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Chapter 1

Introduction

1.1 Overview

In 1837, Darwin published a first sketch of an evolutionary tree, see Fig. 1.1. This
new idea that all species evolved over time was under a lot of discussion and not
until the early 20th century was evolution generally accepted by the scientific
community. Since then, much research went into the field of evolution. With the
help of fossils, and by comparing the anatomy as well as the geographic occurrence
of species, complex evolutionary trees have been created.

In an evolutionary tree, each leaf represents an existing species and all the in-
terior vertices represent the ancestors. The edges of the tree show the relationships
between the species.

The first step to modern evolutionary research was the discovery of the double
helix structure of DNA (deoxyribonucleic acid) by Watson and Crick in 1953.
The genetic code is a long chain of bases (Adenine, Cytosine, Guanine, Thymine)
and triplets of these bases encode the 20 amino acids. A backbone of sugars and
phosphates holds the bases together, see Fig. 1.2. The amino acids in a cell form

B
D C

A

Figure 1.1: Darwin’s first diagram of an evolutionary tree from his ‘First Notebook
on Transmutation of Species’ (1837).
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Figure 1.2: The DNA - a double helix

proteins according to the DNA code. From a chemical point of view, life is nothing
else than the functioning of proteins. Since the DNA determines which proteins
are built, a living organism can chemically be described by its DNA, the genetic
information [17].

Each cell of an organism has an identical copy of the DNA. In eukaryotes, the
DNA is found in a cell nucleus whereas in prokaryotes (archaea and bacteria), the
DNA is not separated from the rest of the cell.

During reproduction, the DNA is transmitted to the offspring, so parents and
children are similar in many ways (e.g. hair color, blood group, disease suscepti-
bility).

It was not until 2003 that the complete human DNA code was described.
Currently, the complete DNA sequence of several different species is known (358
bacteria, 27 archae, 95 eukaryotes, see http://www.ncbi.nih.gov/). By aligning
the DNA of different species, the similarities and differences of the DNA allow us
to reconstruct lineages with more accuracy than before; for an example see Fig.
1.3.

It is noticeable that the same four DNA bases and the 20 amino acids are
found in all organisms. This is strong evidence for having one common ancestor
to all the species.

Evolutionary trees are also called ‘phylogenetic trees’. If all the species in the
tree have a common ancestor, we call the tree a ‘rooted tree’, the common ancestor
is called the ‘root’.

I take a closer look at rooted phylogenetic trees. The shape of the tree is
determined by how speciation occurred. But since speciation is not understood
well and is dependent on historical events which we might never be able to
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Figure 1.3: Illustration of the tree of life by Carl R. Woese. The-
re are three main branches, the bacteria, archaea and eucarya, source
http://www life.uiuc.edu/micro/faculty /faculty - woese.htm.

reconstruct, a stochastic model for speciation is needed. I investigate the Yule
model and the uniform model, two very common models.

In my thesis, I develop the theory with a view to the following applications in
biology.

Rutger Vos and Arne Mooers from the Simon Fraser University (Vancouver)
recently constructed a supertree for the primates (i.e. lemurs, monkeys, apes and
humans) as shown in Appendix C.

In Section 2.2.1, we will see that the primate tree is much more likely to have
evolved under the Yule than under the uniform model.

With the supertree method, the shape of the primate tree could be determi-
ned, but there was no information about the edge lengths, i.e. the time between
speciation events. In [16], edge lengths were estimated by simulations, assuming
the (super)tree evolved under the Yule model. The authors concluded by asking
for an analytical approach which I develop in Chapter 4.

Craig Moritz (UC Berkeley) and Andrew Hugall (University of Adelaide) wor-
ked with an evolutionary tree which had edge lengths assigned. The leaves were
different types of snails. The snails either live in open forest or rain forest. Moritz
and Hugall asked (pers. comm.) if the rate of speciation for open forest snails
differs from the rate of speciation for rain forest snails. The rate of speciation is
a measure of how fast a class of species produces splits in the evolutionary tree.
Chapter 5 provides a linear algorithm for solving that problem.
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1.2 Short guide to the thesis

In Chapter 2, two important stochastic models for binary phylogenetic trees are
introduced - the uniform and the Yule model. Those two models are discussed and
the Kullbach-Liebler-distance between them is calculated. The Kullbach-Liebler-
distance turns out to be very useful in deciding whether a given tree evolved under
the Yule or the uniform model.

Chapter 3 formulates a test statistic for that decision problem, the log-
likelihood-ratio test. Instead of estimating the power of the test by simulations,
we provide an analytic bound for the power by introducing a martingale process
on trees and applying the Azuma inequality.

The algorithms in Chapter 4 work in particular for trees under the Yule model.
In order to verify that a tree evolved under Yule, the test provided in Chapter 3
can be applied before running the algorithms.

After having established all the necessary stochastic background, Chapter 4
provides a quadratic algorithm for calculating the probability distribution of the
rank for a given interior vertex in a phylogenetic tree. The algorithm is called
RANKPROB and we assume that every rank function on a given tree is equally li-
kely. That is in particular the case for the Yule model. The algorithm RANKPROB
is extended to non-binary trees as well, again we assume that every rank function
is equally likely. We call that algorithm RANKPROBGEN. Calculating the proba-
bility of having an interior vertex u earlier in the tree than an interior vertex v
is calculated with the algorithm COMPARE in quadratic time. We coded up the
algorithms RANKPROB and COMPARE in Python, see Appendix B. The chapter
concludes with an analytical approach of estimating edge lengths in a given tree
under the Yule model. This approach makes use of the algorithm RANKPROB.

Chapter 5 looks at the rate of speciation. Given is a phylogenetic tree with the
leaves being divided into two classes o and (3. The edge lengths shall represent
the time between two events. We provide a linear algorithm for the expected
time a species of class « exists until it speciates and two new species evolve. The
average edge length is an estimate for the inverse of the rate of speciation. An
example for the classes a and 3 could be rain forest snails and open forest snails.

After introducing the stochastic models in Chapter 2, the remaining results
in that Chapter are new. The results in Chapter 3, 4 and 5 are new unless
otherwise stated. Improvements on the algorithms in Chapter 4 and coding them
up in Python was joint work with Daniel Ford. Chapter 4 was the topic of my
talk at the New Zealand Phylogenetics Conference in Kaikoura in February 2006
(http://www.math.canterbury.ac.nz/bio/kaikoura06/).

The rest of this Chapter introduces the basic definitions from graph theory and
phylogenetics needed for the thesis. Further, some basic results for phylogenetic
trees are stated.
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Figure 1.4: A rooted binary tree

1.3 Graphs and Trees

Definition 1.3.1. A graph G is an ordered pair (V, E) consisting of a non-empty
set V of vertices and a multiset F of edges each of which is an element of {{x,y} :
x,y € V}. The degree 6(v) of a vertex v € V' is the number of edges in G that
are incident with v. A path p in G from vertex © € V to vertex y € V is a
sequence p = (v;)i=1,.n, v; € V, such that © = vy, y = v,,, and {v;,v;41} € E for
1=1,...n—1. A graph G is connected precisely if there exists a path from z to
y for all x,y € V. A cycle in a graph is a path p = (v;);=1,.,, with v; = v,,. The
graph G’ = (V' E’) is a subgraph of G it V' CV and E' C E.

Definition 1.3.2. A tree T = (V, E) is a connected graph with no cycles. A
connected subgraph of T is a subtree of T'. A rooted tree is a tree that has exactly
one distinguished vertex called the root which we denote by the letter p. A vertex
v €V with 0(v) <1 is called a leaf . The set of all leaves of T is denoted by L.
A vertex which is not a leaf is called an interior vertex. Let V denote the set of
all interior vertices of T. A binary tree is a tree with §(v) = 3 for allv € V. A
rooted binary tree is a rooted tree with 6(v) = 3 for all v € V' \ p and 8(p) =
Let V' C V. The subtree T" = T'|y+ is the minimal (w.r.t. the number of vertices)
connected subgraph of T' containing V’. An edge which is incident with a leaf
is called a pendant edge. A non-pendant edge is called an interior edge. Two
distinct leaves of a tree form a cherry if they are adjacent to a common ancestor.
Let v € V'\ p with §(v) = 2. The vertex v is suppressed in T if we delete v with its
two incident edges e; = (v1,v), ey = (v,v9) and then add a new edge e = (vy,v3).
For an example of a tree see Fig. 1.4.

Definition 1.3.3. Let T' = (V, E)) be a rooted tree with leaf set L C V and for
all v € V\ pis 6(v) # 2. Let X be a non-empty finite set with |X| = |L|. Let
¢ : X — L be a bijection. Then 7 = (T, ¢) is called a phylogenetic (X—) tree
with labeling function ¢. X is called the label set. A phylogenetic tree is also
called a labeled tree. A tree shape is a phylogenetic tree without the labeling.

Remark 1.3.4. In the following, for a phylogenetic tree T, we sometimes write Er
instead of F, V7 instead of V', VT instead of V and L7 instead of L. This notation
clarifies to which tree the sets refer whenever we talk about several different trees.
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Figure 1.5: A rooted binary phylogenetic X-tree 7 with X = {a,b,...,k} and
the subtree 77 = 7T |{fn,i51-

Definition 1.3.5. Let T" be a rooted tree. A partial order <7 on V is obtained by
setting v; < vy (v1,v9 € V) precisely if the path from the root p to ve includes v;.
If v; <7 vy, we say vy is a descendant of vy and vy is an ancestor of vy. If v <7 V9
and there is no v3 € V with v; <7 v3 <7 v, we say vy is a direct descendant of
vy and vy is a direct ancestor of vy. The number of direct descendants of v is d(v).
When we talk about a phylogenetic tree, we often write <7 instead of <r.

Definition 1.3.6. Let 7 = (T, ¢) be a phylogenetic X-tree. Let X’ C X. The
phylogenetic subtree 7/ = T|x. = (T, ¢') is a phylogenetic tree where T" is the
tree T'|yxy with all degree-two vertices suppressed (except for the root). The
labeling function is ¢’ = ¢|xs. The root of 77 is the vertex p’ which is minimal in
the tree 7" under the partial order <7 (see Fig. 1.5). Let 7’ be a subtree of 7.
Denote the subtree 7|z, \z,, by 7\ 7"

Let v € V and let X, be the label set of all the leaves in 7 which are descen-
dants of v. The subtree 7, is induced by v if 7, = T |x,. A binary phylogenetic
tree is balanced if the two subtrees induced by the two direct descendants of the
root have the same shape. Otherwise, the tree is unbalanced.

Definition 1.3.7. Let 7 be a rooted phylogenetic tree. Let the function r be a
bijection from the set of interior vertices V' of 7 into {1,2,...,|V|} that satisfies
the following property:

if v1 <7 ve, then r(vy) < r(vy)

(7,r) is called a phylogenetic ranked tree (see Fig. 1.6). The function r is called a
rank function for 7. A vertex v with r(v) = 7 is said to be in the i —th position of
T or v has rank i. We write r7 instead of r when it is not clear from the context
to which tree the rank function r refers. Note that r induces a linear order on the

set V. We define the set r(7) as
r(7) = {r: risa rank function on 7 }.

The following Lemma has been shown in [14] using poset theory. We will give
an elementary proof using induction.
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Figure 1.6: A rooted binary phylogenetic ranked X-tree with X = {a,b,... k}

Lemma 1.3.8. Let T be a rooted phylogenetic tree. For each v € f/, let \, denote
the number of elements of V' that are descendants of v. Then the number of rank
functions for T 1is

o V!
"=

veV

(1.1)

Note that a vertex v is a descendant of itself by definition, so A\, also counts the
verter v.

Proof. This proof is done by induction over the number n of interior vertices of a
tree. For n = 1, there is only one rank function, the only interior vertex has rank
Al 1

1, which equals to T =1 1. Suppose that (1.1) is true for all trees with
S

n < k interior vertices. Let T be a tree with k interior vertices. The degree of root
pis d(p) = m where m < k. T has m vertex-disjoint rooted subtrees 71, 7y, . .., 7,
induced by the direct descendants of p, and with |Vz| < k. Each subtree 7; has
Vz,|!

H’UE\E/fTi )\U
rank functions on 7 is equivalent to counting the rank functions on each subtree
7; and then combining the positions of the vertices of all the 7; to get a linear
order on Vr, by preserving the order of the vertices of each 7;. For a given rank
(lval) o

(V21 different
ways where the order within each 7; is preserved. Multiplying by all the possible

different rank functions by the induction assumption. Counting all the

function on each 7;, we can order all the interior vertices in
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rank functions for each 7; yields to

(7))

This establishes the induction step, and thereby the theorem.

8
(H |r<7;>|>
i=1
ﬁ V!
i=1 H’UE‘Q/TZ. )\v
- 1
|
g HUE‘D/TZ. )\v
]

Remark 1.3.9. In the following, all trees shall be rooted. The set of all binary
rooted phylogenetic trees with label set X is denoted by RB(X). The set of all
ranked binary rooted phylogenetic trees with label set X is denoted by r RB(X).

Remark 1.3.10. A rooted binary phylogenetic tree with n leaves has |V| =n—1
interior vertices and |E| = 2(n — 1) edges, which is shown by induction in [14].
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Stochastic Models on Trees

Given a phylogenetic X-tree, we are interested in the probability of that tree
from the set RB(X) or rRB(X), depending on whether the given tree is ranked
or not. When defining a probability distribution on trees, the probability of a
labeled tree should be invariant under a different labeling. This property is called
exchangeability.

There are several stochastic models for binary phylogenetic X-trees, the most
common are the uniform and Yule model which we will introduce and compare.

In the following, for simplifying notation, any X with |X| = n shall be X =
{1,2,...,n} and we write RB(n), rRB(n) instead of RB(X), rRB(X).

2.1 The uniform model

Under the uniform model, a random element of RB(n) is generated in the following
way (cf. Figure 2.1):

Label the two leaves of a cherry with 1 and 2.

Add to the cherry a third edge connecting the root p of the cherry and a
new vertex p’ which is earlier than p. This extended cherry is denoted by 7.

In each step, modify 7 in the following way, until 7 has n leaves:

— Let the number of leaves of 7 be k. Choose an edge of 7 randomly
and with uniform probability and subdivide this edge to create a new
vertex.

— Add an edge from the new vertex to a new leaf.

— Label the new leaf by k + 1.

Remove from the tree 7 the vertex p’ and its incident edge to get the binary
rooted tree 7.

In this way, each rooted binary phylogenetic X-tree has equal probability (see
[11]). Obviously, the probability of a tree is invariant under a different leaf labeling.



