
GWAS IV: Bayesian linear
(variance component) models

Dr. Oliver Stegle
Christoh Lippert

Prof. Dr. Karsten Borgwardt

Max-Planck-Institutes Tübingen, Germany
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Motivation

Further reading, useful material

I Christopher M. Bishop: Pattern Recognition and Machine
learning [Bishop, 2006]

I Sam Roweis: Gaussian identities [Roweis, 1999]
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Outline

Outline
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Linear Regression II

Outline
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Linear Regression II

Regression
Noise model and likelihood

I Given a dataset D = {xn, yn}Nn=1, where xn = {xn,1, . . . , xn,S} is S
dimensional (for example S SNPs), fit parameters θ of a regressor f
with added Gaussian noise:

yn = f(xn;θ) + εn where p(ε |σ2) = N
(
ε
∣∣ 0, σ2) .

I Equivalent likelihood formulation:

p(y |X) =
N∏

n=1

N
(
yn
∣∣ f(xn), σ

2
)
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Linear Regression II

Regression
Choosing a regressor

I Choose f to be linear:

p(y |X) =

N∏
n=1

N
(
yn
∣∣xn · θ + c, σ2

)
I Consider bias free case, c = 0,

otherwise inlcude an additional
column of ones in each xn.
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I Choose f to be linear:

p(y |X) =

N∏
n=1

N
(
yn
∣∣xn · θ + c, σ2

)
I Consider bias free case, c = 0,

otherwise inlcude an additional
column of ones in each xn. Equivalent graphical model
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Linear Regression II

Linear Regression
Maximum likelihood

I Taking the logarithm, we obtain

ln p(y |θ,X, σ2) =
N∑

n=1

lnN
(
yn
∣∣xn · θ, σ2

)
= −N

2
ln 2πσ2 − 1

2σ2

N∑
n=1

(yn − xn · θ)2︸ ︷︷ ︸
Sum of squares

I The likelihood is maximized when the squared error is minimized.

I Least squares and maximum likelihood are equivalent.
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Linear Regression II

Linear Regression and Least Squares

y

x

f (xn , w )

y
n

xn

(C.M. Bishop, Pattern Recognition and Machine Learning)

E(θ) =
1

2

N∑
n=1

(yn − xn · θ)2
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Linear Regression II

Linear Regression and Least Squares

I Derivative w.r.t a single weight entry θi

d

dθi
ln p(y |θ, σ2) =

d

dθi

[
− 1

2σ2

N∑
n=1

(yn − xn · θ)2
]

=
1

σ2

N∑
n=1

(yn − xn · θ)xi

I Set gradient w.r.t to θ to zero

∇θ ln p(y |θ, σ2) =
1

σ2

N∑
n=1

(yn − xn · θ)xT
n = 0

=⇒ θML = (XTX)−1XT︸ ︷︷ ︸
Pseudo inverse

y

I Here, the matrix X is defined as X =

 x1,1 . . . x1, D
. . . . . . . . .
xN,1 . . . xN,D
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Linear Regression II

Polynomial Curve Fitting
Motivation

I Non-linear relationships.

I Multiple SNPs playing a role for
a particular phenotype.

X

Y

x*
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Linear Regression II

Polynomial Curve Fitting

Univariate input x

I Use the polynomials up to degree K to construct new features from x

f(x,θ) = θ0 + θ1x+ θ2x
2 + · · ·+ θKx

K

=

K∑
k=1

θkφk(x) = θTφ(x)

where we defined φ(x) = (1, x, x2, . . . , xK).

I φ can be any feature mapping.

I Possible to show: the feature map φ can be expressed in terms of
kernels (kernel trick).
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Linear Regression II

Polynomial Curve Fitting
Overfitting

I The degree of the polynomial is crucial to avoid under- and
overfitting.

x

t

M = 0

0 1

−1

0

1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Polynomial Curve Fitting
Overfitting

I The degree of the polynomial is crucial to avoid under- and
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x

t

M = 1

0 1

−1

0

1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression II

Polynomial Curve Fitting
Overfitting

I The degree of the polynomial is crucial to avoid under- and
overfitting.

x

t

M = 3

0 1

−1

0

1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression II

Polynomial Curve Fitting
Overfitting

I The degree of the polynomial is crucial to avoid under- and
overfitting.

x

t

M = 9

0 1

−1

0

1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression II

Multivariate regression

Polynomial curve fitting

f(x,θ) = θ0 + θ1x+ · · ·+ θKx
K

=

K∑
k=1

θkφk(x)

= φ(x) · θ,

Multivariate regression (SNPs)

f(x,θ) =

S∑
s=1

θsxs

= x · θ

I Note: When fitting a single binary SNP genotype xi, a linear model is
most general!

