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Motivation
Regression
Lineare regression:

» Making predictions

» Comparison of alternative
models

Bayesian and regularized regression:

Y
> Uncertainty in model parameters
» Generalized basis functions
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Motivation
Further reading, useful material

learning [Bishop, 2006]

» Christopher M. Bishop: Pattern Recognition and Machine

» Sam Roweis: Gaussian identities [Roweis, 1999]
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QOutline

Outline
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Linear Regression Il
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Linear Regression Il

Regression

Noise model and likelihood

» Given a dataset D = {xn,yn}flvzl, where x,, = {zp1,...,2n,5} i S
dimensional (for example S SNPs), fit parameters 6 of a regressor f
with added Gaussian noise:

yn = f(x;0) + €n where p(e|o?) =N (e]0,0%).

» Equivalent likelihood formulation:

py|X) = HNyn|fxn %)

n=1

o F = = DA

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 6



Regression

Linear Regression Il

Choosing a regressor

» Choose f to be linear:

n=1

N
p(y | X) = H/\/’(yn|xn-0+c,02)
» Consider bias free case, ¢ = 0,

otherwise inlcude an additional
column of ones in each x,,.
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Regression

Linear Regression Il

Choosing a regressor

» Choose f to be linear:

n=1

N
p(y | X) = HN(yn|xn-0+c,02)

» Consider bias free case, ¢ = 0,

otherwise inlcude an additional
column of ones in each x,,.

O

n

Oliver Stegle

Equivalent graphical model
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Linear Regression

Linear Regression Il
Maximum likelihood

» Taking the logarithm, we obtain

n=1

N
Inp(y|0,X,0?) = Zln/\/(yn |xn . 0,02)

3 In27r0? —

>
Sum of squares
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Linear Regression

Linear Regression Il
Maximum likelihood

» Taking the logarithm, we obtain

n=1

N
Inp(y|0,X,0?) = Zln/\/(yn |xn . 0,02)

3 In27r0? —

>
Sum of squares
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Linear Regression

Linear Regression Il
Maximum likelihood

» Taking the logarithm, we obtain

n=1

N
Inp(y|0,X,0?) = Zln/\/(yn |xn . 0,02)

3 In27r0? —

» The likelihood is maximized when the squared error is minimized.

Sum of squares
> Least squares and maximum likelihood are equivalent.
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Linear Regression Il
Linear Regression and Least Squares
3 yn

Hxn, w)

Tn
(C.M. Bishop, Pattern Recognition and Machine Learning)

E(6)
Oliver Stegle
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9 Z(yn — Xn 0)2

n=1
] 5 =
GWAS IV: Bayesian linear models

DA
Summer 2011

9



Linear Regression Il

Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 6;

d ) 1 & ,
a0, " 10.7%) = g, | ~am 2 =X 0)
1 1 n:1
1 N
:;Z(yn Xn e)xz
n=1

=] =) = = £ DA

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 10



Linear Regression Il

Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 6;

d ) 1 & ,
a0, " 10.7%) = g, | ~am 2 =X 0)
v n=1
1 N
:EZ(yn Xn 0)1‘1
n=1

» Set gradient w.r.t to 0 to zero

N
1
v@ lnp(y | 9702) = 3 Z(yn —Xp - B)XZ =0

— O = (XTX)"IXTy
N———’

Pseudo inverse

o> = z 9ac
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Linear Regression Il

Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 6;

d ) 1 & ,
a0, " 10.7%) = g, | ~am 2 =X 0)
v n=1
1 N
:;Z(yn Xn 0)1‘1
n=1

» Set gradient w.r.t to 0 to zero

N
1
v@ lnp(y | 9702) = 3 Z(yn —Xp - B)XZ =0

— O = (XTX)"IXTy
| —
Pseudo inverse

x1,1 e :L‘l, D
» Here, the matrix X is defined as X =
TN,1 “e TN,D
= = - = = 9ace

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 10



Motivation

Polynomial Curve Fitting

Linear Regression Il

» Non-linear relationships.

A
a particular phenotype.