CHAPTER 2. STOCHASTIC MODELS ON TREES 10

P
1%
T/
1 2 3
N
PRGN
——————— - 7N e
— Ve =~
e _- | ~ SO
7/ - | S~ N
- ~
’ - | ~ \
’ s \

Figure 2.1: Tree evolving under the uniform model. Let X = {1,2,3,4}. Given
the tree 7' with label set {1, 2,3}, which has probability 1/3 under the uniform
model, there are five possible edges to attach the leaf with label 4. Each of the
five trees with label set {1,2,3,4} has probability 1/5 given 7. So the overall
probability of each tree with four leaves is 1/15 under the uniform model.

Note that it is not necessary to choose the elements of X in the given order
1,2,...,n. We could choose the leaf labels in any order. This will not be the case
for the Yule model.

Lemma 2.1.1. For each n > 2,

nle,_1
(2n =3 = T

with (2n—=3)!! = (2n—3)-(2n—>5)...5-3-1 and ¢, being the n-th Catalan number,

en = 751 ()

Proof.
2n — 3)! 2n — 3)!
(2n — 3)! Gn-3) _ _(@n—3)
2n=2 (22)] 2772 (n — 2)!
now e ey
21 (n — 1) g1 g1
nle,—1
= on—1 *

0

The following result is already shown in [14] by considering unrooted trees and
defining a bijection from unrooted to rooted trees. This proof is direct.

Theorem 2.1.2. The number of binary rooted phylogenetic trees is

IRB(n)| = (2n — 3)!



CHAPTER 2. STOCHASTIC MODELS ON TREES 11

Proof. The proof is done by induction over n. For n = 2, we have |RB(2)| = 1 and
(2-2—=3)Il = 1. Assume |RB(n)| = (2n — 3)!! holds for all n < k, where k > 2. A
tree 7y with k leaves has 2(k — 1) edges (see Remark (1.3.10)). Denote the root of
T; by pr. The (k+1)-th leaf = can be attached to 7, to any of the 2(k—1) edges or
a new root p with edges e; = (p, pr) and e = (p, z) is added. So we can construct
2(k—1)+41 = 2k—1 different trees from 7. By the induction assumption, we have
|RB(k)| = (2k—3)!l. Therefore, |[RB(k+1)| = (2k—3)!!-(2k—1) = (2(k+1)—3)!!
which proves the theorem. O

Corollary 2.1.3. Under the uniform model, the probability P[T] of a tree T cho-
sen from the set RB(n) is

]P)[T] _ 1 _ 2n—1
S 2n =31 nle, g

Proof. Since a phylogenetic tree 7 is chosen from RB(n) uniformly at random in
the uniform model, we have

2n71

By Theorem (2.1.2) and Lemma (2.1.1), we get P[7] l = O

= @3~ nlen_1-

2.2 The Yule model

Under the Yule model [18, 8], a random element of rRB(n) is generated in the
following way (cf. Figure 2.2):

e Two elements of X are selected uniformly at random and the two leaves of
a cherry are labeled by them. This cherry is denoted by 7 and its root has
rank 1.

e In each step, modify 7 in the following way, until 7 has n leaves:

— Let the number of leaves of 7 be k. Choose a pendant edge of 7T
uniformly at random and subdivide this edge to create a new interior
vertex with rank k.

— Add an edge from the new vertex to a new leaf.

— Select an element of X which is not in the label set of 7 uniformly at
random and label the new leaf by that element.

In other words, any pendant edge of a binary tree is equally likely to split and
give birth to two new pendant edges. The Yule model is therefore an explicit
model of the process of speciation. This makes it a very important model for
the distribution on trees. Since the labels are added uniformly at random, the
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Figure 2.2: Ranked tree evolving under the Yule model. Let X = {1,2,3,4}.
Suppose the ranked tree 7’ with label set {1,2,4} evolved under the Yule model.
There are three possible pendant edges to attach the leaf with the remaining

label 3. Each ranked tree with label set {1,2, 3,4} has probability % =1/18

according to Theorem (2.2.1).

probability of a tree is invariant under a different leaf labelling (i.e. dependent
only on the ‘shape’ of the tree).

Note that under the Yule model, at each moment in time, the probability of a
speciation event is equal for all the current species. For different points in time,
these probabilities can be quite different though.

Under the Yule model, balanced trees are more likely than unbalanced trees
whereas under the uniform model, every tree is equally likely. Phylogenetic trees
constructed for most sets of species tend to be more balanced than predicted by
the uniform model, but less balanced than predicted by the Yule model. That can
be explained in the following way. In nature, we observe that a species, which has
not given birth to new species for a long time, is not very likely to give birth in the
future either. The Yule model does not take this fact into account. In [15], there
is an extension of the Yule model described which takes care of that biological
observation. One special case of the extended Yule model assumes, that unless a
species has undergone a speciation event within the last € time interval, it will
never do so. It is shown in [15] that for sufficient small €, this model induces the
uniform distribution. So the uniform model can also be interpreted as a process
of speciation.

The Yule and the uniform model can be put in a more general framework. In
[1], the beta-splitting model is introduced, where the Yule and the uniform model
are special cases. In [7], the alpha model is introduced and again, the Yule and
the uniform model are special cases. In both papers, a one parameter family of
probability models on binary phylogenetic trees is introduced which interpolates
continuously between the Yule and the uniform model.

These models are far more complicated than the uniform and Yule model
though, and since especially the Yule model is still a reasonably good model for
speciation, we will now focus on properties of the Yule model. Theorem (2.2.1)
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and Corollary (2.2.2) have been established in [5]. Here we provide an alternative
proof.

Theorem 2.2.1. The probability under the Yule model of generating a ranked
binary phylogenetic tree (T,r) € rRB(n) is

2n—1

P[T,r] = P

That is a uniform distribution over rRB(n).

Proof. We calculate the probability P[7,r| by looking at the generation of the
tree 7. In the first step of the generation, we have n possibilities to choose the
label for the left leaf of the cherry and n—1 possibilities to choose the label for the
right leaf of the cherry. So the probability for a certain cherry, with distinguishing
between left and right vertex, is n(n+1’ since the selection of the labels is uniformly
at random. The root of the cherry has rank 1. When adding a new leaf to a tree
7. with k leaves, we have k possibilities to choose a pendant vertex and n — k
possibilities to choose a label. So the probability of attaching a new labeled leaf to
a certain edge is m since we choose the pendant edge and the label uniformly
at random. The new interior vertex has rank k. Let the new leaf be x. The leaf x
shall be on the right side of the new cherry. With the process above, we get two
equal trees precisely if every step of the tree generation process is equal for both
trees. While distinguishing between left and right child of an interior vertex, we
count each phylogenetic tree 2IVl = 271 times. Therefore, we get the following

probability for the ranked phylogenetic tree (7, 1)

1 1 1 I
nn—1)2n—-2)3n-3)""(n—-1)1 nl(n—1)!

P[T,r] =2""!

Since IP[7, r] is independent of 7 and r, we have a uniform distribution. O

Corollary 2.2.2. The number of ranked phylogenetic trees is

nl(n —1)!

[rRB(n)| = T on—1
Proof. Since P[T,r] = % is uniform under the Yule model and probabilities
add up to 1, we have "!2(;:1)! different ranked phylogenetic trees. O

Lemma 2.2.3. Let A be a finite set and for each a € A, let B(a) be a finite set
and let Q@ = {(a,b) : a € A,b € B(a)}. Let C = (C1,Cy) be the (two-dimensional)
random variable which takes a value in Q selected uniformly at random, i.e. P[C =
(a,b)] = 1/|Q| for all (a,b) € Q. Then the conditional probability distribution
P[C = (a,b)|Cy = a] is uniform on B(a).
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Proof. We have

P[C = (a,b)] 1
PC = (a,b)|Cy = a] = =
€= (a,b)|C1 =] P[C; =d]  |QP[C) = d]
which is independent of b and therefore is uniform on B(a). O

Theorem 2.2.4. Assume a given binary phylogenetic tree T with n leaves evolved
under the Yule model. Then the probability of a rank function r on a given tree T

18
Hve\of )\v
(n—1)!

i.e. P[r|T] is uniform over all rankings r of T .

Plr|7] =

Proof. Consider the probability distribution induced by the Yule model on A =
RB(n). Let B(a) be the set of all rankings for a tree a € A and let Q = {(a,b) :
a € Ab € B(a)}. Let C = (Cy,Cy) be the (two-dimensional) random variable
which takes a value in . The random variable C' is uniform on the set ) by
Theorem (2.2.1) and we can apply Lemma (2.2.3) to obtain

1

P[C = (T,r)|Cy =T] =P[r|T] = [QIP[C, = 7]

which shows that P[r|7] is uniform over all rankings r of 7. Since for a tree 7,

we have 0 WJ!/\ possible rankings by (1.3.8), and |V| =n — 1 for binary trees, we
veVv 7Y
get :
1 o Ay
Plr|7T] = — = [Lev ,
V]! (n— 1)
HUE‘O/ Av

The following Corollary was established in [4] using induction.

Corollary 2.2.5. The probability of a binary phylogenetic tree T € RB(n) under

the Yule model is on-1
P7T]= ——
n! Ay

veV

where A, is as defined in Lemma (1.3.8).
Proof. With Theorem (2.2.1) and Theorem (2.2.4) we get

CP[T] 2t (n-1)) 2!
PIT] = P[r|7]  nl(n—1)! ' [Locv Ao ~ nl [Tocv Ao
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Example 2.2.6. Recall again the ranked tree (7,7) in Fig. 1.6. In that tree,

X ={a,b,...,k} and n = |X| = 11. Let Py[7,r] be the probability that the

ranked tree (7,7) evolved under the Yule model. With Theorem (2.2.1), we get
2n—1 210

_ _ ~ —11
BrlT.rl = nl(n— 1) 111 x 10! 071> 10

With Corollary (2.2.5), we get

2n—1 210

- - ~0.21 x 1077
M Lep de 11 x 1P x2x 3 x4 x5 x 10 )

Py [T]

With Theorem (2.2.4), we get

[Tevde  1°x2x3x4x5x10

— ~0.33 x 1073
(n—1)! 10! 8

Py [r|T] =

Let Py[7] be the probability that 7 evolved under the uniform model. Then,

Py[T]=1/(2n —3)!! = 0.15 x 107®

Since ﬁ‘;% ~ 32l % 10" = 14 > 1, ie. Py[T] > Py[T], the tree T (without a

ranking) is more likely to have evolved under the Yule model.

Remark 2.2.7. In Chapter 4, we want to calculate for a given phylogenetic tree
T the probability P[r(v) = i,r € (T)|T] for av € V under the Yule model where
r(7) as defined in (1.3.7). By Theorem (2.2.4), the rankings for 7 all have the
same probability, and therefore

{rer(T):rv) = Z}\

Plr(v) = i,r € r(T)|T] = r(T)]

For the value |r(7)|, a formula is stated in Lemma 1.3.8. The value |{r € »(7) :
r(v) = i}| will be calculated with the algorithm RANKCOUNT.

Remark 2.2.8. Another stochastic model on trees is the coalescent model. The
coalescent model starts with n species and goes back in time. At each event, two
species are selected uniformly at random and the two species are joint together,
the joint being a new species, the ancestor. So after n — 1 joining events, we are
left with one species, the root of the tree.

With ¢ remaining species, we have (;) possibilities to choose two species for
the joint. The probability for a specific ranked tree is therefore

n—1
P[T,r| = ! __?

()G nlln—-1!
which is equivalent to the Yule model.

Thus, the Yule model and the coalescent model are equivalent as long as edge
lengths are not considered.
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Figure 2.3: Vertex in 7, with three direct descendants. There are three possible
binary resolutions.

2.2.1 Did the primate tree evolve under Yule?

Consider the primate tree 7, in Appendix C. 7, has n = 218 leaves. We want to
Py [7p]
PU [,Tz] n—1 n—1
the uniform model. Note that Py[7] = 2 and Py [7T] = -2

T nlep—1 U ,ep Ao’

In 7, there are six vertices (vertex labels 48,63, 148,153, lg‘é and 200) with
more than two direct descendants because the exact resolution is unclear. Five of
those vertices have three direct descendants.

For each vertex with three direct descendants, there are three possible binary
resolutions, see Fig. 2.3.

Let u be a vertex of 7, with three direct descandants. Let v be the additional
vertex for a binary resolution of vertex u. For the three different binary resolutions
of vertex u, we also write vy, vg, v3 instead of v, see Fig. 2.3.

Let 7' be a binary resolution of 7,. Let 7, i = 1,2, 3, be a binary resolution
of 7, where vertex u is resolved as displayed in Fig. 2.3. Let A 7y be the number

in order to decide whether to favor the Yule model over

calculate the value
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of descendants of v in resolution 77. We want to estimate \,.
> Ao P[T]
’Z'/

>_PIT]

’Z'/

3

> APIT

i=1 ’]'Z.’

> D PIT

=1 7/

v =

i=1 T/ n! H Aw
wE{\B/TZ/\vZ-}
1 on
ZZ:; )‘_vL %,: n! H Aw

we{f/f[i/\vi}

Note that the inner sum is constant for all 7, so we get

on i
1
;{n! 11 Aw;

): we{f/Tll\vl}
e
T n! H )\w i=1 )\vi

U)E{\?Tl/ \v1}

3

25

. V;
i=1 v

w

With this formula, we estimate the values X, for the new vertex v in the binary
resolution of vertex 48,63, 153,157 and 200.

17
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Figure 2.4: Vertex in 7, with four leaf-descendants.

The interior vertex with label 148 has four leaves as direct descendants. There
are two different shapes ¢; and ¢, for a binary tree with four leaves, see Fig. 2.4.
In ¢4, the new interior vertices v; and w; have the value \,, =1 and \,, = 1. In
t9, the new vertex vy has A\, = 2, the new vertex wy has \,, = 1. We set ):w =1
in 7, since \,,, = 1 and \,, = 1. We want to estimate ):U, the value ):U shall be
the weighted sum of the \,,,

- Py[tiA, + Py[ta] A,

v =

2 =1/3-1+2/3-2=5/3.

Py [t1] + Py [to]
With those estimated values for \,, we now estimate ]]1;‘;%1 Let 7;,i =1,...,m,
be the binary resolutions of 7. We get
P Py [7; o
Y[ﬂ _ ZZ Y[ ] ~ Cn-1 — ~0.25 x 1014

Py(T] S, PulTi] ~ [Toep, Ao TTA

which favors the Yule model over the uniform model. Note that without the esti-
mates for \,, we would have to calculate Py[7;] and Py[7;] for the 3° x 15 linear
resolutions of 7.

