison

- How do we choose among alternative models?
- Assume we want to choose among models $\mathcal{H}_{0}, \ldots, \mathcal{H}_{M}$ for a dataset \mathcal{D}.
- Posterior probability for a particular model i

$$
p\left(\mathcal{H}_{i} \mid \mathcal{D}\right) \propto \underbrace{p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)}_{\text {Evidence }} \underbrace{p\left(\mathcal{H}_{i}\right)}_{\text {Prior }}
$$

Bayesian model comparison
 How to calculate the evidence

- The evidence is not the model likelihood!

$$
p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)=\int_{\boldsymbol{\Theta}} \mathrm{d} \boldsymbol{\Theta} p(\mathcal{D} \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta}) \text { for model parameters } \boldsymbol{\Theta}
$$

Bayesian model comparison

How to calculate the evidence

- The evidence is not the model likelihood!

$$
p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)=\int_{\boldsymbol{\Theta}} \mathrm{d} \boldsymbol{\Theta} p(\mathcal{D} \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta}) \text { for model parameters } \boldsymbol{\Theta}
$$

- Remember:

$$
\begin{aligned}
p\left(\boldsymbol{\Theta} \mid \mathcal{H}_{i}, \mathcal{D}\right) & =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{i}, \boldsymbol{\Theta}\right) p(\boldsymbol{\Theta})}{p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)} \\
\text { posterior } & =\frac{\text { likelihood } \cdot \text { prior }}{\text { Evidence }}
\end{aligned}
$$

Bayesian model comparison

- The evidence integral penalizes overly complex models.

A model with few parameters and lower maximum likelihood $\left(\mathcal{H}_{1}\right)$ mav win over a model with a peaked likelihood that requires many more parameters $\left(\mathcal{H}_{2}\right)$

(C.M.

Bishop, Pattern Recognition and Machine Learning)

Bayesian model comparison

Ocam's razor

- The evidence integral penalizes overly complex models.
- A model with few parameters and lower maximum likelihood $\left(\mathcal{H}_{1}\right)$ may win over a model with a peaked likelihood that requires many more parameters $\left(\mathcal{H}_{2}\right)$.

(C.M.

Bishop, Pattern Recognition and Machine Learning)

Application to GWA
 Relevance of a single SNP

- Consider an association study.
- \mathcal{H}_{0} : no association

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathcal{H}_{0}, \mathbf{X}, \mathbf{\Theta}_{0}\right) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma^{2} \mathbf{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) & =\int_{\sigma^{2}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma^{2} \mathbf{I}\right) p\left(\sigma^{2}\right)
\end{aligned}
$$

- Depending on the choice of priors, $p\left(\sigma^{2}\right)$ and $p(\theta)$, the requiredintegrals are often tractable in closed form.

Application to GWA

Relevance of a single SNP

- Consider an association study.
- \mathcal{H}_{0} : no association

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathcal{H}_{0}, \mathbf{X}, \boldsymbol{\Theta}_{0}\right) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma^{2} \mathbf{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) & =\int_{\sigma^{2}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma^{2} \mathbf{I}\right) p\left(\sigma^{2}\right)
\end{aligned}
$$

- \mathcal{H}_{1} : linear association

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathcal{H}_{1}, \mathbf{x}_{i}, \boldsymbol{\Theta}_{1}\right) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{x}_{i} \cdot \theta, \sigma^{2} \mathbf{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) & =\int_{\sigma^{2}, \theta} \mathcal{N}\left(\mathbf{y} \mid \mathbf{x}_{i} \cdot \theta, \sigma^{2} \mathbf{I}\right) p\left(\sigma^{2}\right) p(\theta)
\end{aligned}
$$

Application to GWA
 Relevance of a single SNP

- Consider an association study.
- \mathcal{H}_{0} : no association

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathcal{H}_{0}, \mathbf{X}, \boldsymbol{\Theta}_{0}\right) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma^{2} \mathbf{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) & =\int_{\sigma^{2}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma^{2} \mathbf{I}\right) p\left(\sigma^{2}\right)
\end{aligned}
$$

- \mathcal{H}_{1} : linear association

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathcal{H}_{1}, \mathbf{x}_{i}, \mathbf{\Theta}_{1}\right) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{x}_{i} \cdot \theta, \sigma^{2} \mathbf{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) & =\int_{\sigma^{2}, \theta} \mathcal{N}\left(\mathbf{y} \mid \mathbf{x}_{i} \cdot \theta, \sigma^{2} \mathbf{I}\right) p\left(\sigma^{2}\right) p(\theta)
\end{aligned}
$$

- Depending on the choice of priors, $p\left(\sigma^{2}\right)$ and $p(\theta)$, the required integrals are often tractable in closed form.