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 14



Linear Regression II

Multivariate regression

Polynomial curve fitting

f(x,θ) = θ0 + θ1x+ · · ·+ θKx
K

=

K∑
k=1

θkφk(x)

= φ(x) · θ,

Multivariate regression (SNPs)

f(x,θ) =

S∑
s=1

θsxs

= x · θ

I Note: When fitting a single binary SNP genotype xi, a linear model is
most general!

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 14



Linear Regression II

Regularized Least Squares

I Solutions to avoid overfitting:

1. Intelligently choose number of dimensions
2. Regularize the regression weights θ

I Quadratically regularized objective function

E(θ) =
1

2

N∑
n=1

(yn − φ(xn) · θ)2︸ ︷︷ ︸
Squared error

+
λ

2
θTθ︸ ︷︷ ︸

Regularizer

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 15



Linear Regression II

Regularized Least Squares

I Solutions to avoid overfitting:

1. Intelligently choose number of dimensions
2. Regularize the regression weights θ

I Quadratically regularized objective function

E(θ) =
1

2

N∑
n=1

(yn − φ(xn) · θ)2︸ ︷︷ ︸
Squared error

+
λ

2
θTθ︸ ︷︷ ︸

Regularizer

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 15



Linear Regression II

Regularized Least Squares
More general regularizers

I More general regularization:

E(θ) =
1

2

N∑
n=1

(yn − φ(xn) · θ)2︸ ︷︷ ︸
Squared error

+
λ

2

D∑
d=1

|θd|q︸ ︷︷ ︸
Regularizer
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Linear Regression II

Regularized Least Squares
More general regularizers

I More general regularization:
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λ

2
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q = 0 .5 q = 1 q = 2 q = 4

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression II

Regularized Least Squares
More general regularizers

I More general regularization:

E(θ) =
1

2

N∑
n=1

(yn − φ(xn) · θ)2︸ ︷︷ ︸
Squared error

+
λ

2

D∑
d=1

|θd|q︸ ︷︷ ︸
Regularizer

q = 0 .5 q = 1 q = 2 q = 4

QuadraticLasso

sparse

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression II

Loss functions and related methods

I Even more general: general loss function

E(θ) =
1

2

N∑
n=1

L(yn − φ(xn) · θ)︸ ︷︷ ︸
Loss

+
λ

2

D∑
d=1

|θd|q︸ ︷︷ ︸
Regularizer

I Many state-of-the-art machine learning methods can be expressed
within this framework.

I Linear Regression: squared loss, squared regularizer.
I Support Vector Machine: hinge loss, squared regularizer.
I Lasso: squared loss, L1 regularizer.

I Inference: minimize the cost function E(θ), yielding a point estimate
for θ.

I Q: How to determine q and the a suitable loss function?
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Linear Regression II

Loss functions and related methods
Cross validation: minimization of expected loss

For each candidate model H:

I Split data into K folds

I Training-test evaluation for each
fold

I Assess average loss on test set

EH =
1

K

K∑
k=1

Ltestk

fold 1

fold 2

fold 3

test set training set

Total number of samples
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Linear Regression II

Probabilistic interpretation

I So far: minimization of error functions.
I Back to probabilities?