In Section 4.3, we will assume that the primate tree 7, evolved under the Yule
model.

2.3 Yule model vs. uniform model

As we have seen in Corollary (2.1.3), the probability of generating a given tree 7°
with n leaves under the uniform model is

2n—1
Py[T] =

nle,—1

By Corollary (2.2.5), the probability of generating a given tree 7 under the Yule

model is
2n—1

]P)Y [T] = n HUEf/ >\U‘
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The fraction of the two probabilities, the ‘Bayes factor’ [6], is

Py 7] Cn1

]P)U[T] B Hve\o/ )‘v '

Given a tree T we Want to know if it evolved under the Yule or the uniform

[T]

fraction being smaller than 1 suggests favoring the uniform model. So In (g‘; g)

being bigger than 0 suggests favoring the Yule model, the logarithm being smaller
than 0 suggests favoring the uniform model. In the following, we want to calculate

the expected value Ey[In (PY—FT])] given the tree 7 evolved under the Yule model.
We will see that Ey [ln (P 7 } is the ‘Kullbach-Liebler’” distance (defined below)

between Py and Py, and show that it goes to infinity with increasing n. Further,

Ey [ln (P [;D] goes to infinity with increasing n. Therefore, for n large enough,

Py (7]
the value In ( el

under the Yule or uniform model. In Section 3.4, we will actually test the Yule
model against the uniform model.

) is relevant to the question of testing whether a tree evolved

2.3.1 The Kullbach-Liebler distance

Definition 2.3.1. Let X be a discrete random variable which takes va-
lues in the finite set Q@ = {w;,wo,...,w,} with associated probabilities
{p(w1), p(ws), ..., p(w,)}. We call this probability distribution p. The information
content of an event w € € is

I(w) = =Inp(w)

The entropy J, of the probability distribution p is defined as

J,=E[I Zp ) Inp(w

we

n [9], Chapter 7, the entropy Jy for the Yule distribution over RB(n) and the

entropy Jy for the uniform distribution over RB(n) are calculated. Recall that

for two functions f(n) and g(n), we write f(n) ~ g(n) precisely if lim,, % = 1.

For Jy, one has (from [9])

Iy = Z T) (2.1)

where g(k) = 25 In 52 +In & + In(k + 1) — + Ink!. Asymptotically, one has

o
—

Ty —nin(n) + cin ~ —% In(n) (2.2)
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Where ¢ = In(2)In(22) + In(9)In() + 2Lix(%) — 2Lix(3) — 1 ~ 0.493 and
Lip(z) = [ {2Ldt.
2 1

For Jy, one has (again from [9])
Ju =In|RB(n)| = In(2n — 3)!! (2.3)
and asymptotically
Ju —nln(n) 4+ con ~ —In(n) (2.4)
where ¢, =1 —In(2) ~ 0.307.

Definition 2.3.2. Let p and ¢ be probability distributions over a finite set €.
The Kullbach-Liebler distance between p and ¢ is defined as

drr(p,q ZP z

we

Remark 2.3.3. The Kullbach-Liebler distance is positive definite, i.e. dx(p, q) >
0 with dgkr(p,q) = 0 iff p = ¢. Notice that dx(p,q) = oo iff there exists a
u € Q with p(u) > 0, ¢g(u) = 0. For p = Py and ¢ = Py, both dg(p,q) and
dkr(q,p) are finite, since Py [7] > 0 and Py[7] > 0 for all T € RB(n). Note
that the Kullbach-Liebler distance between p and ¢ is not symmetric, i.e. we have

drxr(p,q) # dkr(q, p) in general.

Remark 2.3.4. Note that the Kullbach-Liebler distance between the probability
distributions p and ¢ over the set (2 equals the following expected value

W p
dir(pq) =Y plw —E,[In2].
weN w q

Lemma 2.3.5. Let Q2 be a finite set. Let p be any probability distribution over €2,
and let q be the uniform distribution over ). Then

dKL(p7 Q) = Jq - J;n-

Proof. By assumption, ¢(w) = 1/|| for all w € Q. From the definition of dx(p, q),
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it follows that

_ RLC
dir(p,q) = Z;P( )
— Zp(w) Inp(w) — Zp(w) Ing(w)
we weh
1
= Jp—gp(w)ln@
1
_ Jp—(ln@)gp(w)
1
= Jp—ln|6|1 1
AP R
= J;,—Jdp

2.3.2 Kullbach-Liebler distance between Py and Py

In the following, we calculate the Kullbach-Liebler distance between the Yule
distribution Py and the uniform distribution Py over RB(n).

Theorem 2.3.6. Let Py be the Yule distribution and Py be the uniform distri-
bution over RB(n). The Kullbach-Liebler-distance between those two distributions
18

dKL(]P)y,]P)U) In (272,—3)'!—72, F—

where g(k) is again defined as g(k) = ZEInEL + In% + In(k + 1) — £ Inkl
Asymptotically, we have

dKL(Py,]P)U) — Cyn ~ —1/2 ln(n)
with ¢y ~ 0.186.

Proof. From Lemma (2.3.5), we have dgr(Py,Py) = Juy — Jy. With Equations
(2.1) and (2.3), we get d 1 (Py, Py) = In(2n—3)!1—n S27_) i(fl For the asymptotic
behavior, we get with Equation (2.2) and (2.4)

Juv —nln(n) + con — (Jy —nln(n) + ain) ~ —1In(n) + 1/21n(n)
Jv—Jy — (1 —e2)n ~ —1/2In(n)
Jv—Jy —cyn ~ —1/2In(n)

where ¢y = ¢; — ¢9 =~ 0.186. O
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Corollary 2.3.7. For the expected value Ey [In 5—‘;], we get

P
Ey [In —Y] —cyn ~ —1/2In(n)
Py

So Ey[lnﬁ—z] — 00 forn — oo.

Proof. With Theorem (2.3.6), we get

Py ]P)Y[T]
Ey|ln —] — = Py |71 —
g1 —ern :re%;(n) e N
= dgi(Py,Py) —cyn
~ —1/2In(n)
That implies dxr(Py,Py) ~ cyn and since ¢y > 0, we have Ey|[In ];—E] — oo for
n — 00. [

2.3.3 Kullbach-Liebler distance between Py and Py

In the following, we calculate the Kullbach-Liebler distance between the uniform
distribution Py and the Yule distribution Py over RB(n).

Lemma 2.3.8. The central binomial coefficient (27;“) can be written as

<2m) —22mH2]_1'

7j=1

Proof.

2m 2m)!  2*™.2m-(2m—1)-(2m—2)...3-2-1
m!m! _2m 2m-2(m —1)-2(m —1)...4-4-2-2

2m 25 —1
_ 22m s oA -
H 2(m — j)

— 2m 2.]_1
1%

Lemma 2.3.9. For the set RB(n), we have

> > I, —Zlnz< 1)|RB(2'+1)||RB(n—z’)|

TERB( ) UGVT

where A, is defined as in Lemma (1.3.8).
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p
/\ some tree structure

/ """ [TV Y\

........... xl+2 et Tp—1 T
//'"'/ """ | \""\\
€T Xo Ti Tit1

Figure 2.5: Counting the pairs (7,v) in Lemma (2.3.9). The variables
(x1,...,7:41) take any distinct values from X', the variables (x;i0,...,Zp_1,Tn)
take any distinct values from X”.

Proof. We have A\, € {1,2,...,(n — 1)} since a binary tree 7 with n leaves has
n — 1 interior vertices. We rewrite the double sum as

> Y —Zlnz ): T € RB(n),v e Vg, A, =i}

TERB(n) veVy

To calculate |{(7,v) : T € RB(n),v € V, A, = i}|, we have to count all the pairs
(7,v) with v € Vr having exactly ¢ interior nodes as descendants. For a binary
tree, this is equivalent to v having i + 1 leaves as descendants (cf. Figure 2.5). So
for an interior vertex v, we choose a subset X’ of X consisting of 7 + 1 elements,
which shall label the leaf descendants of v. We have (111) possibilities to choose
those i 4+ 1 elements. There are |[RB(i + 1)| possibilities to build up a binary tree
with leaf set X’ and root v. Let X" = (X \ X’) Uv, so |X"| = n —i. For the set
X", there are |[RB(n — i)| possible binary trees. Combining all those possibilities
yields

{(T.v:T € RB(n).v € Vi Ay = i} = (if1)|RB<z‘+1>||RB<n—i>|
which proves the Lemma. O

Theorem 2.3.10. For the distance dir(Py,Py), it holds that

dKL(]P)U,]P)y) = nSn — hl Cn—1

1
-1 ; i1 11—
where S, =Y 0, _lelri ;1:; 1_2(219 : and c,, are the Catalan numbers as defined
iEo)

in Lemma (2.1.1).
Proof. By definition of the Kullbach-Liebler distance and with Corollary (2.1.3)
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and (2.2.5) and setting N =

where s =

dxr(Py, Py)

|RB(n)|, we have,

Py|
2 PulTlng o

TeRB(n)
n—1
2n_1 n2'C7L 1
> oI |
TeRB(n) "1 Wi A
1 velr A
> i [Heet
Cp—1
TERB(n)

% Z Zln)\v —1Inec,_1

TeRB(n) UE‘D/T

1
NS Inc,—q (2.5)

Y TeRB(n) 2vevy M Av. With Lemma (2.3.9) and Lemma(2.1.1), we get

s = Z Zln)\v

TERB(n) veVy

= ilni(iﬁl)mB(ijL1)||RB(n—z’)|

1+ 1) cn_i_l(n — Z)'
= 1 . .
; nZ(z + 1) o gn—i-1

N

Cn—l .

. (i + 1)l(n—1q)!
Z Czcn—i—l

z+1 n—z—l)

1nz (n—1) - cien_i1

n—1

2(n1
n—1

Jii( ()
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With Lemma (2.3.8) we get

n—1 . 7 . n—i—1 , .
N 1 4 27 —1 , 27 —1
5 T S Z—l 2j—1 'n2122ZH ]2‘ 20 ] j2' ]
25 Hj:l 25 =2 Lt j=1 J J=1 J
n—1 [ . n—1 . i . n—i—1 .
Ini 27 27 —1 27 —1
= Nn}, i+ 1 2j—1H 2j 11 2j
i=2 | j=1 j=1 j=1
n—1 [ Ini n—1 2] n—i—1 2] 1
- ST T
el 1 j=itl 2j—1 j=1 2J
n—1 [ . n—i—1 . . n—i—1 4 .
Ins 2(7 +1) 27 —1
N S B s TRy o
— i+ e 2(j+1) —1 ol 2]
n—1 [ . on—i—1 ,. . .
Ini (j+1i)(25—1)
= Nn
; i+1 ]1:[1 (2(j+1)—1)5
n—1 [ . n—i—1 .
Ing 27 —1
B S [l s ]
i—2 |’ +1 P 2(]'12')
n—17T Ini n—i—1 1 _ 1
= Nn) |- 11 2 ]
el K 1 j=1 1= 5559
Combining this result with Equation (2.5) establishes the theorem. O

Lemma 2.3.11. The asymptotic behavior of the n-th Catalan number ¢, is
cp ~nlind

Proof. With the Stirling formula, Inn! ~ nlnn — n (see [3]),we get

Ine, = —ln(n+1)+1In <2n)
n
= —In(n+1)+In(2n)! — 2Inn!
~ —In(n+1)+2nln2n—2n—2nlnn+2n
= —In(n+1)+2nln2
~ nln4

O

Theorem 2.3.12. The Kullbach-Liebler distance between Py and Py is asympto-
tically
dxr(Py,Py) ~ cyn

where cy is a positive constant.
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Proof. From Theorem (2.3.10), we have

dKL(]P)Ua Py) =nS, —Inc,;

. - R T .
with S, = S Zli—; i1 ! —7+— | and ¢, being the n-th Catalan number. By
T 2(+9)

Lemma (2.3.11), it holds ¢,—1 ~ nln4. In Section 2.3.4, we show that

lnd<144<8S,<S +N
for all n > 200 with S” and N being some fixed constants. This yields to
dgr(Py,Py) =nS, —Inc,_1 ~nS, —nlnd ~ cyn

with ¢y being a positive constant. O

Corollary 2.3.13. We obtain

Ey[ln —] — o0 for n — oo
since Ey[ln g—g] = dgr(Py,Py) by Remark (2.3.4).

2.3.4 Calculating S5,

In Theorem (2.3.10), we obtain the following formula for the Kullbach-Liebler
distance between Py and Py-:

dKL(PUa PY) =nS, —Inc,_;

_ , o1 1-4& ) .
with S,, = Z;‘:; [lelr—ll . an,i] and a,; = H;‘:f ! — 2—. In the following, we will
2(j+1)
calculate an upper and a lower bound for S,,. Note that {a,_;,n € N} is monotone

decreasing for fixed ¢ and a,; > 0. So lim,_. a, ; exists.

ai::JLIIOloan7i:H71:H<1—2—j)>O

j=1 1- 2+ j=1

With the property

for 0 <z <1 (see [19]) and the property

‘1 i1
Z—,Z/—dmzln(i)
i Y
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we get the following:

Ina; = Zln(l—i)

IA
|
|
|

(VAN
|
|
=3
=

So we have

In the following, we show that S/ converges.

n—1

Ins
S = Z[Hl'a"]

< Ini
< D am
i=2
Since Y7, % converges, it follows that {S),,n € N} is bounded. The sequence
{S;,n € N} is monotone increasing since {2 . a; > 0 for all i € N,i > 2. So
lim,, . S/, exists and we define
lim S =S5
n—oo
Now we calculate an upper and a lower bound for S,,. Since a;,, — a;, there exists
an N € Nst. a;, < (1+1/5)a; for all n > N.

n—1 . n—1 .

Inz In
= —_— ; N—-1 (1+1/5a; N—-1 14+1/58"S’
Sh, ;:2 |:Z 1 Ani| < ( )+i:§N+1 L 1 ( + /S )az < ( )“'( + /S )Sn

Since S/ is monotone increasing, we get
Sp <(N—-1)+(1+1/8)S, < (N—-1)+(1+1/9)5

which yields to
S, < S+ N.

Since a;, > a;, we have

So we get S,, > S for all n. With Maple, I calculated Sy, ~ 1.44 > In4. Overall,
we have
n4<144<8S,<S +N

for all n > 200.