] 5 =
GWAS IV: Bayesian linear models

Summer 2011

» Multiple SNPs playing a role for
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Linear Regression Il

Polynomial Curve Fitting

Univariate input x

» Use the polynomials up to degree K to construct new features from x

f(x,0) =0y + 612 + O 4 - - 4 Ogx’s
K
= Oeoi(z) =0T ¢()
k=1

where we defined ¢(x) = (1,z,22,...,2%).

> ¢ can be any feature mapping.

o> = z 9ac

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 12



Linear Regression Il

Polynomial Curve Fitting

Univariate input x

» Use the polynomials up to degree K to construct new features from x

f(z,0) =00+ 01z + Oz + - + O xS
K
= Okor(x) = 0" ()
k=1
where we defined ¢(x) = (1,z,22,...,2%).

> ¢ can be any feature mapping.

» Possible to show: the feature map ¢ can be expressed in terms of
kernels (kernel trick).

] 5 =

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 12



Polynomial Curve Fitting
Overfitting

Linear Regression Il

overfitting.

» The degree of the polynomial is crucial to avoid under- and

1 M =0
o
t
° o o
of 7 N\ ]
o
-1
0 . 1
(C.M. Bishop, Pattern Recognition and Machine Learning)
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Polynomial Curve Fitting
Overfitting

Linear Regression Il

overfitting.

» The degree of the polynomial is crucial to avoid under- and
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Polynomial Curve Fitting
Overfitting

Linear Regression Il

overfitting.

» The degree of the polynomial is crucial to avoid under- and

M =3

Oliver Stegle
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Polynomial Curve Fitting
Overfitting

Linear Regression Il

overfitting.

» The degree of the polynomial is crucial to avoid under- and
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Linear Regression Il

Multivariate regression

Polynomial curve fitting Multivariate regression (SNPs)

f($70):90+913;+...+0K1.K
K
- Zek%(m)
k=1
= () -6,

S
fla,0) =" b,
s=1

=x-0

o <& = E z 9ac
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Linear Regression Il

Multivariate regression

Polynomial curve fitting Multivariate regression (SNPs)

f(x70):90+91;1;+...+0K1.K
K
- Zek%(m)
k=1
= () -6,

S
fla,0) =" b,
s=1

=x-0

» Note: When fitting a single binary SNP genotype x;, a linear model is
most general!

a F = E £ DA

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 14



Linear Regression Il
Regularized Least Squares
» Solutions to avoid overfitting:
1. Intelligently choose number of dimensions
2. Regularize the regression weights
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Linear Regression Il
Regularized Least Squares
» Solutions to avoid overfitting:
1. Intelligently choose number of dimensions
2. Regularize the regression weights

» Quadratically regularized objective function

A
_ 2 T
2n§:1(yn b(xn)-0)"+ 0°6
Squargg error

—
Oliver Stegle

Regularizer
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More general regularizers

Regularized Least Squares

Linear Regression Il

» More general regularization:

A D
2
3 D (Y — d(xn) - 0)* + 5 > 164"
n=1 N d=1 B
Squar:g error Regl?lgrizer
Oliver Stegle
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Regularized Least Squares

More general regularizers

Linear Regression Il

» More general regularization:

N D
1 2 A .
=D (Wn—d(xa)-0)°+5 > |64l
2 2
n=1 d=1
N -~ -~ -
Squared error Regularizer
q =0.5 q =1 q =92
(C.M. Bishop, Pattern Recognition and Machine Learning)
Oliver Stegle
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Regularized Least Squares

More general regularizers

Linear Regression Il

» More general regularization

— — q
9 E (Yn — &(xn) E 104]
n=1 d=1
-
TV Vv
Squared error Regularizer
S arse
q=0.5 g=1 q=2
Lasso Quadratic
(C.M. Bishop, Pattern Recognition and Machine Learning)
Oliver Stegle
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Linear Regression Il
Loss functions and related methods
» Even more general: general loss function

1 A&
E(6) =5 Ly~ (xa)-0)+5 D |6’
_ n=1 N d=1

I;gs Reglﬁgrizer

Oliver Stegle
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Linear Regression Il
Loss functions and related methods
» Even more general: general loss function

1 P
E(0) =5 Llyn— ¢(xa) - 0)+5 > 104"
N n=1 d=1

within this framework.

