
Technische Universität München

Zentrum Mathematik

Stochastic Models

for Speciation Events

in Phylogenetic Trees

Diplomarbeit

von

Tanja Gernhard

Aufgabensteller: Prof. Dr. Rupert Lasser

Betreuer: Prof. Dr. Mike Steel

Abgabetermin: 7. April 2006

Hiermit erkläre ich, dass ich die Diplomarbeit selbständig angefertigt und nur
die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 7. April 2006

...
Tanja Gernhard

Acknowledgements

First and foremost, I would like to thank my supervisor Mike Steel for making
it possible for me to come to New Zealand, for the great support throughout my
stay, for suggesting great problems to work on and for very helpful discussions
and advice. Through my stay in New Zealand and my work with Mike, I finally
found my area in research.

My thesis abroad and the great experience I had during that time would not
have been possible without the support of my German supervisor Rupert Lasser.
He encouraged me in any of my plans and let me have all the freedom I needed
in choosing a topic for my thesis.

The three days of Daniel Ford’s stay in Canterbury were probably the three
most productive days of my thesis, while we implemented and optimized my al-
gorithms. Daniel introduced me to Python which was a very convenient language
for my research.

Talking to Erick Matsen during coffee breaks helped me to see things I was
working on in a broader scientific perspective. Mareike Fischer had very helpful
comments for last improvements of my thesis.

I would also like to thank Craig Moritz, Andrew Hugall, Arne Mooers and
Rutger Vos who posed the questions which led to my thesis.

The people and the friendly environment in the Biomath Department at Can-
terbury University made my stay most enjoyable. Special thanks go to Charles
Semple who helped me very much when I first arrived so that I felt comfortable
in New Zealand right away.

Further, thanks to the Friedrich-Ebert-Stiftung for the support throughout
my time at university and the Allan Wilson Center for hosting me as a summer
student while I was in New Zealand.

Last but not least, I would like to thank my family and my boyfriend for
supporting me in any possible way, for giving me good advice whenever I had to
make a key decision, for always encouraging me and for providing me a home I
always look forward going back to.

i

Contents

Acknowledgements i

1 Introduction 1

1.1 Overview . 1

1.2 Short guide to the thesis . 4

1.3 Graphs and Trees . 5

2 Stochastic Models on Trees 9

2.1 The uniform model . 9

2.2 The Yule model . 11

2.2.1 Did the primate tree evolve under Yule? 16

2.3 Yule model vs. uniform model . 18

2.3.1 The Kullbach-Liebler distance 19

2.3.2 Kullbach-Liebler distance between PY and PU 21

2.3.3 Kullbach-Liebler distance between PU and PY 22

2.3.4 Calculating Sn . 26

3 Trees and Martingales 28

3.1 Conditional probability and martingales 28

3.1.1 The Azuma inequality . 31

3.2 A martingale process on trees under the uniform model 31

3.2.1 Calculating a bound in the Azuma inequality 33

3.3 A martingale process on trees under the Yule model 36

3.4 Hypothesis testing: Did T evolve under the Yule model? 37

iii

CONTENTS iv

4 The Rank Function 40

4.1 Probability distribution of the rank of a vertex 40

4.1.1 Polynomial-time algorithms 42

4.1.2 Non-binary trees and ranks 49

4.2 Comparing two interior vertices 50

4.3 Application of RankProb - Estimating edge lengths in a Yule tree 53

4.3.1 Analytical estimation of the edge length 54

5 Speciation Rates 57

5.1 Some notation . 57

5.2 Markov Chain Model . 58

5.3 Expected length of a γ-edge . 60

Outlook 64

A List of Symbols 65

B Algorithms coded in Python 67

C Primate Supertree 73

Bibliography 79

Index 81

Chapter 1

Introduction

1.1 Overview

In 1837, Darwin published a first sketch of an evolutionary tree, see Fig. 1.1. This
new idea that all species evolved over time was under a lot of discussion and not
until the early 20th century was evolution generally accepted by the scientific
community. Since then, much research went into the field of evolution. With the
help of fossils, and by comparing the anatomy as well as the geographic occurrence
of species, complex evolutionary trees have been created.

In an evolutionary tree, each leaf represents an existing species and all the in-
terior vertices represent the ancestors. The edges of the tree show the relationships
between the species.