Chapter 3

Trees and Martingales

In this chapter, we have a closer look at the process of the tree generation. We will
see that the tree generation is a certain stochastic process, a martingale. Under
the uniform model, the martingale fulfills the conditions for the Azuma inequality.

We make use of this property at the end of the chapter. We test the Yule mo-
del against the uniform model with the log-likelihood-ratio test. With the Azuma
inequality, we find an analytical bound for the power of the test. Since the algo-
rithms in Chapter 4 work in particular for trees under the Yule model, it will be
useful to have a test for deciding whether a tree evolved under Yule.

First, we provide some basic definitions and properties on conditional proba-
bility and martingales.

3.1 Conditional probability and martingales

Definition 3.1.1. Let X (resp. Y) be a discrete random variable which takes
values {x;,7 € N} (resp. {y;,7 € N}). The conditional expectation

Z=E[X|Y] =) zP[X = z,|Y]

is a random variable. Z takes values

=Y xP[X =Y =y
J

on the set {Y = y;} with probability P[Z = z;] = P[Y = y].

The two equations in the next Lemma are stated in [13] with a brief verification.
We will give a full proof.

Lemma 3.1.2. Let X (resp. Y, U) be a discrete random wvariable which takes
values {x;,1 € N} (resp. {y;,i € N}, {u;,i € N}). Further, assume E[|X|] < oc.
Then, we get the following two equalities:
E[X] = E[EX[Y]] (3.1)
E[X|U] = E[ELX]Y,U]|U]

28
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Proof. Let Z = E[X|Y]. We obtain Equation (3.1) from
EEX|Y]] = ) #PlZ= 2]

i Z ziP[X = z;|Y = yi]P[Y = y;]
Z Z zPX = 2;,Y = yj ()
ZZ% =Y =yl

ij

- E[X)

The summation order in (%) can be changed since E[| X|] < co.
It is left to verify (3.2). Let W = E[X|Y, U]. The random variable W takes a
value

Wiy gs = O wkPIX = 2V =45, U = uy)]
k

with probability P[Y = y;,,U = u;,] where j; € N and j, € N. Let Z = E[W|U].
The random variable Z takes a value

— E[W|U = u]
with probability P[U = u,] where i € N. We transform z; to
zi = E[W|U = u]
= > Wik PIW = w;, 5, |U = u]

J1,Jj2

= Z Z$kP[X = x|V = Yj, U = ujz]]P)[Y =y, U = uj2|U = ui
Ju.g2 k

= Z ZkuP[X =Y = y;,, U = w|P[Y = y;, |U = uy

= ZZIkP =, Y =y, U = w]/PlU = uy (%)

= ZZ%P = 21, Y =y, U = wl/PU = u]
= Zw = 23, U = u]/P[U = u]

= Y nP[X = 2|U = uy
k
= E[X|U = u,]

The summation order in («x) can be changed since E[|X|] < co. So we obtain

EEX|Y, U]IU = w)] = E[X|U = uj]



CHAPTER 3. TREES AND MARTINGALES 30

for all i € N, i.e. E[E[X|Y,U]|U] = E[X|U]. O
Definition 3.1.3. A stochastic process {Z,,n € N} is called a martingale if
E[|Z,)] <o  VneN

and
E[Zn1|Z1, Zay ..., 2] = Z. (3.3)

Remark 3.1.4. Taking expectations of (3.3) with Equation (3.1) gives
E[Z,.1] = E[Z,].

The results of Lemma (3.1.5) and Theorem (3.1.6) are already stated in [13].
Again, the following proofs are more detailed.

Lemma 3.1.5. Let {Z,,,n € N} be a discrete stochastic process with B[|Z,|] < co.
Let 'Y be a vector of discrete random variables. If

]E[Zn-i-l‘Zlu te ZTL7 Y] = Zn
then {Z,} is a martingale.

Proof. 1t holds E[Z,|Z1,...,Z,| = Z, since E[Z,|Z1 = z1,...,Z, = 2z,] = zn.
With that property and with Equation (3.2), we get

E[Zn+1‘Z1, ey Zn] - E[E[Zn+1‘Z1, ey Zn,YHZl, ey Zn]
= E[Z,|Zy,..., 2y
= Z,.

O

Theorem 3.1.6. Let X, Y1, Y5, ... be discrete random variables such that E[| X|] <
oo and let
Z, =E[X|Yi,...Y,]

for alln € N. Then {Z,,,n € N} is a martingale.
Proof. With Equation (3.1), we get E[|Z,|]] = E[EX|Y,....Y,]]] <
E[E[X]|Y1, ..., Y]] = E[|X]|] < co. To check the second condition for a martinga-

le, it is, by Lemma (3.1.5), sufficient to show that E[Z,1|Z1,...Z,,Y1,...,Y,] =
Z,. We have

E[Zni1| 21, Zn, Y1, Y] = E[Zpi|Vi,..., Y]
— EEXY,....Y, V1., Y]
— E[X|Yi,...,Y,]  (from (3.2))

which proves the theorem. O
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3.1.1 The Azuma inequality

Let {Z;,i € N} be a martingale. If the random varialbes Z; do not change too fast
over time, Azuma’s inequality gives us some bounds on their probabilities.

The following theorem, the Azuma inequality, is stated in [13] with a detailed
proof.

Theorem 3.1.7 (Azuma’s Inequality). Let {Z;,i € N} be a martingale with
E[Z;| = . Let Zy = p and suppose that for nonnegative constants o, 35, j > 1,

—a; < Zj— Zj1 < ;.

Then for anyi >0, a > 0:

) 2a?
(i) PZi—p>al < eXp{—Z;:1(aj n 6j)2}
(i) PlZi—u<—a <eploe——0 3

> j—1leg + ;)
The following corollary will be very useful for the next section.

Corollary 3.1.8. Let {Z;,i € N} be a martingale with E[Z;] = p. Let Zy = v and
suppose that for a nonnegative constant €, j > 1,

2= Zja| <€
Then for any i € N:
2
i
<0 < _
PIZ < 0] < expf—5s)
Proof. Let oy = 3; = € for all i € N and a = p. Then inequality (ii) in Theorem
(3.1.7) establishes the corollary. O

3.2 A martingale process on trees under the uni-
form model

In this section, we assume that a tree 7 € RB(n) evolved under the uniform
model. Consider the following setting:

. HU 7 Av
o Let hy : RB(n) — R with hy(T) = In g48 = In ==z,
o For jc{1,...,n},let Y;: RB(n) — RB(j) with Y;(T) = T|q..;3-
e For j >n,let Y;: RB(n) — RB(n) with Y;(T) =T.

o Let Z; = E[hy|Vs,...Yi].
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We have E[|hy(7)|] < oo since 7 is chosen from the finite set RB(n) and
maxzerp(m) |hu(7)| < oco. With Theorem (3.1.6), we obtain that {Z;,i € N}
is a martingale. Note that

Z, = E[hy|Y,... Y] = Elho| Y]
For all © > n, we have
Z; = Elhy(T)Y; = T] = hy(T).
The expected value py of Z, is, with Remark (2.3.4),
po = E[Z,] = Elhy(T)] = dk(Pu, Py).

Theorem (2.3.12) shows
drer.(Pu, Py) ~ cyn

which means
Hy ~ Cyn.

In the following, we want to apply Azuma’s inequality to the tree martingale
{Z;,i € N}. First, set Zy := E[Z,] = dk1(Py,Py). To apply Azuma’s inequality,
we have to verify |Z; — Z; 1| < 6y for all i € N.

e For i = 1, note that by definiton, we have
Zy = E[hy(T)1] = E[ho(T)] = dx(Pu, Py) = Zy
SO |Zl — Z(]‘ =0.

e For i > n, note that Z; = Elhy(7)|7| = hy(7T). So |Z; — Z;—1| = 0 for all
1> n.

e Section (3.2.1) will establish |Z; — Z; 1| < Inn for 2 <i <n.

With Corollary (3.1.8), we then have

}—0 forn— oo

Note that Z,, = hy(7) = In gﬂﬂ So for a tree 7 generated under the uniform

model, the probability that Py [7] is smaller than Py [7] tends to 0 quickly with

n as the number of leaves tends to oo. Therefore the Bayes factor ﬁgg is a very

good indicator as to whether a ‘big’ tree evolved under the uniform model or not.
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3.2.1 Calculating a bound in the Azuma inequality

Let {Z;,1 € N} be the tree martingale introduced above. We can transform Z;
into

Zi = ElhulY)]
= > hU )P[T Y]]
TeRB(n
Ay
= Z 1111_[”67‘/719[7%]
TERB(n) Cn—1

— Z Z InA, —Ine,y | P[T]Y]]

TERB() \vevy
= Z Z InA, | P[TIY;]| —lnc,
TERB(n) \ ey

The random variable Z; therefore takes values

ze= > (D InA | PTY; =1]| —Inc,

TeRB(n) \veVy

for all t € RB(1).

Assuming that 7 was generated under the uniform model, i.e.
P[T] _ |RB()|
Pit]  |RB(n)|

PTY; =t] =

we get, for t € RB(i),

_ |[RB(1)]
Zit = Z Zln)\v RB(n) —Ine,_4

|[RB(i)]

In)\,| —Inc,_1.
|[RB(n)| 76%5;( 2 :
UEVT

Tlq,... 3=t

Let 7 be a binary phylogenetic tree. For the subtree 7| ;, we will write 7 (7).
The set of all binary phylogenetic trees with leave set {1,...,i—1,i+1,...n} shall
be RB(n,i). In the following, we will calculate an upper bound for |Z; — Z;_4|.
Note that

Z Zz - it T ~(1— 1—
| 1| = tg%ax 210 — Z(i-1)a6-1)]-
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The difference |24 — 2(i—1)-1)| 18

Ai,t = |Zi,t_z(i—1),t(i—1)|

RBz RB(i — 1
| B ZZlA—W S Y my,

'TE RB(n) veVr

T (d)=t T(i-1)=t(i-1)
RB(i—1
=S CETED DD SITPYENED SN DR D Y
| ()] ’Z'ERB(n) veVy t'€RB(i) TERB(n) peVy
T (i)=t t(i—1)=t(i—1) T(i)=t'
RB(i—1
- BB sy Y- Y r Y
‘ (n)‘ t'€eRB(i) TGRB(n) veEVE t'€RB(i TEeRB(n) yeVy
t'(i—-1)=t(i—1) 7T (i)=t t'(i—1)= ( -1) T(i)=t'
RB(i—1
=D S I DD SITPYED SIS SETPY
| (n)| t'€eRB(i) TeRB(n) veVy TeRB(n) veVy
t'(i—1)=t(i—1) \ 7 ()=t T (3)=t'
RB(i—1
D D S I DD DI TSN S S P
| (n)l t'€RB(5) T'€RB(n,i) TERB(n) yeVy TERB(n) peVy
t'(i—1)=t(i—-1) T'(i—1)=t(i—1) | 7T\i=T"' T\i=T'
T (d)=t T (i)=t'
RB(i—1
S =D DD DI D IS DTV DD SITPY
| ()] t'€RB(i) T'€RB(n,i) |TERB(n) veVy TERB(n) veVy
' (i—1)=t(i—1) T'(i—1)=t(i—1) | T\i=T"' T\i=T"'
T (i)=t T(i)=t'
Define
=l Y Yma- Y Yma,

TeRB(n) wveVr

TGRB(TL) ’UE‘C}T TGRB(TL) UE‘D/T
T\i=T' T\i=T'
T(i)=t T (i)=t

Consider the tree 7 in Fig. 3.1. Moving leaf 7 to a new position will change A, of
a vertex v, if v is on the path P from v; to v}. The change of \,, when v <7 v;, is
Ane? = A, — 1. For the other vertices on that path, we have A7 = A\, + 1. So we
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Figure 3.1: Tree 7 where leaf i is moved

get, with the property Inz — Iny = Inz/y,

Ao Ao ,
s =1 Y > (ln)\v_l)—i— > <1n)\v+1>+ln)\vi—ln)\vi

TeRB(n) | veVr\v;

T\i=T' veEP veP
T(i)=t v<Tv; v<TY;
< > > (m A + ) (I Ao +In A, —In\
— 4 >\U _1 4 )\v—'_l (% Vi
TERB(n) |veVr\v; veVr\v;
T\i=T' veP veP
T(i)=t v<Tv; v< TV,
A A
_ l v 1 v /
S () X () e
TERB(n) |veVr\v; veVr\v;
T\i=T' vEP veP
T(i)=t | v<zvi V<]
with

vg i—1 !
Zi:)\vi-i-l In == 4f Ay <A,

Note that for any v, w € P with v, w <7 v; or v,w <7 v}, we have A\, # \,. That
yields to

n—1

s Y Yt
k=1

TeRB(n) k=
T\i=T"
T (3)=t
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Overall, we get, with using the property In(1 + z) < z for z > 0,

RB(i — 1 —, k+1
|2it — 2a—1)e6-1)] < % Z Z Z Zln -

t'€RB(i)  T'€RB(nji) TERB(n
t(i—1)=t(i—1) T'(i—1)=t(i—1) T\i= T’
T(i)=t

|RB(i)]
= In1
BB 2 2 Z (147
T'€eRB(n,i) T€ERB(n
T'(i—1)=t(i—1) T\i= T’

T (i)=t
|RB(1)
= — 7 In{1
IRB (n)‘ Z Z I +
TERB(n)
T (i)=t
n—1
= In{1+—
> (1+)
k=1
n—1
1
< J—
P
k=1
"1
< /—dm
LT
= Inn
Therefore,
‘Z ZZ 1| = max ‘th Z(i—l),t(i—1)| Shln

tERB(i)

3.3 A martingale process on trees under the Yu-
le model

In this section, we assume that a tree 7 evolved under the Yule model. Consider
the following setting:

e Let hy(7)=—hy(7)=1In ﬁ;%

o For je{l,...,n}, let Y; : RB(n) — RB(j) with Y;(T) =T|q. ;.

e For j >n,let Y;: RB(n) — RB(n) with Y;(T) =T.
o Let Z; = E[hy|Y1,...Y]].

Since hy = —hy, the process {Z;,i € N} is a martingale with the same argumen-
tation as in Section 3.2. Further, from Section 3.2, we get

Zi = — Z Z hl)\ T|Y] + In Cn—1

TeRB(n) UEVT
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and

Zig=— Z Z InA, | P[T|Y;=t]| +Inc,

TeRB(n) \veVy

for all t € RB(1).

3.4 Hypothesis testing: Did 7 evolve under the
Yule model?

In this section, the hypothesis that a given tree 7 evolved under the Yule model
is tested against the uniform model.