Loss

[\

-~

Regularizer

» Support Vector Machine: hinge loss, squared regularizer.

] 5 =
GWAS IV: Bayesian linear models

» Lasso: squared loss, L1 regularizer.

» Linear Regression: squared loss, squared regularizer.
Oliver Stegle

» Many state-of-the-art machine learning methods can be expressed



Linear Regression Il

Loss functions and related methods

» Even more general: general loss function

1 P

B(9) =5 > Llyn — d(xn) - 0) + 5 > 184l
n=1 d=1

L;gs Reglﬁgrizer

» Many state-of-the-art machine learning methods can be expressed
within this framework.
» Linear Regression: squared loss, squared regularizer.
» Support Vector Machine: hinge loss, squared regularizer.
» Lasso: squared loss, L1 regularizer.
> Inference: minimize the cost function F(8), yielding a point estimate

for 0.

[m] = = =

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 17



Linear Regression Il

Loss functions and related methods

» Even more general: general loss function

1Y A&
B(9) =5 > Llyn — d(xn) - 0) + 5 > 164"
n=1 d=1

/ [\
-~

Loss Regularizer

» Many state-of-the-art machine learning methods can be expressed
within this framework.

» Linear Regression: squared loss, squared regularizer.
» Support Vector Machine: hinge loss, squared regularizer.
» Lasso: squared loss, L1 regularizer.

> Inference: minimize the cost function F(8), yielding a point estimate
for 6.

» Q: How to determine ¢ and the a suitable loss function?

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 17



Linear Regression Il

Loss functions and related methods

Cross validation: minimization of expected loss

For each candidate model H.:
» Split data into K folds

Total number of samples o
.. . L
» Training-test evaluation for each
fOI d | test set | training set ‘ fold 1
» Assess average loss on test set | | | | o2
K
By = i} : ceest ‘ | | fold 3
K
k=1
] = =
Oliver Stegle

= YAl
Summer 2011 18
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Linear Regression Il
Probabilistic interpretation
» So far: minimization of error functions.
» Back to probabilities?
_ 1
2

> (Yo — (x0) - 0)°

Squared error

AT
+§00

——

Regularizer
Oliver Stegle

] 5 =
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Linear Regression Il

Probabilistic interpretation

» So far: minimization of error functions.
» Back to probabilities?

li ) - 0) + 2g7g
2 2
n=1 N——
Regularizer
Squared error
al 1
=— Z N (yn | $(xn) - 0,0%) —In N (9 ‘ 0, XI)
n=1

o F = = £ DA

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 19



Linear Regression Il

Probabilistic interpretation

» So far: minimization of error functions
» Back to probabilities?

_1 2 AT
_52 n) - 0) + 50'0

Squared error

N—

Regularizer

, 02 —In N (0‘0, 11)
n=1 A
- lnp(y I 05 <p(}()’0-2)

—Inp(0)

—Zln./\/(yn|¢(xn 0,0%)

Oliver Stegle
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Linear Regression Il

Probabilistic interpretation

» So far: minimization of error functions.
» Back to probabilities?

li )-0)? + 2970
2 2
n=1 N—
N~ Regularizer
Squared error
al 1
==Y N (yn| p(xn) - 6,0%) —InN (0 ‘ 0, XI)
n=1
—11’1p(y|0,‘b(X),0'2) —lnp(0)

» Most alternative choices of regularizers and loss functions can be
mapped to an equivalent probabilistic representation in a similar way.

[m] = = =

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 19



QOutline

Bayesian linear regression

Oliver Stegle
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Bayesian linear regression
Bayesian linear regression
> Likelihood as before
N
p(y | X, 0, 02) = H N (yn | ¢(xn) -0, 02)
n=1

] 5 =
GWAS |V: Bayesian linear models

Oliver Stegle

= YAl
Summer 2011

21



Bayesian linear regression
Bayesian linear regression
> Likelihood as before
N
p(y | X, 0, 02) = H N (yn | ¢(xn) -0, 02)
n=1

» Define a conjugate prior over 6

p(6) = N (6| my, So)