The first step to modern evolutionary research was the discovery of the double
helix structure of DNA (deoxyribonucleic acid) by Watson and Crick in 1953.
The genetic code is a long chain of bases (Adenine, Cytosine, Guanine, Thymine)
and triplets of these bases encode the 20 amino acids. A backbone of sugars and
phosphates holds the bases together, see Fig. 1.2. The amino acids in a cell form

Figure 1.1: Darwin’s first diagram of an evolutionary tree from his ‘First Notebook
on Transmutation of Species’ (1837).

1

CHAPTER 1. INTRODUCTION 2

Figure 1.2: The DNA - a double helix

proteins according to the DNA code. From a chemical point of view, life is nothing
else than the functioning of proteins. Since the DNA determines which proteins
are built, a living organism can chemically be described by its DNA, the genetic
information [17].

Each cell of an organism has an identical copy of the DNA. In eukaryotes, the
DNA is found in a cell nucleus whereas in prokaryotes (archaea and bacteria), the
DNA is not separated from the rest of the cell.

During reproduction, the DNA is transmitted to the offspring, so parents and
children are similar in many ways (e.g. hair color, blood group, disease suscepti-
bility).

It was not until 2003 that the complete human DNA code was described.
Currently, the complete DNA sequence of several different species is known (358
bacteria, 27 archae, 95 eukaryotes, see http://www.ncbi.nih.gov/). By aligning
the DNA of different species, the similarities and differences of the DNA allow us
to reconstruct lineages with more accuracy than before; for an example see Fig.
1.3.

It is noticeable that the same four DNA bases and the 20 amino acids are
found in all organisms. This is strong evidence for having one common ancestor
to all the species.

Evolutionary trees are also called ‘phylogenetic trees’. If all the species in the
tree have a common ancestor, we call the tree a ‘rooted tree’, the common ancestor
is called the ‘root’.

I take a closer look at rooted phylogenetic trees. The shape of the tree is
determined by how speciation occurred. But since speciation is not understood
well and is dependent on historical events which we might never be able to

CHAPTER 1. INTRODUCTION 3

Figure 1.3: Illustration of the tree of life by Carl R. Woese. The-
re are three main branches, the bacteria, archaea and eucarya, source
http://www.life.uiuc.edu/micro/faculty/faculty−woese.htm.

reconstruct, a stochastic model for speciation is needed. I investigate the Yule
model and the uniform model, two very common models.

In my thesis, I develop the theory with a view to the following applications in
biology.

Rutger Vos and Arne Mooers from the Simon Fraser University (Vancouver)
recently constructed a supertree for the primates (i.e. lemurs, monkeys, apes and
humans) as shown in Appendix C.

In Section 2.2.1, we will see that the primate tree is much more likely to have
evolved under the Yule than under the uniform model.

With the supertree method, the shape of the primate tree could be determi-
ned, but there was no information about the edge lengths, i.e. the time between
speciation events. In [16], edge lengths were estimated by simulations, assuming
the (super)tree evolved under the Yule model. The authors concluded by asking
for an analytical approach which I develop in Chapter 4.

Craig Moritz (UC Berkeley) and Andrew Hugall (University of Adelaide) wor-
ked with an evolutionary tree which had edge lengths assigned. The leaves were
different types of snails. The snails either live in open forest or rain forest. Moritz
and Hugall asked (pers. comm.) if the rate of speciation for open forest snails
differs from the rate of speciation for rain forest snails. The rate of speciation is
a measure of how fast a class of species produces splits in the evolutionary tree.
Chapter 5 provides a linear algorithm for solving that problem.

CHAPTER 1. INTRODUCTION 4

1.2 Short guide to the thesis

In Chapter 2, two important stochastic models for binary phylogenetic trees are
introduced - the uniform and the Yule model. Those two models are discussed and
the Kullbach-Liebler-distance between them is calculated. The Kullbach-Liebler-
distance turns out to be very useful in deciding whether a given tree evolved under
the Yule or the uniform model.

Chapter 3 formulates a test statistic for that decision problem, the log-
likelihood-ratio test. Instead of estimating the power of the test by simulations,
we provide an analytic bound for the power by introducing a martingale process
on trees and applying the Azuma inequality.

The algorithms in Chapter 4 work in particular for trees under the Yule model.
In order to verify that a tree evolved under Yule, the test provided in Chapter 3
can be applied before running the algorithms.