In [10], a test between the Yule and the uniform model is developed by counting
cherries. It is shown that the number of cherries in a tree is normally distributed
with different expected values for the two models. The power of the test stated in
[10] is above 0.90 for trees with more than 80 leaves. The power is only stated as
an asymptotic result though.

We will give an analytic result for the power of the log-likelihood-ratio test for
the Yule model against the uniform model.

First, we recall the basics about hypothesis testing. In a hypothesis test, we
test for a given dataset x if a hypothesis Hj is rejected in favor of a hypothesis
H, or if Hy is accepted. The hypothesis test is characterized by a decision rule, it
decides if H is accepted.

The Type I error of a hypothesis test is

a = P[H, rejected |Hy true.
The Type II error of a hypothesis test is

B = P[H, retained |H; true.
The power of the test is 1 — (.

The next Lemma, the Neyman-Pearson Lemma (see [13]), states that for a
given Type I error, the likelihood-ratio test is the test with the smallest Type II
error.

Lemma 3.4.1 (Neyman-Pearson Lemma). When performing a hypothesis test
between two point hypotheses Hy and Hy, then the likelihood-ratio test which rejects
Hy in favor of Hy when
Plx|Hy true]
Plx|H; true]
with k being some positive constant, is the most powerful test of size «, where
a= P[W < k|Hy true] = P[Hy rejected|Hy true] as defined above.

[x|H1 true]

IA

k
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Note that the log-likelihood-ratio test, i.e. rejecting Hy if

Plx|Hy true] <luk

In 120 7 77
nIP’[:B|H1 true] —

is equivalent to the likelihood-ratio test. We will test the Yule model against the
uniform model with the log-likelihood-ratio test to get the smallest Type II error.

Let Hy and H; be the following hypotheses.

Hy: T evolved under the Yule model
Hy: 7T evolved under the uniform model

The decision rule for this test shall be:

° Zn =In ﬁﬁg > (0 = accept Hy.

° Zn =1In i‘;[g < 0 = reject Hy.

The Type I and Type II error can be obtained with simulations, i.e. construct
a lot of trees with n leaves under the Yule model and estimate a and 3.

With the results from the previous sections, we can provide an analytical bound
for the Type II error.

A bound for the Type II error of this test is, with Corollary (3.1.8) and Theorem
(2.3.10),

B3 = P[Hy retained |H, true] = Py[ln ;zyg% - 0]
U
_ Py([T]
= Pyl Py [T] < 0]
1t
< exp{—2n<gg}
G,
< exp{—m}
S lne )
= exp{_(n 2n(lnnnc)2 1) } (3.4)

with S,, and ¢, as defined in Theorem (2.3.10). Asymptotically, we get, with
Theorem (2.3.12),

f o~ exp{—27ic(lf:;)2}
< exp{—((lgianlzé)n) }

n

(Inn)?

Q

exp{—0.00144 }
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So the power of the test, 1 — 3, tends to 1 as n tends to oco.

With the current bound, the power of the test, calculated by Equation (3.4), is
bigger than 0.85 only for trees with more than 600 leaves. It is probably possible
to improve the bound for the Azuma inequality though. If the current bound, Inn,
could be improved to 1/41Inn, the power of the test would be bigger than 0.90
for trees with more than 50 leaves. A bound of 1/2Inn would result in a power
bigger than 0.90 for trees with more than 170 leaves.



Chapter 4
The Rank Function

Consider the primate tree in Appendix C. Was speciation event with label 76 more
likely to be an early event in the tree or a late event? What is the probability
that 76 was the 6th speciation event? Was it more likely that speciation event 76
happened before speciation event 162 or 162 before 767 This chapter will provide
an answer to those questions, under the assumption that each rank function is
equally likely, which is, in particular, the case under the Yule model.

The algorithms RANKPROB, COMPARE and an algorithm for obtaining the
expected rank and variance for a vertex were implemented in Python. The code
is attached in Appendix B. This is joint work with Daniel Ford from Stanford
University.

In Section 4.3, we will show how to estimate edge lengths in a tree by cal-
culating the probability distribution of the rank of a vertex. This question was
posed by Arne Mooers and Rutger Vos, who constructed the primate supertree
and wanted to estimate the edge lengths for it (see [16]).

4.1 Probability distribution of the rank of a ver-
tex

Let 7 be a binary phylogenetic tree. Specifying an order for the speciation events
(i.e. the interior nodes) in 7 is equivalent to introducing a rank function on 7.
In this chapter, we are interested in the distribution of the possible ranks for a
certain vertex, i.e. we want to know the probability of r(v) =i for a given v € V.
In other words, we want to calculate P[r(v) = i|7], with r € r(7), r(7) is the set
of possible rank functions on the tree 7. If every rank function on a given tree is
equally likely, we have

{r:r(v)=1d,rer(7T)}

Plr(v) =i|T] = (7]

(4.1)

A formula for the denominator is given in Lemma (1.3.8). The enumerator will
be calculated in polynomial time by algorithm RANKCOUNT.

40
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Examples of stochastic models on phylogenetic trees where each rank function is
equally likely:

e For the Yule model, we have seen in Theorem (2.2.4), that P[r|7] is the
uniform distribution.

e As we have seen in Remark (2.2.8), the coalescent model has the same
probability distribution on rooted binary ranked trees as the Yule model. So
P[r|7] is the uniform distribution.

e In the uniform model no rank function is induced when a tree is generated.
We can assume though that for a given tree 7, each rank function is equally
likely. Then, Equation (4.1) holds as well.

Definition 4.1.1. Let 7 be a rooted phylogenetic tree. Define
ar,(i) = {r:r(v) =1, rer(7)}
forv e V,i € 1,...,|V|. In other words, az,(i) denotes the number of rank
functions r for 7 in which v comes in the i-th position.
The following results will be needed in the next sections.

Lemma 4.1.2. Let
ot = {2,257 }

v ={a? a5, .22}

ot = {af, a5 .. 2l
be d disjoint sets with the linear order oy < zb < ... < x}, for eachi € {1,... d}.

The number £ of possible linear orders on the set ' U 2% U ... U z?, with the
linear order of each original set x* being preserved, is

Proof. The number .Z of linear orders of the Zle n; elements of x'Uz?U. ..Uz,
allowing any order on z‘, is L = (Zle nz)' The number .&, of linear orders

of the n; elements of z* is (n;)!. Since for £, we only allow the linear order

r <ah <...<al ona' it holds
d
Z i=1

g: =
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Corollary 4.1.3. For d =2 in Lemma (4.1.2), we have

7 (nl + ng)
m

possible linear orders on x* U 22, preserving the linear order on x' and x*.

Proof. From Lemma (4.1.2) follows

7 <;n)' (14 no)! _ (n1+n2)

— ﬁnll B (’)’Ll)'(’)’LQ)' ny

0

Remark 4.1.4. The values (Z) for all n,k < N (n,k, N € N) can be calculated
in O(N?), cf. Pascal’s Triangle. In Appendix B, a dynamic programming version
for calculating (Z) is implemented. Thus, after O(N?) calculations, any value (Z)
with n, k < N can be obtained in constant time in an algorithm.

4.1.1 Polynomial-time algorithms

In the following, we give a polynomial algorithm to determine cr ,(i) for v € 1%
and i = 1,...,|V| in a binary phylogenetic tree 7.

Algorithm: RANKCOUNT(T, v)
Input: A rooted binary phylogenetic tree 7 and an interior vertex v.
Output: The values of oz, (i) fori=1,..., V.
1: Denote the vertices of the path from v to root p with
(v=121,29,...,2, = p).
2: Denote the subtree of 7, consisting of root z,, and all its descendants, by 7,
form=1,...,n. (¢f. Figure 4.1).

3: form=1,...,ndo

4 fori=1,... V7| do

5: Of’]'mﬂ)(i) =0

6: end for

7: end for e

. = _1Tht

8: Oéf[l,v(l). H N
VeV

9: form=2,...,ndo

10 7} = Tolpy \Ly (cf. Figure 4.2)

m—1

Vpr |t
11: Ry = oL
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Tn—1

subtree

Figure 4.1: Labeling the tree for RANKCOUNT

12: forz':m,...,o|\0/7m do
13: M = min{‘VTrg,l‘vi — 2}
14: Oszﬂ,(Z’) =
M o Vr, |+ Ve | =(=1)\ /_
Zj:(] ar, (i —3j— 1)RT,§L,1( L Tma )( j2) (%)

\‘o/qnill—j
15:  end for

16: end for

17: RETURN ATy = QT n

Theorem 4.1.5. RANKCOUNT returns the quantities
ar,(i) =H{r:r(v)=1direr(7)}
for each givenv €V and alli € 1,...,|V].

Proof. We have to show that all the arz, ,(i) produced by RANKCOUNT equal
the ar, ,(7) defined in (4.1.1). In the following, we denote the values a7, ,(7)
produced by the algorithm with a?—i"’ ,(i) and ar, ,(7) shall denote the number of

rank functions with r(v) = ¢ as defined in (4.1.1). We will show a7, ,,(7) = aégv(z’)

form=1,...,n,i=1,..., \VT| This is done by induction over m.
Form =1, ap (1) = a%lf]v(l) since (1.3.8) holds. Vertex v is the root of 77, so
ar (i) =0 for all ¢ > 1.

Let m = k and ar,, (i) = oz%ig,v(i) holds for all m < k. az, (i) = 0 clearly holds
for all ¢ > |VTk| since rg, 1 v — {1,,|VT,C|} So it is left to verify that the

term () returns the right values for ag, ,(i). Assume that the vertex v is in the
(¢ —j — 1)-th position in 7;_y (with ¢ — j — 1 > 0) for some rank function r7,_|
and v shall be in the i-th position in 7. We want to combine the linear order in
the tree 7;_; induced by rz, _, with a linear order in 7,/ ; induced by r7;  to get
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Tn—1

7%

Figure 4.2: Labeling the tree for recursion in RANKCOUNT

a linear order on 7. The first j vertices of 7, ; must be inserted between vertices
of 7;,_; with lower rank than v so that v ends up to be in the i-th position of the
tree 7. We will count the number of possibilities to do so. The tree 7,/ ; has

° |
12701
R/Z'/ = -
k—1 )\
I »
V.
veVT

possible rank functions. Combining a rank function rz, , with a rank function
rg;_, for getting a rank function rz; with rz, (v) = ¢ means inserting the first j
vertices of 7,/ anywhere between the first (i — j — 2) vertices of 7j_;. There are

()= ()

possibilities according to Corollary 4.1.3. For combining the [V, | — (i — j — 1)

vertices of rank larger than v in 73—, with the remaining [Vz, | — j vertices in
7, _,, we have

(l%ll —(i—j— 1)+ Vg || —j) - (Wm + Ve | = (i — 1))
Vo [ =3

k—1

WV | =]

possibilities. This follows again from Corollary 4.1.3. The number of rank functions
rg,_, with rg_ (v) =1 —j—11is ag_, (i —j — 1) by the induction assumption.
Multiplying all those possibilities gives

Vo |+ Ve | = (= 1)\ [i—2
arg_, (i —j7—1)Rg < . )( : )
o Vo 1= J
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Z2

Figure 4.3: Illustration for runtime of RANKCOUNT

ar, (i) is then the sum over all possible j which is equal to the term (x) for

oz%l 9,(i). This establishes the theorem. O

Theorem 4.1.6. The runtime of RANKCOUNT is O(|V[?).

Proof. Note that the number of rank functions Ry = HW#'A

veVy 7Y

on a tree 7 with

V interior vertices can be calculated in O(|V|), i.e. in linear time.

Further, note that the combinatorial factors (}) for all n,k < V| can be
calculated in advance in quadratic time, see Remark (4.1.4). In the algorithm,
those factors can then be obtained in constant time.

Contributions to the runtime from each line in RANKCOUNT (the runtime is
always w.r.t. |V]):

Line 1-2: linear time
Line 3-7: quadratic time
Line 8: linear time
Line 9-16: quadratic time since:
Line 11: Ry, can be calculated in O(|V]). This has to be done for m =

1,...,n, so overall the runtime for calculating all Rz,  is no more than O(|V]?)
since n < |V].
Line 14: We add up all calculations needed for obtaining az,, (i), m = 1,...,n,
iIl,...,|VTm|Z
D WV llVo I <Y VIVe I =VID Vo, | <[V
m=2 m=2 m=2
The last inequality holds since the vertices of the 7, m = 1,...,n — 1, are

distinct. Therefore, line 14 contributes a quadratic runtime.
Line 17: constant time

So overall, the runtime is no more than O(|V|?). Figure 4.3 shows a tree for
which the runtime of RANKCOUNT is actually quadratic. Counting all the calcu-
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lations for term (x) in the algorithm for the tree in 4.3 yields to

n |‘a/7-m‘ n ‘VTm
Vo l+1 = 3302
m=2 i=m m=2 i=m

n

= > 2(|Vg,| = (m—1))

m=2
n

= ) 2(2m—1)— (m—1))

m=2
- Yo
m=2
= nn+1)—2

Since n = (|V| 4 1)/2, we have a quadratic runtime.

Corollary 4.1.7. The probability P[r(v) = i|T| can be calculated in O(|V|?*). We

have _ »

are(i) _ or(@) [Tep Ao
Z‘Vl ar (i) vl
Proof. The first equality in (4.2) follows from basic probability theory. The second

equality holds since ‘V‘ = >, a7 ,(i) by (1.3.8). The complexity of the runtime
follows from (4.1.6) ]

(4.2)

Remark 4.1.8. We will write P[r(v) = 7] instead of P[r(v) = ¢|7] in the following.
With P[r(v) = ] from Corollary (4.1.7), the expected value ji,(,y and the variance
02(v) for r(v) can be calculated by

V)
MHrv)y = ZZP[T(U):Z]
=1
v
2 _ 2
Tr(r) = ZZP — 1170)

Example 4.1.9. We will illustrate the algorithm RANKCOUNT for the tree in
Figure 4.4. We get the following values:

|
=
I

—_

O‘Tl,v(l) =31

01,0(2) = ag, (W17 () =2
an0(3) = oz, o(D1(7) () = 1
047-2,1,(4) = 0
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Z2

az0(3) = az, (22" () + oz, o(1)2(*3) (1) =40 +0 =40
aro(4) =az, ., .(3)2("27) (0) + az,_0(2)2("57%) () =8+ 48 =56
ag(5) = oz, ,(3)2("57) () + oz, 0(22(7Y) () = 18436 =54
azw(6) = oz, ,(3)2(*°) () + oz, 0(22(*5 ) (5) =24+ 16 = 40
OK,ZZ%U(’?) = 047;7“17”(3)2(4—’_3_6) (g) = 20
047570(8) =0
With oz, = ar,, we get
Plr(v)=1 = 0
Plr(v)=2] = 0
40 40 20
Prv) =3l = i s6ssara0+20 210 105
28
Plr(v) =4] = 05
27
Plr(v) =5] = 105
20
]P)[T(U) - 6] - ﬁ
10
Plr(v) =7 = 105
Plr(v)=8 = 0

and the variance af(v) is

8
2513 4977 344
2 _ -2 . 2 _ — ~
UT’(’U) - ZZ P[T(U) - Z) - /"LT(U) - 105 - 1052 - 225 ~

i=1

1.53

47
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Remark 4.1.10. Note that Plr(v) = i] = 2027;(’)(]) Common factors in all
J 4
ary(i),i=1,...,|Vz,| will therefore cancel out.