Oliver Stegle

GWAS |V: Bayesian linear models

= YAl
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Bayesian linear regression

Bayesian linear regression

» Posterior probability of 6

N
POy, X,0%) oc [[ N (yn | $(xn) - 0,0%) - N (6| my,Sp)

n=1
=N (v|®(X) 0,0°T) - N (8] mo, Sp)
:/\/(0|p,9,29)

» where
_ 1

-1
g = [sgl + %@(X)TQ(X)]

o F = = £ DA

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 22



Bayesian linear regression

Bayesian linear regression
Prior choice

» Choice of prior: regularized (ridge) regression
p(0) =N (6|my,Sp).
> In this case
p(0y,X,0%) oc N (6 | 1y, 29)
Sy s
1, 1 T -
Xy = [SO + —5®(X) @(X)]

=] =) = = £ DA

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 23



Bayesian linear regression

Bayesian linear regression
Prior choice

» Choice of prior: regularized (ridge) regression

p(6) = N'(0]0, %1).

> In this case

p(0]y,X,0%) < N (0| ug, Zg)

Ho =g ( i‘I’(X)Ty)

o2

g = [,\I - %(IJ(X)T@(X)] o

=] =) = = £ DA

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 23



Bayesian linear regression

Bayesian linear regression
Prior choice

» Choice of prior: regularized (ridge) regression

> In this case

p(0]y,X,0%) x N (0| ng, )

g = g ( %‘I’(X)Ty)
-1
g = [)\I + %@(X)TQ(X)]

» Equivalent to maximum likelihood estimate for A — 0!

[m] = = =
Oliver Stegle GWAS IV: Bayesian linear models

DAy
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Bayesian linear regression
Example

Bayesian linear regression

0 Data points
Prior Data Space
1 1
wy v
0 0
-1
-1 0y 1

0
(C.M. Bishop, Pattern Recognition and Machine Learning)
Oliver Stegle
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Bayesian linear regression
Example

Bayesian linear regression

1 Data point
Likelihood Posterior Data Space
1 1 1
w1 wi v
0 0 0
-1 -1
-1 0 wo 1 -1 0

Oliver Stegle

-1
(C.M. Bishop, Pattern Recognition and Machine Learning)
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Bayesian linear regression
Example

Bayesian linear regression

20 Data points
Likelihood

Posterior

Data Space

Oliver Stegle

(C.M. Bishop, Pattern Recognition and Machine Learning)

GWAS IV: Bayesian linear models
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Bayesian linear regression
Making predictions
> Prediction for fixed weight 0 at input x* trivial:
ply* [x",0,0%) = N (y*

$(x*)0,0?)
] 5 =

Summer 2011
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Bayesian linear regression

Making predictions

> Prediction for fixed weight 0 at input x* trivial:

p(y" 1x°,0,0%) = N (v

d(x*)0, 02)

> Integrate over 0 to take the posterior uncertainty into account
oy % D) = [ 5" |x.0.0%p(6 | X, .07
= [N (" |66)0.0%) N (0] mg. Zp)

=N ([ ¢(x") - g, 0 + (x*) ' Sgp(x"))

Oliver Stegle

[m] = = =
GWAS |V: Bayesian linear models
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Bayesian linear regression
Making predictions

> Prediction for fixed weight 0 at input x* trivial:

p(y*|X*>éaU2) :N(y* ¢(X*)é,0'2>

> Integrate over 0 to take the posterior uncertainty into account
oy % D) = [ 5" |x.0.0%p(6 | X, .07

B /eN(y*l¢(x*)9,02)/\/(9\“0’20)
=N (y" | p(x") - g, o® + d(x") Sgp(x"))
> Key:

» prediction is again Gaussian
» Predictive variance is increase due to the posterior uncertainty in 6.

a F = E £ DA

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 25



QOutline

Model comparison and hypothesis testing
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Model comparison
Motivation

Model comparison and hypothesis testing

» What degree of polynomials
describes the data best?

» |s the linear model at all
appropriate?

] 5 =
GWAS IV: Bayesian linear models

Summer 2011
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Model comparison and hypothesis testing

Model comparison

Motivation

> What degree of polynomials
describes the data best?