After having established all the necessary stochastic background, Chapter 4
provides a quadratic algorithm for calculating the probability distribution of the
rank for a given interior vertex in a phylogenetic tree. The algorithm is called
RankProb and we assume that every rank function on a given tree is equally li-
kely. That is in particular the case for the Yule model. The algorithm RankProb
is extended to non-binary trees as well, again we assume that every rank function
is equally likely. We call that algorithm RankProbGen. Calculating the proba-
bility of having an interior vertex u earlier in the tree than an interior vertex v
is calculated with the algorithm Compare in quadratic time. We coded up the
algorithms RankProb and Compare in Python, see Appendix B. The chapter
concludes with an analytical approach of estimating edge lengths in a given tree
under the Yule model. This approach makes use of the algorithm RankProb.

Chapter 5 looks at the rate of speciation. Given is a phylogenetic tree with the
leaves being divided into two classes α and β. The edge lengths shall represent
the time between two events. We provide a linear algorithm for the expected
time a species of class α exists until it speciates and two new species evolve. The
average edge length is an estimate for the inverse of the rate of speciation. An
example for the classes α and β could be rain forest snails and open forest snails.

After introducing the stochastic models in Chapter 2, the remaining results
in that Chapter are new. The results in Chapter 3, 4 and 5 are new unless
otherwise stated. Improvements on the algorithms in Chapter 4 and coding them
up in Python was joint work with Daniel Ford. Chapter 4 was the topic of my
talk at the New Zealand Phylogenetics Conference in Kaikoura in February 2006
(http://www.math.canterbury.ac.nz/bio/kaikoura06/).

The rest of this Chapter introduces the basic definitions from graph theory and
phylogenetics needed for the thesis. Further, some basic results for phylogenetic
trees are stated.

CHAPTER 1. INTRODUCTION 5

leaf

pendant edge

cherry

ρ

interior vertex
interior edge

Figure 1.4: A rooted binary tree

1.3 Graphs and Trees

Definition 1.3.1. A graph G is an ordered pair (V,E) consisting of a non-empty
set V of vertices and a multiset E of edges each of which is an element of {{x, y} :
x, y ∈ V }. The degree δ(v) of a vertex v ∈ V is the number of edges in G that
are incident with v. A path p in G from vertex x ∈ V to vertex y ∈ V is a
sequence p = (vi)i=1,...n, vi ∈ V , such that x = v1, y = vn, and {vi, vi+1} ∈ E for
i = 1, . . . n− 1. A graph G is connected precisely if there exists a path from x to
y for all x, y ∈ V . A cycle in a graph is a path p = (vi)i=1,...n with v1 = vn. The
graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E.

Definition 1.3.2. A tree T = (V,E) is a connected graph with no cycles. A
connected subgraph of T is a subtree of T . A rooted tree is a tree that has exactly
one distinguished vertex called the root which we denote by the letter ρ. A vertex
v ∈ V with δ(v) ≤ 1 is called a leaf . The set of all leaves of T is denoted by L.
A vertex which is not a leaf is called an interior vertex. Let V̊ denote the set of
all interior vertices of T . A binary tree is a tree with δ(v) = 3 for all v ∈ V̊ . A
rooted binary tree is a rooted tree with δ(v) = 3 for all v ∈ V̊ \ ρ and δ(ρ) = 2.
Let V ′ ⊂ V . The subtree T ′ = T |V ′ is the minimal (w.r.t. the number of vertices)
connected subgraph of T containing V ′. An edge which is incident with a leaf
is called a pendant edge. A non-pendant edge is called an interior edge. Two
distinct leaves of a tree form a cherry if they are adjacent to a common ancestor.
Let v ∈ V̊ \ρ with δ(v) = 2. The vertex v is suppressed in T if we delete v with its
two incident edges e1 = (v1, v), e2 = (v, v2) and then add a new edge e = (v1, v2).
For an example of a tree see Fig. 1.4.

Definition 1.3.3. Let T = (V,E) be a rooted tree with leaf set L ⊂ V and for
all v ∈ V̊ \ ρ is δ(v) 6= 2. Let X be a non-empty finite set with |X| = |L|. Let
φ : X → L be a bijection. Then T = (T, φ) is called a phylogenetic (X−) tree
with labeling function φ. X is called the label set. A phylogenetic tree is also
called a labeled tree. A tree shape is a phylogenetic tree without the labeling.

Remark 1.3.4. In the following, for a phylogenetic tree T , we sometimes write ET

instead of E, VT instead of V , V̊T instead of V̊ and LT instead of L. This notation
clarifies to which tree the sets refer whenever we talk about several different trees.

CHAPTER 1. INTRODUCTION 6

a b c d g h i j kfe i jhf

T
T ′

Figure 1.5: A rooted binary phylogenetic X-tree T with X = {a, b, . . . , k} and
the subtree T ′ = T |{f,h,i,j}.