The next algorithm, RANKPROB, is a modification of RANKCOUNT such that
common factors of ar,(i),i = 1,..., |V |, will not be included. Therefore, the
numbers we have to deal with in the algorithm stay smaller and the number of
calculations is reduced.

Algorithm: RANKPROB(7, v)
Input: A rooted binary phylogenetic tree 7 and an interior vertex v.
Output: The probabilities P[r(v) =] for i = 1,...,|V].
1: Denote the vertices of the path from v to root p with
(v=1m1,29,...,2, = p).
2: Denote the subtree of 7, consisting of root z,, and all its descendants, by 7,
form=1,...,n. (¢f Figure 4.1).

3 form=1,...,ndo

4 fori=1,...,|Vs| do

5: &Tm,v(i> =0

6: end for

7: end for

8: dq’hv(l) =1

9: form=2,....,ndo

10: Ty =Toloy\Lr, | (cf. Figure 4.2)

11: forz':m,...,ﬂo/Tm do

122 M :=min{|[Vy |,i-2}
N . M . |‘O/Tm1|+|‘o/:r'|—(i—1))(i—2)

13: ar. (1) = ar, ,o(i—j—1 Lo ,
SUESIINS ) iy j

14:  end for

15: end for

16: for i =1,...,|Vz| do

o Pl(v) == SR

18: end for

19: RETURN P[r(v) =i],i=1,...,|V].

Theorem 4.1.11. RANKPROB returns the quantities
Plr(v) = 1]
for each givenv € V and alli € 1,...,|V|. The runtime is O(|V|?).

Proof. Note that the structure of RANKPROB is the same as the structure of
RANKCOUNT. The only difference is that common factors to a7, ,(7) for all i are
not included. Those common factors do not change the probabilities since they
cancel out once calculating the probabilities. Therefore, since RANKCOUNT works
correct, also RANKPROB works correct.
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It is left to verify the runtime. The only time consuming step in RANKPROB is
line 13. This line is of the same complexity as line 14 in RANKCOUNT. Line 14 in
RANKCOUNT contributed a quadratic time. Therefore, the runtime of RANKPROB
is quadratic as well. O

4.1.2 Non-binary trees and ranks

Let 7 be a non-binary phylogenetic tree. Assume that any possible rank function
on 7 is equally likely. With that assumption, we have

] . O"T,v(i)

Plr(v) =i] = (T

To calculate these probabilities, the algorithm RANKPROB can be generalized to
non-binary trees. We call the generalized algorithm RANKPROBGEN.

Algorithm RANKPROBGEN (7, v)
Input: A rooted phylogenetic tree 7 and an interior vertex v.
Output: The probabilities P[r(v) =] for i = 1,...,|V].

1: Denote the vertices of the path from v to root p with

(v=121,29,...,2, = p).

2: Denote the subtree of 7', consisting of root z,, and all its descendants, by 7,
form=1,...,n.

3: form=1,...,ndo

4 fori=1,... V7| do

5: ar, (i) =0

6: end for

7: end for

8: agp.(l)=1

9: form=2,...,ndo

10:  Label the subtree 7., \ 7,,—1 by 7,/ _; (¢f. Figure 4.5)
11 M =min{|[Vy | -1,i-2}

12:  for i :m,...,HO/Tm| do
S WV |+ Vo | =1 = (= 1)\ (i—2
13: dTme(l) = dTm, ,U(l_]_l)( m—1 i m—1 ‘ ) ( . )
;) 1 Vi | =1—3j J
14: end for
15: end for ]
16: fori=1,...,|Vr| do
7. Plr(v) =i] = %
18: end for

19: RETURN P[r(v) =], i=1,...,|V].

Theorem 4.1.12. RANKPROBGEN returns the probabilities
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nonbinary tree

Figure 4.5: Labelling the tree for algorithm RANKPROBGEN.

for each given v €V and alli € 1,...,|V|. The runtime is O(|V|?).

Proof. The algorithm is the same as RANKPROB. The only difference is that in
each step, we define 7! | := 7, \ 7,1, i.e. the root of 7 is z,,. For any rank
function on 7./, we now insert the first j elements (excluding the root x,,) before
the vertex v. The number of ways to insert these vertices is counted analogously
to the proof of Theorem (4.1.5). The number of possible rank functions on 7,
does not have to be calculated, since these factors cancel out when calculating the
probabilities.

Since we do the same iterations as in RANKPROB, the algorithm RANKPROB-
GEN has quadratic runtime as well. O

4.2 Comparing two interior vertices

Assume again that every rank function on a binary phylogenetic tree 7 is equal-
ly likely. We want to compare two interior vertices u and v of 7. Was u more
likely before v or v before u (cf. Fig. 4.6)7 In other words, we want to know the
probability

Pucy :=Plr(u) < r(v)|7]

where r(T') is the set of all possible rank functions on 7. This probability is,
by Theorem (2.2.4), equivalent to counting all the possible rank functions on 7°
in which » has lower rank than v and divide that number by all possible rank
functions on 7. The algorithm COMPARE will solve this problem in quadratic time.

Algorithm COMPARE (7, u,v)
Input: A rooted phylogenetic tree 7 and two distinct interior vertices u and v.
Output: The probability P, := Pr(u) < r(v)|7T].

1: Denote the most recent common ancestor of u and v by p;.
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Figure 4.6: What is the probability that vertex u has smaller rank than vertex v?

2: if p; = v then

33 RETURN P,., = 0.

4: end if

5. if p; = u then

6: RETURNP,., =1.

7. end if

8: Let 7, be the subtree of 7 which is induced by p;.

9: Delete the vertex p; from 7,,. The two evolving subtrees are labeled 7, and

7, with u € 7, and v € 7,,.

10: Run RANKPROB(7,,u) and RANKPROB(7,,v) to get P[r(u) = i] on 7, and
P[r(v) =] on 7, for all possible i.

11: for i = 1,...,|10/7u| do

12 ucum(i) =Y, _, Plr(u) =1]

13: end for

14: Py :=0

15: for i = 1,...,|f/7-y| do

16: for j=1,...|Vz | do

17: p:=Plr(v) =1 - (i_;ﬂ) . (‘VT“ “;;Jr"‘_/?u‘ﬂ) ~ucum(j) (%)

18: Puco = Puco +p '

19:  end for

20: end forf/ o

21: tot = ( TT\L;;U‘IM)

22: ]Pu<v = Pu<v/t0t
23: RETURN P,_,

Theorem 4.2.1. The algorithm COMPARE returns the value
Pucy = Plr(u) < r(v)|T].

Proof. Note that the probability of u having smaller rank than v in tree 7,
equals the probability of v having smaller rank than v in tree 7, since for any
rank function on 7, , there is the same number of linear extensions to get a rank
function on the tree 7.

So it is sufficient to calculate the probability P,., in 7, . If p; = u, u is before
v in 7 and we return P,., = 1. If p; = v, v is before v in 7 and we return

IP)u<v = 0.
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In the following, let p; # u,p; # v. The run of RANKPROB gives us the
probability P[r(u) = i] in the tree 7, and P[r(v) = i| in 7, for all i. We want to
combine these two linear orders. Assume that r(v) = i and we insert j vertices
of 7, before v. Inserting j vertices of 7, into the linear order of 7, before v is
possible in (i_;ﬂ ) ways (see Corollary 4.1.3). Putting the remaining vertices in a
IV, | =i+ |Vr,, | =3

V. |—j
is among the j vertices which have smaller rank than v is P[r(u) < j| = ucum(y).
There are |r(7,)| possible linear orders on 7,, and |r(7,)| possible linear orders on
7,. The number of linear orders where vertex v has rank ¢ in 7, v has rank i + j
in 7,, and r(u) < ¢ + j therefore equals

linear order is possible in ( ) ways. The probability that the vertex

i— 1+j) , (l%l —i+[Vr| -
J Vr.|—J
Adding up the p’ for each i and j gives us the number of linear orders where u is

earlier than v.
Combining a linear order on 7, with a linear order on 7, is possible in

(|‘°/Tu| + |‘°/Tu\)
tot := .
\Vz,|

P, = Plr(v) = ] Ir(T3)] ( ) wcum(y) - r(T2)

different ways (see Corollary 4.1.3). There are |r(7,)| linear orders on 7, and

|7(7,)| linear orders on 7, so on 7,,, we have

Vz,

v ‘

)@l
linear orders. Therefore we get

- Z” Pl _ Z” Dij

]P)u v T
< tot! tot

with p; ; = P[r(v) = 1] - (i_iﬂ) : (WT“ ||;e/:‘|‘_u/§"‘_j) -ucum(j). This shows that Com-

PARE works correct. O
Theorem 4.2.2. The runtime of COMPARE is O(|V]?).

Proof. Again, note that the combinatorial factors () for all n,k < V| can be
calculated in advance in quadratic time, see Remark (4.1.4). In the algorithm,
those factors can then be obtained in constant time.

Contributions to the runtime from each line in COMPARE (the runtime is
always w.r.t. [V]):
Line 1: linear time
Line 2-7: constant time
Line 8: linear time
Line 9: constant time
Line 10: quadratic time, since RANKPROB has quadratic runtime
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Figure 4.7: Example for COMPARE: Calculate the probability of u < v in the
displayed tree 7.

Line 11-13: linear time
Line 14: constant time
Line 15-20: quadratic time since (%) has to be evaluated |Vz, |- |Vz.| < |V |? times
Line 21-23: constant time
Therefore, the overall runtime of COMPARE is O(|V[2). O

Example 4.2.3. Fig. 4.7 displays the tree 7. We want to calculate the probabi-
lity P, <., i.e. the probability of vertex u having a smaller rank than vertex v.

A run of the Python code attached in Appendix B with input (7, u,v) returns

_ 9
]P)u<v — 20

4.3 Application of RANKPROB - Estimating edge
lengths in a Yule tree

In [16], a primate supertree on 218 species was constructed with the MRP me-
thod (Matrix Representation using Parsimony analysis, see [2, 12]). The resulting
supertree is shown in Appendix C. This tree has only 210 interior vertices. The-
re are six ‘soft’ polytomies in the supertree, i.e. six vertices have more than two
direct descendants because the exact resolution is unclear (i.e. the supertree is
non-binary).

Since for most of the interior vertices, no molecular estimates were available,
the edge lengths for the tree were estimated. Here, the length of an edge represents
the time between two speciation events.

A very common stochastic model for trees with edge lengths is the continuous-
time Yule model. As in the discrete-time Yule model, at every point in time, each
species is equally likely to split and give birth to two new species. The expected
waiting time for the next speciation event in a tree with n leaves is 1/n. That is,
each species at any given time has a constant speciation rate (normalized so that
1 is the expected time until it next speciates).

It was assumed that the primate tree 7, evolved under the continuous-time
Yule model. In [16], 10° rank functions on 7, were drawn uniformly at random.
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Figure 4.8: Labeling the tree for estimating the edge lengths.

For each of those rank functions, the expected time intervals, i.e. the edge lengths,
between vertices were considered (the expected waiting time after the (n — 1)th
event until the nth event is 1/n).

The authors of [16] concluded their paper by asking for an analytical approach
to the estimation of the edge length, and we provide this now.

4.3.1 Analytical estimation of the edge length

Let (u,v) be an interior edge in 7 with u <7 v. Let X be the random variable
‘length of the edge (u,v)’ given that 7 is generated according to the continuous-
time Yule model.

The expected length E[X] of the edge (u,v) is given by

E[X] = ZE[X\T(U) =i, 7(v) = jIPr(u) = i,r(v) = j.

Since under the continuous-time Yule model, the expected waiting time for the
next event is 1/n, we have

i
E[X|r(u) =i,7r(v) =j] = , :
: J] ;zjtk

It remains to calculate the probability P[r(u) = i,r7(v) = j]. We count all the
possible rank functions where r(u) = ¢ and r(v) = j. The subtree 7, consists of v
and all its descendants. The tree 7, evolves from 7 when we replace the subtree
7T, by a leaf, see Fig. 4.8.

Note that P[r(u) = i,7(v) = j] = 0if |[V,| < j — 1. Therefore, assume
IVz,| > j — 1 in the following.

The number of rank functions in 7, is denoted by Ryz,. The probability
P[r(u) = i] can be calculated with RANKPROB(7,, u). So the number of rank
functions in 7, with Plr(u) =i is P[r(u) = 1] - Ry,.

The number of rank functions in 7, is denoted by R7z,. Let any linear order
on the tree 7, and 7, be given. Combining those two linear orders to an order on
7T, where r(v) = j holds, means, that the vertices with rank 1,2,...,7 — 1 in 7,
keep their rank. Vertex v gets rank j. The remaining |V, | — (j — 1) vertices in 7,
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and |VTU| — 1 vertices in 7, have to be shuffled together. According to Corollary
(4.1.3), this can be done in

<|‘°/Tu\—(j—1)+\‘7ﬂ|—1) (|VT|+|VT\—J)
Vz,| -1 Vr,| -1
different ways. Overall, we have

\‘o/ﬂ|+\‘o/%|—j)

o) =1 - (0

different rank functions on 7 with r(u) = ¢ and r(v) = j. For the probability
Plr(u) = i,r(v) = j], we get

P[r(u) =] - Ry, - Ry, (\VTuIHVTUI J)

IV, -1
- V|41V, |-
S Blr(w) =i - Ry, - Ry - (")

Since Rz, and Rz, are independent of ¢ and j, those factors cancel out, and we
get

Plr(u) = i,r(v) = j] =

Plr(u) =] - (%;\@1|—j>

Zpt =1 (M)

Plr(u) =i,r(v) = j] =

Further, we note that

(Wm + V7| —j) _ ([Vz| - 5)!
V| -1 (Vr| = DU(|Vr| = j = (IVr,| - 1)!