E(θ) =
1

2

N∑
n=1

(yn − φ(xn) · θ)2︸ ︷︷ ︸
Squared error

+
λ

2
θTθ︸ ︷︷ ︸

Regularizer

I Most alternative choices of regularizers and loss functions can be
mapped to an equivalent probabilistic representation in a similar way.
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Bayesian linear regression

Outline
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Bayesian linear regression

Bayesian linear regression

I Likelihood as before

p(y |X,θ, σ2) =
N∏

n=1

N
(
yn
∣∣φ(xn) · θ, σ2

)
I Define a conjugate prior over θ

p(θ) = N (θ |m0,S0)
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Bayesian linear regression

Bayesian linear regression

I Posterior probability of θ

p(θ |y,X, σ2) ∝
N∏

n=1

N
(
yn
∣∣φ(xn) · θ, σ2

)
· N (θ |m0,S0)

= N
(
y
∣∣Φ(X) · θ, σ2I

)
· N (θ |m0,S0)

= N
(
θ
∣∣µθ,Σθ

)
I where

µθ = Σθ

(
S−10 m0 +

1

σ2
Φ(X)Ty

)
Σθ =

[
S−10 +

1

σ2
Φ(X)TΦ(X)

]−1
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Bayesian linear regression

Bayesian linear regression
Prior choice

I Choice of prior: regularized (ridge) regression

p(θ) = N
(
θ |m0,S0

)
.

I In this case

p(θ |y,X, σ2) ∝ N
(
θ
∣∣µθ,Σθ

)
µθ = Σθ

(
S−10 m0 +

1

σ2
Φ(X)Ty

)
Σθ =

[
S−10 +

1

σ2
Φ(X)TΦ(X)

]−1
I Equivalent to maximum likelihood estimate for λ→ 0!
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Bayesian linear regression

Bayesian linear regression
Example

0 Data points

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Bayesian linear regression

Bayesian linear regression
Example

1 Data point

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Bayesian linear regression

Bayesian linear regression
Example

20 Data points

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Bayesian linear regression

Making predictions

I Prediction for fixed weight θ̂ at input x? trivial:

p(y? |x?, θ̂, σ2) = N
(
y?
∣∣∣φ(x?)θ̂, σ2

)
I Integrate over θ to take the posterior uncertainty into account

p(y? |x?,D) =
∫
θ
p(y? |x?,θ, σ2)p(θ |X,y, σ2)

=

∫
θ
N
(
y?
∣∣φ(x?)θ, σ2

)
N
(
θ
∣∣µθ,Σθ

)
= N

(
y?
∣∣φ(x?) · µθ, σ

2 + φ(x?)TΣθφ(x
?)
)

I Key:
I prediction is again Gaussian
I Predictive variance is increase due to the posterior uncertainty in θ.
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Model comparison and hypothesis testing

Outline
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Model comparison and hypothesis testing

Model comparison
Motivation

I What degree of polynomials
describes the data best?

I Is the linear model at all
appropriate?

I Association testing.
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Model comparison and hypothesis testing

Bayesian model comparison

I How do we choose among alternative models?

I Assume we want to choose among models H0, . . . ,HM for a
dataset D.

I Posterior probability for a particular model i

p(Hi | D) ∝ p(D |Hi)︸ ︷︷ ︸
Evidence

p(Hi)︸ ︷︷ ︸
Prior
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Model comparison and hypothesis testing

Bayesian model comparison
How to calculate the evidence

I The evidence is not the model likelihood!

p(D |Hi) =

∫
Θ

dΘp(D |Θ)p(Θ) for model parameters Θ.

I Remember:

p(Θ |Hi,D) =
p(D |Hi,Θ)p(Θ)

p(D |Hi)

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 29
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Bayesian model comparison
How to calculate the evidence

I The evidence is not the model likelihood!
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∫
Θ

dΘp(D |Θ)p(Θ) for model parameters Θ.

I Remember:
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p(D |Hi)

posterior =
likelihood · prior

Evidence
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Model comparison and hypothesis testing

Bayesian model comparison
Ocam’s razor

I The evidence integral penalizes
overly complex models.

I A model with few parameters
and lower maximum likelihood
(H1) may win over a model with
a peaked likelihood that requires
many more parameters (H2).

wMAP w

Likelihood
H2

H1

(C.M.

Bishop, Pattern Recognition and Machine Learning)
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Model comparison and hypothesis testing

Application to GWA
Relevance of a single SNP

I Consider an association study.
I H0 : no association

p(y |H0,X,Θ0) = N
(
y
∣∣0, σ2I

)
p(D |H0) =

∫
σ2

N
(
y
∣∣0, σ2I

)
p(σ2)

I H1: linear association

p(y |H1,xi,Θ1) = N
(
y
∣∣xi · θ, σ2I

)
p(D |H1) =

∫
σ2,θ

N
(
y
∣∣xi · θ, σ2I

)
p(σ2)p(θ)

I Depending on the choice of priors, p(σ2) and p(θ), the required
integrals are often tractable in closed form.
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Model comparison and hypothesis testing

Application to GWA
Scoring models

I Similar to likelihood ratios, the ratio of the evidences, the Bayes
factor can be used to score alternative models:

BF = ln
p(D |H1)

p(D |H0)
.