> Is the linear model at all
appropriate?
» Association testing.

Oliver Stegle GWAS |V: Bayesian linear models

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT

SNPs

o
S | ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
Genome 2 | ATGACCTGCAACTGGGGGACTGACGTGEAACGGT
F | ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
£ | ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGEAACTGGGGGATTGACGTGCAACGGT
/
?
H
Phenome

phenotypes

[m] = = =

Summer 2011




Model comparison and hypothesis testing
Bayesian model comparison
» How do we choose among alternative models?
> Assume we want to choose among models Hy, .
dataset D.

,7‘[ u for a
] 5 =
GWAS IV: Bayesian linear models

Summer 2011
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Model comparison and hypothesis testing
Bayesian model comparison
» How do we choose among alternative models?
dataset D.

» Assume we want to choose among models Hy, ..., Has for a
» Posterior probability for a particular model ¢

p(Hi | D) o< p(D | Hi) p(Hi)
Evidence

Oliver Stegle

Prior

] 5 =
GWAS |V: Bayesian linear models

Summer 2011
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Bayesian model comparison

Model comparison and hypothesis testing
How to calculate the evidence

» The evidence is not the model likelihood!

p(D|H;) = /@ d®p(D | O®)p(®) for model parameters ©.

] 5 =
GWAS IV: Bayesian linear models

Summer 2011

Oliver Stegle

DA

29



Model comparison and hypothesis testing

Bayesian model comparison

How to calculate the evidence

» The evidence is not the model likelihood!

p(D|H;) = /@ d®p(D | ®)p(®) for model parameters ©.

» Remember:

p(P|Hi, ©)p(©)

p @ 'Hi,D =
OV D) === D)
) likelihood - prior
posterior = ————
Evidence
=] = - = = a

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 29



Bayesian model comparison
Ocam’s razor

Model comparison and hypothesis testing

» The evidence integral penalizes
overly complex models.

Likelihood

H2

WMAP w
Oliver Stegle

(€™
Bishop, Pattern Recognition and Machine Learning)

GWAS IV: Bayesian linear models
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Model comparison and hypothesis testing

Bayesian model comparison

Ocam'’s razor

> The evidence integral penalizes Likelihood
overly complex models. H2

» A model with few parameters
and lower maximum likelihood

H1
(H1) may win over a model with / J \ \
WMAP w

a peaked likelihood that requires
many more parameters (Hs).

(cm.

Bishop, Pattern Recognition and Machine Learning)

z 9ac

Oliver Stegle Summer 2011 30
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Application to GWA

Model comparison and hypothesis testing
Relevance of a single SNP

» Consider an association study.

» Hy : no association

p(y | HO’Xv @0) = N (y | 0, 0'21)

p(D|Ho) = /QN(y | 0,021) p(o?)

[m] = = =
GWAS IV: Bayesian linear models

Summer 2011

Oliver Stegle
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Model comparison and hypothesis testing

Application to GWA

Relevance of a single SNP

» Consider an association study.
» Hy : no association

p(y | Ho, X, 9) =N (y]0,0%1)
p(D|Ho) = /UQN(y |0,5°1) p(c?)
> H,: linear association
p(y | H1,%:,01) =N (y|x; - 0,0°T)
s = [ N (v[x-0.0°T) p(o*)o(0)

o k)

=] =) = = £ DA

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 31



Model comparison and hypothesis testing

Application to GWA

Relevance of a single SNP

» Consider an association study.
» Hy : no association

p(y | Ho, X, 9) =N (y]0,0%1)
p(D|Ho) = /UQN(y |0,5°1) p(c?)
> H,: linear association
p(y | H1,%:,01) =N (y|x; - 0,0°T)
s = [ N (v[x-0.0°T) p(o*)o(0)

o k)

» Depending on the choice of priors, p(c2) and p(f), the required
integrals are often tractable in closed form.

o <& = E z 9ac

Oliver Stegle GWAS |V: Bayesian linear models Summer 2011 31



Application to GWA
Scoring models

Model comparison and hypothesis testing

p(D| )
BF =In
p(P[Ho)