Application to GWA

Scoring models

- Similar to likelihood ratios, the ratio of the evidences, the Bayes factor can be used to score alternative models:

$$
B F=\ln \frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{0}\right)}
$$

Application to GWA

Scoring models

- Similar to likelihood ratios, the ratio of the evidences, the Bayes factor can be used to score alternative models:

$$
B F=\ln \frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{0}\right)}
$$

Application to GWA
 Posterior probability of an association

- Bayes factors are useful, however we would like a probabilistic answer how certain an association really is.

association

Application to GWA

Posterior probability of an association

- Bayes factors are useful, however we would like a probabilistic answer how certain an association really is.
- Posterior probability of \mathcal{H}_{1}

$$
\begin{aligned}
p\left(\mathcal{H}_{1} \mid \mathcal{D}\right) & =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p(\mathcal{D})} \\
& =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)+p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) p\left(\mathcal{H}_{0}\right)}
\end{aligned}
$$

Application to GWA

Posterior probability of an association

- Bayes factors are useful, however we would like a probabilistic answer how certain an association really is.
- Posterior probability of \mathcal{H}_{1}

$$
\begin{aligned}
p\left(\mathcal{H}_{1} \mid \mathcal{D}\right) & =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p(\mathcal{D})} \\
& =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)+p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) p\left(\mathcal{H}_{0}\right)}
\end{aligned}
$$

- $p\left(\mathcal{H}_{1} \mid \mathcal{D}\right)+p\left(\mathcal{H}_{0} \mid \mathcal{D}\right)=1$, prior probability of observing a real association.

Bayes factor verus likelihood ratio

Bayes factor

- Models of different complexity can be objectively compared.
- Statistical significance as posterior probability of a model.

Likelihood ratio

- Likelihood ratio scales with the number of parameters.
- Likelihood ratios have known null distribution, yielding p-values.

Bayes factor verus likelihood ratio

Bayes factor

- Models of different complexity can be objectively compared.
- Statistical significance as posterior probability of a model.
- Typically hard to compute.

Likelihood ratio

- Likelihood ratio scales with the number of parameters.
- Likelihood ratios have known null distribution, yielding p-values.
- Often easy to compute.

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs \mathbf{X} $p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s=1}^{S} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)$
Choose identical Gaussian prior for all weights $p(\boldsymbol{\theta})=\prod \mathcal{N}\left(\theta_{s} \mid 0, \sigma_{g}^{2}\right)$ Marginal likelithood

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs X $p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s=1}^{S} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)$
- Choose identical Gaussian prior for all weights $p(\boldsymbol{\theta})=\prod_{s=1}^{S} \mathcal{N}\left(\theta_{s} \mid 0, \sigma_{g}^{2}\right)$
\qquad

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs X

$$
p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s=1}^{S} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)
$$

- Choose identical Gaussian prior for all weights

$$
p(\boldsymbol{\theta})=\prod_{s=1}^{S} \mathcal{N}\left(\theta_{s} \mid 0, \sigma_{g}^{2}\right)
$$

- Marginal likelihood

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathbf{X}, \sigma^{2}, \sigma_{g}^{2}\right) & =\int_{\boldsymbol{\theta}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\theta}, \sigma^{2} \mathbf{I}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{I}\right) \\
& =\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma^{2} \mathbf{I}\right)
\end{aligned}
$$

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs X

$$
p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s=1}^{S} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)
$$

- Choose identical Gaussian prior for all weights

$$
p(\boldsymbol{\theta})=\prod_{s=1}^{S} \mathcal{N}\left(\theta_{s} \mid 0, \sigma_{g}^{2}\right)
$$

- Marginal likelihood

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathbf{X}, \sigma^{2}, \sigma_{g}^{2}\right) & =\int_{\boldsymbol{\theta}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\theta}, \sigma^{2} \mathbf{I}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{I}\right) \\
& =\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma^{2} \mathbf{I}\right)
\end{aligned}
$$

- Number of hyperparameters independent of number of SNPs

Marginal likelihood of variance component models Application to GWAs

The missing heritability paradox

- Complex traits are regulated by a large number of small effects
- Human height: the best single SNP explains little variance.
- But: the parents are highly predictive for the height of the child!