Again, since (|Vz,| — 1)! is independent of i and j, this factor cancels out, and we
are left with

- T (V- —H
>, Plr(u) =] - ‘V%' 2<|vf| — k)

Let Q= {(i,j) :i < j,i,j € {l,....|V|},|Vz,| > j— 1}. With that notation, the
expected edge length E[X] is

=
=

—~
S

~
I
-~

EX] = ) E[X[r(w) =i,r(v) = jIP[r(u) = i,r(v) = j]
(4,5)€Q
_ St Plr() = |- [T Vrl =i =&
(”2);9 (; 1+ k:) Z(W_)EQ [IP’[r(u) — z] ) \VTU\ 2(|V - )}

S sen [P[r(u) =il T 2<|v7| k)}



CHAPTER 4. THE RANK FUNCTION 56

Remark 4.3.1. With Equation (4.3), we can estimate the length of all the interior
edges. For the pendant edges, the approach above gives us no estimate though.
All we know is that the time from the latest interior vertex, which has rank n—1,
until the presence is expected to be at most 1/n where n is the number of leaves.

Remark 4.3.2. In a supertree, we can have interior vertices which are not fully
resolved, i.e. an interior vertex can have more than two descendants, because the
exact resolution is unclear. Our calculation for the expected edge length assumes
a binary tree though.

However, we can calculate the expected edge length for each possible binary
resolution of the supertree. Assume the supertree 7 has the possible binary re-
solutions 73, ...,7,,. For an edge (u,v) in 7 where u <7 v, the expected edge
length is calculated in the trees 7; for i = 1,...,m. The expected edge length in
7; is denoted by ¢; fort =1,...,m.

We calculate the expected edge length E[X] of (u,v) in the supertree 7 by

E[x] = 2 CPIT] (4.4)

> PTi]

where the probability P[7;] is calculated according to Corollary (2.2.5).

Note that if u is a vertex with more than two descendants in 7', v is in general
not a direct descendant of v in 7;. The value e; in resolution 7; is then the sum
of all expected edge lengths on the path from u to v in 7;.

Remark 4.3.3. In the primate supertree in Appendix C, there are six interior
vertices with more than two descendants (vertex labels 48, 63,148,153, 157 and
200). For the vertices labeled with 63 and 200, only one resolution is possible (up
to the labeling).

The interior vertices with label 48, 153 and 157 have three descendants each.
So there are 3% possible binary resolutions. The interior vertex 148 has four leaf-
descendants. There are two possible binary resolutions (up to the labeling). To
calculate the expected edge lengths for the primate supertree, we therefore have
to calculate the expected edge lengths on 3% - 2 binary trees and then calculate
the weighted sum from Equation (4.4).



Chapter 5

Speciation Rates

This chapter was motivated by Craig Moritz and Andrew Hugall, biologists from
Berkeley and Adelaide. They looked at a tree showing the relationships between
a set of snails. Each of those snails lives either in rain forest or open forest. The
tree has edge lengths assigned. Moritz and Hugall asked if the rate of speciation
is different for rain forest snails and open forest snails.

Mathematically, determining the rate of speciation is the following problem.
The leaves are divided into two classes, @ and [ (e.g. rain forest and open forest
snails). Given the rate that a species belonging to class « changes to a species
belonging to class 3 (and vice versa), we calculate the expected length of an edge
between two species of group « (resp. ). This expected length is an estimate for
the inverse of the rate of speciation and is calculated in linear time.

5.1 Some notation

Definition 5.1.1. Let X’ be a non-empty subset of X. Let C' be a non-empty set.
A character on X is a function x : X’ — C. C is the character state set of x. If
X=X, we say x is a full character. If |C| = 2, we say x is a binary character.

Definition 5.1.2. Let 7 be a rooted phylogenetic X-tree with vertex set V' and
leaf set L C V. Let x be a full binary character on 7, x : X — {«, 5}. Define

/
afppafaaa g 3 afppafaaa § 8

Figure 5.1: A phylogenetic tree with a full character on the left and a phylogenetic
state tree on the right (without the leaf labels).

o7
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Figure 5.2: With s(v;) = 71 and s(vs) = 72, the edge e = (v, v9) is a y-edge.

Ta

TN

o ® .ﬁ

~_

rs

Figure 5.3: Rate of the state change for a binary character

s:V — {a, 3} with s|p = xo ¢t (T, s) is called a phylogenetic state tree, s a
state function.

In the following, the phylogenetic state tree (7, s) shall have assigned a func-
tion [ : E — RT. [ shall denote the edge lengths of 7. Let n € {«, #} throughout
this chapter. Let v be any node in (7,s) with s(v) = 1. We then say that the
state of v is . Let v € {«, B} x {a, 5} throughout the chapter, i.e. v = (71,72)
with 71,72 € {a, 8}. An edge e = (vy,v9) of (7, s) where vy <7 vy and s(v1) = 71,
s(vy) = 79 is called a v — edge.

5.2 Markov Chain Model

Throughout evolution, assume that state a changes to state § with rate r, and
state § changes to state av with rate rg, so the rates only depend upon the state of
the last vertex (see Fig. 5.3). This means that the state change follows a Markov
Chain model, and for that model, we want to calculate the transision matrix

oy (Peall(€)) pas(l(©))
Pie)) = <p6a<1<e>> pﬁg<1<e>>)

where p,,(I(e)) =P [(s(v2) = 72)|(s(v1) = 1)] with e = (v1,v2) and v; <7 vs.
The rate matrix R is defined as

(%)
7’5 —Tﬁ
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Diagonalization of R yields

with

From stochastic processes, we know that the connection between the rate matrix
and the transition matrix is

P'(I(e)) = RP(I(e))
Solving this differential equation yields
P(i(e)) = P(0)e")

with P(0) = Id since [(e) = 0 means staying in the vertex. Therefore P(I(e)) can
be rewritten as

P(fe)) = e
0

= enis () ) s
_ Sexp{<8 y 0 )) I(e)}S~!

To +7p

1 0 .
=5 (0 e—(raw)z(e)) S

(Rl gmzen) )

S (i etminato) et

ra—l-rﬁ
The initial probability of vertex v being in state n shall be m,, n € {a,5}. It

holds
—Ta Ta
(Wa Wﬁ) R= (7?0‘ 7Tﬁ) ( T3 —7“5) =0

SO

38 Ta
mT = (ﬂ-a 71-5) = <7“a+7’ﬁ T’a-H“g)
Therefore, for any given phylogenetic tree 7 with edge lengths I(e), the pro-
bability of its vertices being in states according to a state function s is

Pls] = my(p) H Ps(v1),s(v2) (5.1)
eclk

e=(v1,v2)
v1<7V2

Furthermore, it holds for any e € E with e = (vq, v2)

pS(UQ),S(Ul)(l(e» (5.2)

Ts(v1)

Ps(or),s(v2) (1(€)) =

T's(v2)
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5.3 Expected length of a v-edge

Given a phylogenetic tree 7 with character x, edge length /(e) and rate matrix
R, we want to calculate the expected average length of a y-edge over all (7, s).
The inverse of this length is an estimate for the rate of speciation.

Calculating the expected average length of a 7-edge over all (7,s) means

calculating
> e

ecE, e y—edge

X1 # of v — edges

where E, denotes the expected value over all s given s|;, = x. Trying to calculate
this expected value turns out to give us very nasty recursion formulas.
So we change the problem slightly and try to calculate instead

> Z<e>]

ecE, e v—edge

E\ [# of v — edges]

E

X

v, =

Define the random variable

1 if e is y-edge
Xy(e) = { 0 else

With that, we get

Ey Z l(e)]

LecE, e y—edge

E\ [# of v — edges]

E, Zz<e>Xw<e>]

Ey ZXV(Q)]
D UOPX,(e) = D]

_ ecll 53
> Pl(X,(e) = D] o

where P [(X,(e) = 1)|x] denotes the probability of e being a y-edge given s|, = x.
So it is basically left to calculate P [(X,(e) = 1)|x]. To do so, we first define two
subtrees of 7 (see also Fig. 5.4). Denote the end vertices of e by p; and py with
p1 <7 p2. By deleting the y-edge e in 7, we get two new trees 7; and 73, Ty
with p; € 77 and character y; = X|¢>*1(L71)> and 75 with py € 73 and character
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NN z]~1 -7

Figure 5.4: Calculating the expected edge length: Defining 77 and 7

P1

P2
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X2 = X|¢-1(Ly,) Where Lz, denotes the set of leaves of 7;, i € {1,2}. The root in
7T; shall be p;, so p becomes an ordinary vertex in 7;.

P [x:|(s(pi) = )] shall denote the probability of the character x; on the tree
T; given s(p;)) = 7. P [x\5|(s(p1) = )] shall denote the probability of the
character y7\7, on the tree 7 \ 7, given s(p1) = 71. P[xr, s| shall denote the
probability of the character xy and the state function s on the tree 7. We denote

the vertices on the path from p; to p by p1 = 1, x9, .

and (5.2), it holds

Plxi,s] =

This yields

Pxil(s(p1) =m)] =

With that result, we get

n—1
7T8(p1) Hz:l pS(Z‘i)78(xi+1)P
n—1
Ts(p) Hizl Ps(zi41),5(z:)
n—1
Ts(o) I1im1 Pst@i),s(eisn)

n—1 Ts(xi+1)
Ts(p) Hz’:l To(;) Ps(x;),s(zi11)

[X1\z5 5]

Ts(p1)"'s(x1)

Ws(p)rs(xn) ¥ [XT\’Z—Z, 8]
rarg

Ta+T

~ars P [X1\13 5]
Tatrg

P [x1\75 5]

Z P{x1, s]

sis(p1)=m

= Y Plnms]

sis(p1)=m

= Pxr\nl(s(p) =m)]

P [x1\%» 5]

X1, Ty = p. With (5.1)
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T1 T2

T/ T//

Figure 5.5: Calculating the expected edge length: Defining 7

P{(X,(e) = DIx] =

P [(X5(e) = DIP[x|(X,(e) = 1)]
P[x]
7 (L€))P X 3] (5(p1) = 7)) P [zl (s(p2) = 72)]
> D ()P Xz (s(pr) = 1) P Xz (5(p2) = 72)]

y=(1,72)

_ TPy (H(E))P [xa | (s(p1) = 71)] P [x2[(5(p2) = 72)] (5.4)

TPy (L(E))P [x7 | (s(p1) = 1) P [x 5[ (s(p2) = 72)]

y=(1,72)

P [x:|(s(pi) = vi)] is calculated in a recursive way, starting from the bottom of the
tree.

Suppose we have the subtree 7 as in Fig. 5.5 and either rq, ro are leaves or we
know P [x7/|(s(r1) = n)] on tree T', P [x7~|(s(r2) = n)] on tree T"”, for n € {«, 5}.
With that, we get the following recursive formulas for the probabilities on tree

7.

e For r; and ry leaves:

p T1 p T
P [y+|(s(r) = )] = —Xrx(r2)

Z Doymi P

77177726{0476}

e For rq leave, ry interior node:

Z P [x7[(s(r1) = m)] Puxra) P

Plval(s(r) — _ mef{a,B}
x7|(s(r) = n)] Z P [x7|(s(r1) :7]1>]p77?72p77771

77177726{&7/6}

e For r; and ry interior nodes:

Plxz|(s(r) =n)] =

Yo Phl(s(r) = m)P [xzol(s(rz) = 12)] Doy P

m 7”26{076}
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Algorithm EDGELENGTH (7, x)

Input: A rooted binary phylogenetic tree 7 and a character x on 7 with state
change rates r, and 74

Output: The values U, for v € {«, 8} x {c, B} (cf. Equation (5.3))

e Define the subtrees 7; and 75 of 7 as described above.

o Calculate P [x7|(s(p;) =1;)] for i € {1,2}, j € {1,2}, with the recursive
formulas from above.

e Evaluate P[(X,(e) = 1)|x] according to (5.4) for all v € {«, 5} x {a, B}.
e Evaluate ¥, according to (5.3) for all v € {«, 5} x {«, B}.

Theorem 5.3.1. EDGELENGTH works correct, i.e. it returns
>, (l(e))]

_ ecE, e y—edge

! E\ [# of v — edges]

The complexity is O(|V]), so it is linear.

Ey

Y

Proof. The correctness of the algorithm follows from the construction above. It is
left to verify the runtime.

Calculating the probabilities P [(xz|(s(p:) = ;)] for i € {1,2}, j € {1,2} with
the recursive formulas requires O(|V]) calculations since we have to evaluate one
recursion formula for each vertex. For each edge e, P[(X,(e) = 1)|x] can then be
calculated according to (5.4) with a constant number of calculations. So obtaining
P[(X,(e) = 1)|x] for all e requires O(|E|) = O(|V]) calculations. Calculating ¥,
according to (5.3) requires again O(|E|) calculations. Therefore, the complexity
is linear. O




Outlook

There are several topics in the thesis which suggest further work.

In Chapter 3, we conclude with the log-likelihood-ratio test for deciding if a
tree evolved under Yule. The given bound for the power of the test, Equation
(3.4), depends on the bound for the Azuma inequality. The bound Inn for the
Azuma inequality was obtained in 3.2.1 by a lot of rough estimations. So we are
very confident that there can be found a better bound clnn, with ¢ < 1 being
a constant. This would lead to an improved bound for the power of the log-
likelihood-ratio test (i.e. one could show analytically that the log-likelihood-ratio
test is very good even on trees with a small number of leaves).

The edge lengths estimation in Section 4.3 will be implemented by Rutger Vos
in Perl for his library and in Java for Mesquite (Mesquite is a tree manipulation
software suite). Once implemented, the algorithm can finally be applied to real
data. One can then estimate the edge lengths of a constructed supertree.

Section 5 provides an algorithm for calculating ¥, , and Wz 3 which estimate
the average edge lengths. Let v, be the speciation rate for species of class «
and let 13 be the speciation rate for species of class 5. One could test the
hypothesis .. = V33 against 1, # gz with the statistic ‘;Z';. For evalua-

ting this test, i.e. obtaining the Type I and Type II error, one can use simulations.