» Similar to likelihood ratios, the ratio of the evidences, the Bayes
factor can be used to score alternative models

] 5 =
GWAS IV: Bayesian linear models

Summer 2011
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Application to GWA
Scoring models

Model comparison and hypothesis testing

BF =

|, P(D]#)
p(D|Ho)’

» Similar to likelihood ratios, the ratio of the evidences, the Bayes
factor can be used to score alternative models

SLC35B4

1.3358 1. 336
Oliver Stegle

1.3362

——SLC35B4
1 3364
Position in chr. 7

0.01% FPR
1.3366 1 3368 1337 1 3372 1 3374
x10°
] 5 =
GWAS IV: Bayesian linear models
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Application to GWA

Model comparison and hypothesis testing
Posterior probability of an association

how certain an association really is.

» Bayes factors are useful, however we would like a probabilistic answer

] 5 =
GWAS IV: Bayesian linear models

Summer 2011
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Model comparison and hypothesis testing

Application to GWA

Posterior probability of an association

» Bayes factors are useful, however we would like a probabilistic answer
how certain an association really is.
» Posterior probability of

_ p(D|H1)p(Ha)

_ p(D|H1)p(H1)
p(D|H1)p(H1) + p(D | Ho)p(Ho)

=] =) = = £ DA

Oliver Stegle GWAS IV: Bayesian linear models Summer 2011 33



Model comparison and hypothesis testing

Application to GWA

Posterior probability of an association

how certain an association really is.

» Bayes factors are useful, however we would like a probabilistic answer
» Posterior probability of

_ p(D|H1)p(H1)
p(D | H1)p(H1)

~ p(D[H1)p(H1) + p(D | Ho)p(Ho)
» p(H1|D) + p(Ho | D) = 1, prior probability of observing a real
association.

Oliver Stegle

] 5 =
GWAS |V: Bayesian linear models

Summer 2011
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Model comparison and hypothesis testing

Bayes factor verus likelihood ratio

Bayes factor Likelihood ratio

» Models of different » Likelihood ratio scales with
complexity can be the number of parameters.
objectively compared. > Likelihood ratios have

» Statistical significance as known null distribution,
posterior probability of a yielding p-values.
model.

o = = = = o
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Model comparison and hypothesis testing

Bayes factor verus likelihood ratio

Bayes factor Likelihood ratio

» Models of different > Likelihood ratio scales with
complexity can be the number of parameters.
objectively compared. » Likelihood ratios have

» Statistical significance as known null distribution,
posterior probability of a yielding p-values.
model.

» Typically hard to compute. » Often easy to compute.

[m] = = = =
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Model comparison and hypothesis testing
Marginal likelihood of variance component models
» Consider a linear model, accounting for a set of measured SNPs X
S
2 2
p(y|X,0,6°) =N |y szes,a I
s=1
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Model comparison and hypothesis testing
» Consider a linear model, agcounting for a set of measured SNPs X
p(y|X,0,0%) =N [y ZXSGS,UzI
» Choose igentical Gaussia::plrior for all weights
p(0) = [NV (65]0.07)
s=1
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Model comparison and hypothesis testing

Marginal likelihood of variance component models

» Consider a linear model, accounting for a set of measured SNPs X
p(y|X,80,0° (

ZXSQS,U I)

» Choose identical Gau55|an prlor for all weights
S
= HN(GS | 0,03)
s=1
» Marginal likelihood

p(y | X, o? :/BN(y}XO,UQI)N(B‘O,JzI)

=N(y | 0, aﬁXXT + 021)

Oliver Stegle
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Model comparison and hypothesis testing

Marginal likelihood of variance component models

» Consider a linear model, accounting for a set of measured SNPs X
p(y|X, 8,0 (

szes,a 1)

» Choose identical Gaussmn prlor for all weights
S
2
= HN(GS | 0,0'g)
s=1

» Marginal likelihood

p(y| X, 0% 0} :/e/\/(y}xo,o—21)/\/(0\0,a21)
=N (y]o, USXXT—I-O‘QI)

» Number of hyperparameters independent of number of SNPs

] 5 =
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Model comparison and hypothesis testing
Application to GWAs

Marginal likelihood of variance component models

The missing heritability paradox

» Complex traits are regulated by a large number of small effects
» Human height: the best single SNP explains little variance.