Marginal likelihood of variance component models

Application to GWAs

Multivariate additive models for complex traits

- Multivariate model over causal SNPs

$$
p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s \in \mathrm{causal}} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)
$$

Marginal likelihood of variance component models

Application to GWAs

Multivariate additive models for complex traits

- Multivariate model over causal SNPs

$$
p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s \in \mathrm{causal}} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)
$$

- Common variance prior for causal SNPs $p\left(\theta_{s}\right)=\mathcal{N}\left(\theta_{s} \mid 0, \sigma_{g}^{2}\right)$

$$
\begin{aligned}
& \text { Which SNPs are causal ? } \\
& \text { Approximation: consider all SNPs [rang et al., 2011] } \\
& \qquad p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{X X}^{\mathrm{T}}+\sigma_{e}^{2} \mathbf{I}\right)
\end{aligned}
$$

Marginal likelihood of variance component models

Application to GWAs

Multivariate additive models for complex traits

- Multivariate model over causal SNPs

$$
p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s \in \mathrm{causal}} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)
$$

- Common variance prior for causal SNPs $p\left(\theta_{s}\right)=\mathcal{N}\left(\theta_{s} \mid 0, \sigma_{g}^{2}\right)$
- Marinalize out weights

$$
p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \sum_{s \in \mathrm{causal}} \mathbf{x}_{s} \mathbf{x}_{s}^{\mathrm{T}}+\sigma_{e}^{2} \mathbf{I}\right)
$$

Marginal likelihood of variance component models

Application to GWAs

Multivariate additive models for complex traits

- Multivariate model over causal SNPs

$$
p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \sum_{s \in \mathrm{causal}} \mathbf{x}_{s} \theta_{s}, \sigma^{2} \mathbf{I}\right)
$$

- Common variance prior for causal SNPs $p\left(\theta_{s}\right)=\mathcal{N}\left(\theta_{s} \mid 0, \sigma_{g}^{2}\right)$
- Marinalize out weights

$$
p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \sum_{s \in \mathrm{causal}} \mathbf{x}_{s} \mathbf{x}_{s}^{\mathrm{T}}+\sigma_{e}^{2} \mathbf{I}\right)
$$

- Which SNPs are causal ?

Approximation: consider all SNPs [Yang et al., 2011]

$$
p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma_{e}^{2} \mathbf{I}\right)
$$

Marginal likelihood of variance component models Application to GWAs

- Approximate variance model $p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma_{e}^{2} \mathbf{I}\right)$

Genetic variance σ_{q}^{2} across chromosomes

Marginal likelihood of variance component models

Application to GWAs

- Approximate variance model
$p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma_{e}^{2} \mathbf{I}\right)$
- Genetic variance σ_{g}^{2} across chromosomes

[Yang et al., 2011]

Marginal likelihood of variance component models

Application to GWAs

- Approximate variance model
$p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}\right)=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2} \mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma_{e}^{2} \mathbf{I}\right)$
- Genetic variance σ_{g}^{2} across chromosomes
- Heritability $h^{2}=\frac{\sigma_{g}^{2}}{\sigma_{g}^{2}+\sigma_{e}^{2}}$

[Yang et al., 2011]

Outline

Summary

- Generalized linear models for Curve fitting and multivariate regression.
- Maximum likelihood and least squares regression are identical.
- Construction of features using a mapping ϕ.
- Regularized least squares and other models that correspond to different choices of loss functions.
- Bayesian linear regression.
- Model comparison and ocam's razor.
- Variance component models in GWAs.

Tasks

- Prove that the product of two Gaussians is Gaussian distributed.
- Try to understand the convolution formula of Gaussian random variables.

References I

C. Bishop. Pattern recognition and machine learning, volume 4. Springer New York, 2006.
S. Roweis. Gaussian identities. technical report, 1999. URL http://www.cs.nyu.edu/~roweis/notes/gaussid.pdf.
J. Yang, T. Manolio, L. Pasquale, E. Boerwinkle, N. Caporaso, J. Cunningham, M. de Andrade, B. Feenstra, E. Feingold, M. Hayes, et al. Genome partitioning of genetic variation for complex traits using common snps. Nature Genetics, 43(6):519-525, 2011.