Definition 1.3.5. Let T be a rooted tree. A partial order ≤T on V is obtained by
setting v1 ≤T v2 (v1, v2 ∈ V) precisely if the path from the root ρ to v2 includes v1.
If v1 ≤T v2, we say v2 is a descendant of v1 and v1 is an ancestor of v2. If v1 ≤T v2

and there is no v3 ∈ V with v1 ≤T v3 ≤T v2, we say v2 is a direct descendant of
v1 and v1 is a direct ancestor of v2. The number of direct descendants of v is d(v).
When we talk about a phylogenetic tree, we often write ≤T instead of ≤T .

Definition 1.3.6. Let T = (T, φ) be a phylogenetic X-tree. Let X ′ ⊂ X. The
phylogenetic subtree T ′ = T |X′ = (T ′, φ′) is a phylogenetic tree where T ′ is the
tree T |φ(X′) with all degree-two vertices suppressed (except for the root). The
labeling function is φ′ = φ|X′. The root of T ′ is the vertex ρ′ which is minimal in
the tree T ′ under the partial order ≤T (see Fig. 1.5). Let T ′ be a subtree of T .
Denote the subtree T |LT \LT ′ by T \ T ′.

Let v ∈ V̊ and let Xv be the label set of all the leaves in T which are descen-
dants of v. The subtree Tv is induced by v if Tv = T |Xv . A binary phylogenetic
tree is balanced if the two subtrees induced by the two direct descendants of the
root have the same shape. Otherwise, the tree is unbalanced.

Definition 1.3.7. Let T be a rooted phylogenetic tree. Let the function r be a
bijection from the set of interior vertices V̊ of T into {1, 2, . . . , |V̊ |} that satisfies
the following property:

if v1 ≤T v2, then r(v1) ≤ r(v2)

(T , r) is called a phylogenetic ranked tree (see Fig. 1.6). The function r is called a
rank function for T . A vertex v with r(v) = i is said to be in the i− th position of
T or v has rank i. We write rT instead of r when it is not clear from the context
to which tree the rank function r refers. Note that r induces a linear order on the
set V̊ . We define the set r(T) as

r(T) = {r : r is a rank function on T }.

The following Lemma has been shown in [14] using poset theory. We will give
an elementary proof using induction.

CHAPTER 1. INTRODUCTION 7

1

2

3
6

74

5
8

9 10

a b c d g h i j kfe

Figure 1.6: A rooted binary phylogenetic ranked X-tree with X = {a, b, . . . , k}

Lemma 1.3.8. Let T be a rooted phylogenetic tree. For each v ∈ V̊ , let λv denote
the number of elements of V̊ that are descendants of v. Then the number of rank
functions for T is

|r(T)| =
|V̊ |!
∏

v∈V̊

λv

(1.1)

Note that a vertex v is a descendant of itself by definition, so λv also counts the
vertex v.

Proof. This proof is done by induction over the number n of interior vertices of a
tree. For n = 1, there is only one rank function, the only interior vertex has rank

1, which equals to |V̊ |!Q
v∈V̊

λv
= 1!

1
= 1. Suppose that (1.1) is true for all trees with

n < k interior vertices. Let T be a tree with k interior vertices. The degree of root
ρ is δ(ρ) = m where m < k. T has m vertex-disjoint rooted subtrees T1, T2, . . . , Tm

induced by the direct descendants of ρ, and with |V̊Ti
| < k. Each subtree Ti has

|V̊Ti
|!Q

v∈V̊Ti
λv

different rank functions by the induction assumption. Counting all the

rank functions on T is equivalent to counting the rank functions on each subtree
Ti and then combining the positions of the vertices of all the Ti to get a linear
order on V̊T , by preserving the order of the vertices of each Ti. For a given rank

function on each Ti, we can order all the interior vertices in
(
P

i |V̊Ti
|)!Q

i(|V̊Ti
|!)

different

ways where the order within each Ti is preserved. Multiplying by all the possible

CHAPTER 1. INTRODUCTION 8

rank functions for each Ti yields to

|r(T)| =

(

m
∑

i=1

|V̊Ti
|
)

!

m
∏

i=1

(

|V̊Ti
|!
)

(

m
∏

i=1

|r(Ti)|
)

=

(

m
∑

i=1

|V̊Ti
|
)

!

m
∏

i=1

(

|V̊Ti
|!
)

(

m
∏

i=1

|V̊Ti
|!