Oliver Stegle

» But: the parents are highly predictive for the height of the child!

[m] = = =
GWAS IV: Bayesian linear models
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Application to GWAs

Model comparison and hypothesis testing

Marginal likelihood of variance component models

Multivariate additive models for complex traits

» Multivariate model over causal SNPs

s€causal

] 5 =
GWAS IV: Bayesian linear models

Summer 2011
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Application to GWAs

Model comparison and hypothesis testing

Marginal likelihood of variance component models

Multivariate additive models for complex traits

» Multivariate model over causal SNPs

s€causal

p(y1X,0.0%) = N(y| Y x:0s0°T)

» Common variance prior for causal SNPs p(6) = N (6, | 0, 03)
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Application to GWAs

Model comparison and hypothesis testing

Marginal likelihood of variance component models

Multivariate additive models for complex traits

» Multivariate model over causal SNPs

s€causal

p(Y|X70702) =N(Y| Z X393,0'2I)
» Marinalize out weights

» Common variance prior for causal SNPs p(6) = N (6, | 0, 03)

s€causal
Oliver Stegle
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Model comparison and hypothesis testing

Marginal likelihood of variance component models

Application to GWAs

Multivariate additive models for complex traits
» Multivariate model over causal SNPs

p(y1X,0.0%) = N(y| Y x:0s0°T)

s€causal

» Common variance prior for causal SNPs p(6) = N (6, | 0, 03)
» Marinalize out weights

p(y|X,05,00) =N(y|0,0p > xx] +01)
s€causal
» Which SNPs are causal ?
Approximation: consider all SNPs [vang et al., 2011]

p(y|X,00,02) = N(y]0,02XX" + 020)

o> = z 9ac
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Application to GWAs

Model comparison and hypothesis testing

Marginal likelihood of variance component models

» Approximate variance model

p(y | X, 03 o2)=N(y|o, JgXXT +0?2I)

] 5 =
GWAS |V: Bayesian linear models

Oliver Stegle
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Model comparison and hypothesis testing

Marginal likelihood of variance component models

Application to GWAs

a » b ooes

» Approximate variance model Lo o i °
o ° 0oty g o
$ o g ®
Sue|  om AL ® £ 0010 e
p(y|X,a§,0§) :N(y|0,0'§XXT+O'zI) Foo @ Foos e‘joé/;/":/?
T 100 150 200 250 50 100 150 200 250
. . 9 Ghromosome length () Ghromosome lngth (i)
» Genetic variance O'g acCross ¢ o ° d on o &
00‘10 E 008
chromosomes e . °
5o g © °
goo - 0 fonl g 4
* Cuomesametongn o) % Chromosome lngt (1)
[Yang et al., 2011]
o = - = T 9ace
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Model comparison and hypothesis testing

Marginal likelihood of variance component models

Application to GWAs

a » b ooes

» Approximate variance model fou | °
- o 0015 ® °
L]
H ° £oot0 ° o
2 2 2T 2 §0¢|  em H 0
p(le,O'g,O'e):N(y|0,0'gXX +U€I) 8001 @ 8 0005 e‘j"é/i/we/a
) ) 9 Chromasare longh () e i 0
» Genetic variance 0, across € o o d oo o .
chromosomes e i K
2 Soos % ° °
. - 2 O'g goo . © §oo{ o ©
» Heritability h* = - Y e taes o | oG
o5+ o¢ i P i
[Yang et al., 2011]
=] = = E £ DA
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QOutline
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Summary

» Generalized linear models for Curve fitting and multivariate regression.
» Maximum likelihood and least squares regression are identical.
» Construction of features using a mapping ¢.

» Regularized least squares and other models that correspond to
different choices of loss functions.

» Bayesian linear regression.
» Model comparison and ocam’s razor.

» Variance component models in GWAEs.

] 5 =
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Summary
Tasks
variables.

> Prove that the product of two Gaussians is Gaussian distributed.

» Try to understand the convolution formula of Gaussian random
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Summary
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