Further, in Section 5, we assumed that the transition rates r, and rg are
given. An interesting open question is how to handle the problem without having
these transition rates in advance.
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List of Symbols

Sl

>
S

e N

2

NRRN

Meaning

partial order on the vertices of a tree T

partial order on the vertices of 7
(2n—1)x(2n—3)...3x 1

phylogenetic state tree

ranked phylogenetic tree 7 with rank function r

H{r:r(v)=1irer(T)}

character on a phylogenetic tree

degree of vertex v

number of elements of V that are descendants of v
initial probability distribution of Markov chain
root of a tree

labelling function of a phylogenetic tree 7°
estimated length of a v-edge

phylogenetic X-tree

Primate supertree constructed in [16]
phylogenetic subtree of 7 induced by vertex v
phylogenetic subtree of 7 with label set X’

Entropy of the probability distribution p
Probability P[r(u) < r(v)|7]

Uniform distribution on RB(X)
Probability of 7 under the uniform model
Yule distribution on RB(X)

Probability of 7 under the Yule model

Catalan number

set of character states
number of direct descendants of vertex v
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18
18
18
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dir(p,q)
E Er

I(e)
L Ly

Pryiye

P(l(e))

Ta(r5)

Kullbach-Liebler distance between p and ¢
Edges of a phylogenetic tree 7

Length of edge e in T

Leaf set of a (phylogenetic) tree
probability of state change from 7, to 7,
transition matrix of Markov chain,
dependent on edge length

rate of change from state a to 3 (3 to «)
rank function of phylogenetic tree 7

Set of rank functions on 7°

Set of ranked binary phylogenetic X-trees
with X = {1,2,...n}

Set of ranked binary phylogenetic X-trees
rate matrix of a Markov chain

Set of binary phylogenetic X-trees

with X = {1,2,...n}

Set of binary phylogenetic X-trees

state function

Set of vertices of a (phylogenetic) tree

Set of interior vertices of a (phylogenetic) tree

20

58

o8

58
58
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Algorithms coded in Python

HOH H H H OH H HHHH

Rank functions
Daniel Ford, Tanja Gernhard 2006

Functions:

rankprob(t,u) - returns the probability distribution
of the rank of vertex "u" in tree "t"
expectedrank(t,u) returns the expected rank
of vertex "u" and the variance
compare(t,u,v) - returns the probability that "u"
is below "v" in tree "t"

import random

#
#
#
#
#
#
t

t2

How we store the trees:

The interior vertices of a tree with n leaves are
labeled by 1...n-1

Example input tree for all the algorithms below:

The tree "t" below has n=9 leaves and the inner nodes have

label 1...8
= ((O, O, {’leaves_below’: 2, ’label’: 4}), O,
{’leaves_below’: 3, ’label’: 3})
= ((O, O, {’leaves_below’: 2, ’label’: 7}, (O, O,
{’leaves_below’: 2, ’label’: 8}),
{’leaves_below’: 4, ’label’: 6})

t3 = (O, (O, {’leaves_below’: 2, ’label’: 5})
t4 = (£1,t3,{’leaves_below’: 5, ’label’: 2})

t

= (£2,t4,{’leaves_below’: 9, ’label’: 1})
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# Calculation of n choose j
# This version saves partial results for use later
nc_matrix = [] #stores the values of nchoose(n,j)

# —- note: order of indices is reversed
def nchoose_static(n,j,nc_matrix):
if j>n:
return 0O

if len(nc_matrix)<j+1:
for i in range(len(nc_matrix),j+1):
nc_matrix += [[]]
if len(nc_matrix[j])<n+1:
for i in range(len(nc_matrix[j]),]):
nc_matrix[j]1+=[0]
if len(nc_matrix[jl)==j:
nc_matrix[jl1+=[1]
for i in range(len(nc_matrix[j]),n+1):
nc_matrix[jl+=[nc_matrix[j] [i-1]*i/(i-j)]
return nc_matrix[j] [n]

# dynamic programming verion

def nchoose(n,j):
return nchoose_static(n, j,nc_matrix)
#nc_matrix acts as a static variable

# get the number of descendants of u and of all vertices on the
# path to the root (subroutine for rankprob(t,u))
def numDescendants(t,u):
if t == QO:
return [False,False]
if t[2] ["1label"]==u:
return [True, [t[2] ["leaves_below"]-1]]
x = numDescendants (t[0] ,u)
if x[0] == True:
if t[1]1==0:
n=20
else:
n = t[1][2] ["1leaves_below"]-1
return [True,x[1]+[n]]
y = numDescendants(t[1],u)
if y[0] == True:
if t[0]==0):
n=20
else:
n = t[0] [2] ["1eaves_below"]-1
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return [True,y[1]+[n]]
else:
return [False,False]

# A version of rankprob which uses the function numDescendants
def rankprob(t,u):
x = numDescendants(t,u)

x = x[1]
lhsm = x[0]
k = len(x)
start = 1
end = 1

rp = [0,1]
step = 1

while step < k:
rhsm = x[step]
newstart = start+l
newend = end+rhsm+l
rp2 = []
for i in range(O,newend+1):
rp2+=[0]
for i in range(newstart,newend+1):
q = max(0,i-1-end)
for j in range(q,min(rhsm,i-2)+1):
a = rpli-j-1]*nchoose(lhsm + rhsm - (i-1),rhsm-j)
*nchoose (i-2,j)
rp2[i]+=a
rp = rp2
start = newstart
end = newend
lhsm = lhsm+rhsm+1
step+=1
tot = float(sum(rp))
for i in range(0,len(rp)):
rp[i] = rp[il/tot
return rp

# For tree "t" and vertex "u" calculate the
# expected rank and variance
def expectedrank(t,u):

rp = rankprob(t,u)

mu = 0

sigma = 0
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#
#

for i in range(0,len(rp)):
mu += ixrpl[il
sigma += ixixrp[i]
return (mu,sigma-mu*mu)

GCD - assumes positive integers as input
(subroutine for compare(t,u,v))

def gcd(n,m):

# Takes two large integers and attempts to divide them and give

#
#
#

if n==m:
return n
if m>n:
[n,m]=[m,n]
i = n/m
n = n-mxi
if n==0:
return m

return gcd(m,n)

the float answer without overflowing
(subroutine for compare(t,u,v))
does this by first taking out the gcd

def gcd_divide(n,m):

#
#
#
#
#
#
#
#

x = gcd(n,m)
n = n/x
m = m/x

return n/float(m)

returns the subtree rooted at the common ancestor of u and v
(subroutine for compare(t,u,v))

return

True/False - have we found u yet

True/False - have we found v yet

the subtree - if we have found u and v

the u half of the subtree

the v half of the subtree

def subtree(t,u,v):

if t == ():

return [False,False,False,False,False]
[a,b,c,x1,x2]=subtree(t[0],u,v)
[d,e,f,yl,y2]=subtree(t[1],u,v)
if (a and b):
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return [a,b,c,x1,x2]
if (d and e):
return [d,e,f,yl,y2]

(a or d or t[2]["label"]==u)
(b or e or t[2]["label"]==v)

#
X
y
#
t1l = False
t2 = False

tl = x1

if x and (not y):
tl =t

elif y and (not x):
t2 =t

#

if t[2] ["1label"]==u:
tl =t

if t[2] ["label"]==v:
t2 =t

return [x,y,t,t1,t2]

# Gives the probability that vertex labeled v is
# below vertex labeled u
def compare(t,u,v):
[a,b,c,d,e] = subtree(t,u,v)
if not (a and b):
print "This tree does not have those vertices!"
return 0O
if (c[2] ["1label"]==u):
return 1.0
if (c[2] ["1label"]==v):
return 0.0
tu = d
tv = e
usize = d[2] ["leaves_below"]-1
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vsize = e[2] ["leaves_below"]-1
x = rankprob(tu,u)
y = rankprob(tv,v)
for i in range(len(x),usize+2):
x+=[0]
xcumulative = [0]
for i in range(1l,len(x)):
xcumulative+=[xcumulative [i-1]+x[i]]

rp = [0]
for i in range(1l,len(y)):
rp+=[0]

for j in range(1l,usize+1):
a = y[il*nchoose(i-1+j, j)*nchoose(vsize-itusize-j,
usize-j)*xcumulative[j]
rp[il+=a
tot = nchoose(usize+vsize,vsize)
return sum(rp)/float(tot)
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Primate Supertree
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Mandrilins sphing
Mandrifhes leucopkdsus
Cormocelus lorquas
Cernocelus gale rines
Lopkocelus albigera
Theropithecus gelada
Bapio kamadryds

Macaca sylvanus
Macdca tonkeana
124
Macdca mdurd
Macdca ochreana
Macdca vigra
Macac s silenus
Macdca remestring
Macaca dnctoides
Macaca nadidra
SMacaca ATARER SIS
Macaca thibetana
Macaca sinica
Macdea fsciculdris
Macdca fuscata
f aiigacaca raal citkct

Macaca cvclopis

T T T 1 T T T T |mwa
5 0

Figure C.1: Primate Supertree - Figure 3

A pithecus kigrovindis

Miopithecus tldpoin

Erpth patas
Chiorocelus asthiops

Ceropithecus solatus
108 reopitkecus preussi
‘Ce ropitecus hoesr
Cercopitheces kamiyri
Cemopithecus regleches
Cerapitheces mond
Cerapithecus campbelli
Cerapithecuswalf
Ceropitheces pogonids
Cemopithecus erythrois
Cerapitheces cophus
Cerapitherus dscdnius
Cerapithacus petaurisia
Ceropithecus e rythrogaster
Cemopithecus rickildns
Cerapitheces mitis
Cerapithecus dryds

Cemwapithecus Jidra

1 1 1 | 1 1 1 1 | WA
5 Q

Figure C.2: Primate Supertree - Figure 4
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Colobus satdnds
Colobus argalensis
Colobus guereza
deahaspdykomas
Procololns verus
Erocolobus badus
Brocalolas perrarkii
Nasdliz concolor
Nasaliz farvams

Pygarthric

Eygathric avwncilus
Pygathric oeliana
Pygathric bisti
Pygathric brelicki

B reskryris potenziari
Ereckyriz meldlophos
Preskyriz rubicunda
Preslyris fronsara
Preskytiz comatd

Trachypithecus geei

Trachypithecus durdhes
155 Trachypithecus francois
154 Trackypithecus c igtdms
Trachypithecus piladius
Trachypithecus obsoerus
%ra‘c.kypi:ke\cuspka‘y nei

e

| — & F
151

C Trachypithecus joknii
]
Trackypithecus venalus

wE Enbeih

LANNL AL NS Ly 7
10 5 0

Figure C.3: Primate Supertree - Figure 5

Borgo =
Gorilla gorila
FHome sapiens
B broglodytes
FBar paniscus
Hylobtes kool ock
Hylobate s pileatus
S3Hy€abmes mwelleri
Hylobates lossii
Hylobdtes moloch
Hylobdtes lar
Hylobates agilis
Hylobates syrdacnius
Hylobate s gabriciice
79 Hylobates lawcogeny s

T
Hylobdtes corcolor

LN
15 i0 £ o

Figure C.4: Primate Supertree - Figure 6
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Aoz lamurinus

Aotz vociferans

= a0
Aotz brumbacki
3 Aotz rancymade
= Aches micondx
23 Ackus inful ds
27 Achus rigriceps

2 _ Aomus rrivi e
Ao dzardi
) Caflimico goeldii
Calli ki pygmded
23 =1 Callithrix ke ife
Callitkrix argentard
= Caflithrcfavicaps
Caffithrixdurita
15 Callithe bkl
‘Eail‘r}kré.r et
1E'aiii£kr7'xpmiciﬁam
‘gdﬁr}kﬁxj\dcckus
Leontapithecus chryaomel a
Leortapithecus rosal i
Leontapithecus chryaoryous
Serguinus cedipus
Setguinus geotiroyt
Serguinus midds
Saguirus bicdlor
Satguinusloucopus
Sarguinus Lmpe ratoT
Scguirus mystdx
Saguiruslabidms
Scrguinus inusus
L Setguinus wigrcallis
- Scarguinus Eripanies

Saguirus fusicalliz

FTTTTTTTTTTTTTTTTTTTTT ween
=20 15 10 5 a

Figure C.5: Primate Supertree - Figure 7

Celms olivdceus
Cebus apella
Cebus capucinus
Cebus albigrons
Satimiri bol iviensis
Satimiri vzl init
Satimiri sciunmus

Saimiri ushes

Satimiri oe rmhedii

TTTTTIT T[T I T T[T IT T[T TTITT] hva
=0 i5 10 5 0

Figure C.6: Primate Supertree - Figure 8
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Callicelus cine miscens
Callicelus moloch
Callicelus brunneus
Callicebus kaffmdnrsi
Caflicelus caligams
Callicebus cupreus
Cailicelus dubns
Callicelus pereondius
Callicelus ceranthe
Callicelus olallde
Callicelbus dordcophifus
Cailicelus modestus
Callicelus lorquatus
Pithecia aibicans
Fithecia mondchus
Bitkecia dequatorialis
Fithecia irronara
Pithecia pithecia
Cocaido calvs
Cacaido mel anocephalus
Chinopotes albindsus

Chingpote s satands

[TTTTTTTTTTTTTTTTTTT] M
=0 18 10 5 Q

Figure C.7: Primate Supertree - Figure 9

Lagothrixfavicawda
Lagorh s lagordcha
Brachyteles drachnoides
Ardles fumiceps

Smdes ey

Areles Belzekuth

Areles chamel

Areles margindtus
Ateles panizus
Al oweatieat belzekul
Al et sericadus
Al ettt Yus o

Al maana pignt

Al adtta candya

Al enacitbet petd fictt

TTTTT T T T T[T T T T 17T M
=0 15 10 5 a

Figure C.8: Primate Supertree - Figure 10

Tarsies Bancoinus

E4 . .
= Tarmsnes syrichia
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Figure C.9: Primate Supertree - Figure 11
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I i 3 i
Lapilapmr mugelinus
Lepilermr septentrionalis

Lepilermr ngcaudatus

Lepifermr leucomes
188&pi'€emr edwards
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Lenmr catta
Hapal ez simus
Hapalemur griscus
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Titne i wrriegara
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Bulermr morgez

Ehfenur conronatus
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Indri indri

Eropithec s diadema
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‘?"SQMi\cracebws s
Microcelus porinus

Chefrogalcus medius

Cheiragalous major

WA

35 W 2 o 15 0 E 0

Figure C.10: Primate Supertree - Figure

Nycticelbus cowcang
Nycticelus pygmdous
Loris landigradus
Arctocelus calabarensis
Pemdicticus potto
alage mokali

Gratlago seregdlens s
Gratldge gallarun
Gatldgo allewi
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Galdgoides aanzibaricus
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Figure C.11: Primate Supertree - Figure
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