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 32



Model comparison and hypothesis testing

Application to GWA
Scoring models

I Similar to likelihood ratios, the ratio of the evidences, the Bayes
factor can be used to score alternative models:

BF = ln
p(D |H1)

p(D |H0)
.

0

1.3354 1.3356 1.3358 1.336 1.3362 1.3364 1.3366 1.3368 1.337 1.3372 1.3374
x 108

0

5

10

15

LO
D

/B
F

Position in chr. 7

SLC35B4

0.01% FPR 0.01%

FP
R

SLC35B4

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 32



Model comparison and hypothesis testing

Application to GWA
Posterior probability of an association

I Bayes factors are useful, however we would like a probabilistic answer
how certain an association really is.

I Posterior probability of H1

p(H1 | D) =
p(D |H1)p(H1)

p(D)

=
p(D |H1)p(H1)

p(D |H1)p(H1) + p(D |H0)p(H0)

I p(H1 | D) + p(H0 | D) = 1, prior probability of observing a real
association.
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Model comparison and hypothesis testing

Bayes factor verus likelihood ratio

Bayes factor

I Models of different
complexity can be
objectively compared.

I Statistical significance as
posterior probability of a
model.

I Typically hard to compute.

Likelihood ratio

I Likelihood ratio scales with
the number of parameters.

I Likelihood ratios have
known null distribution,
yielding p-values.

I Often easy to compute.
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Model comparison and hypothesis testing

Marginal likelihood of variance component models

I Consider a linear model, accounting for a set of measured SNPs X

p(y |X,θ, σ2) = N

(
y

∣∣∣∣∣
S∑

s=1

xsθs, σ
2I

)
I Choose identical Gaussian prior for all weights

p(θ) =

S∏
s=1

N
(
θs
∣∣ 0, σ2g)

I Marginal likelihood

p(y |X, ) =
∫
θ
N
(
y
∣∣Xθ, σ2I

)
N
(
θ
∣∣0, σ2gI)

I Number of hyperparameters independent of number of SNPs
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Model comparison and hypothesis testing

Marginal likelihood of variance component models
Application to GWAs

The missing heritability paradox
I Complex traits are regulated by a large number of small effects

I Human height: the best single SNP explains little variance.
I But: the parents are highly predictive for the height of the child!
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Model comparison and hypothesis testing

Marginal likelihood of variance component models
Application to GWAs

Multivariate additive models for complex traits

I Multivariate model over causal SNPs

p(y |X,θ, σ2) = N
(
y |

∑
s∈causal

xsθs, σ
2I
)

I Common variance prior for causal SNPs p(θs) = N
(
θs
∣∣ 0, σ2g)

I Marinalize out weights

p(y |X, σ2g , σ2e) = N
(
y |0, σ2g

∑
s∈causal

xsx
T
s + σ2eI

)
I Which SNPs are causal ?

Approximation: consider all SNPs [Yang et al., 2011]

p(y |X, σ2g , σ2e) = N
(
y |0, σ2gXXT + σ2eI

)
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Model comparison and hypothesis testing

Marginal likelihood of variance component models
Application to GWAs

I Approximate variance model

p(y |X, σ2
g , σ

2
e) = N

(
y |0, σ2

gXXT + σ2
eI
)

I Genetic variance σ2g across
chromosomes

I Heritability h2 =
σ2g

σ2g + σ2e
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Summary

Outline
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Summary

Summary

I Generalized linear models for Curve fitting and multivariate regression.

I Maximum likelihood and least squares regression are identical.

I Construction of features using a mapping φ.

I Regularized least squares and other models that correspond to
different choices of loss functions.

I Bayesian linear regression.

I Model comparison and ocam’s razor.

I Variance component models in GWAs.
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Summary

Tasks

I Prove that the product of two Gaussians is Gaussian distributed.

I Try to understand the convolution formula of Gaussian random
variables.
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Summary
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