∏

v∈V̊Ti
λv

)

=

(

m
∑

i=1

|V̊Ti
|
)

!
m
∏

i=1

1
∏

v∈V̊Ti
λv

=
(|V̊T | − 1)!
∏

v∈V̊T \ρ

λv

=
|V̊T |!
∏

v∈V̊T

λv

.

This establishes the induction step, and thereby the theorem.

Remark 1.3.9. In the following, all trees shall be rooted. The set of all binary
rooted phylogenetic trees with label set X is denoted by RB(X). The set of all
ranked binary rooted phylogenetic trees with label set X is denoted by rRB(X).

Remark 1.3.10. A rooted binary phylogenetic tree with n leaves has |V̊ | = n−1
interior vertices and |E| = 2(n− 1) edges, which is shown by induction in [14].

Chapter 2

Stochastic Models on Trees

Given a phylogenetic X-tree, we are interested in the probability of that tree
from the set RB(X) or rRB(X), depending on whether the given tree is ranked
or not. When defining a probability distribution on trees, the probability of a
labeled tree should be invariant under a different labeling. This property is called
exchangeability.

There are several stochastic models for binary phylogenetic X-trees, the most
common are the uniform and Yule model which we will introduce and compare.

In the following, for simplifying notation, any X with |X| = n shall be X =
{1, 2, . . . , n} and we write RB(n), rRB(n) instead of RB(X), rRB(X).

2.1 The uniform model

Under the uniform model, a random element ofRB(n) is generated in the following
way (cf. Figure 2.1):

• Label the two leaves of a cherry with 1 and 2.

• Add to the cherry a third edge connecting the root ρ of the cherry and a
new vertex ρ′ which is earlier than ρ. This extended cherry is denoted by T .

• In each step, modify T in the following way, until T has n leaves:

– Let the number of leaves of T be k. Choose an edge of T randomly
and with uniform probability and subdivide this edge to create a new
vertex.

– Add an edge from the new vertex to a new leaf.

– Label the new leaf by k + 1.

• Remove from the tree T the vertex ρ′ and its incident edge to get the binary
rooted tree T .

In this way, each rooted binary phylogenetic X-tree has equal probability (see
[11]). Obviously, the probability of a tree is invariant under a different leaf labeling.

9

CHAPTER 2. STOCHASTIC MODELS ON TREES 10

2 31

41 2 3 41 2 3 41 2 3 41 2 3 1 2 3 4

ρ

ρ′

T ′

Figure 2.1: Tree evolving under the uniform model. Let X = {1, 2, 3, 4}. Given
the tree T ′ with label set {1, 2, 3}, which has probability 1/3 under the uniform
model, there are five possible edges to attach the leaf with label 4. Each of the
five trees with label set {1, 2, 3, 4} has probability 1/5 given T ′. So the overall
probability of each tree with four leaves is 1/15 under the uniform model.

Note that it is not necessary to choose the elements of X in the given order
1, 2, . . . , n. We could choose the leaf labels in any order. This will not be the case
for the Yule model.

Lemma 2.1.1. For each n ≥ 2,

(2n− 3)!! =
n!cn−1

2n−1

with (2n−3)!! = (2n−3) ·(2n−5) . . .5 ·3 ·1 and cn being the n-th Catalan number,
cn = 1

n+1

(

2n
n

)

.

Proof.

(2n− 3)!! =
(2n− 3)!

2n−2
(

2n−4
2

)

!
=

(2n− 3)!

2n−2(n− 2)!

=
(2n− 2)!

2n−1(n− 1)!
=

(n−1)!(2(n−1))!
2(n−1)!

2n−1
=
n! 1

n

(

2(n−1)
n−1

)

2n−1

=
n!cn−1

2n−1
.

The following result is already shown in [14] by considering unrooted trees and
defining a bijection from unrooted to rooted trees. This proof is direct.

Theorem 2.1.2. The number of binary rooted phylogenetic trees is

|RB(n)| = (2n− 3)!!

CHAPTER 2. STOCHASTIC MODELS ON TREES 11

Proof. The proof is done by induction over n. For n = 2, we have |RB(2)| = 1 and
(2 · 2− 3)!! = 1. Assume |RB(n)| = (2n− 3)!! holds for all n ≤ k, where k ≥ 2. A
tree Tk with k leaves has 2(k− 1) edges (see Remark (1.3.10)). Denote the root of
Tk by ρk. The (k+1)-th leaf x can be attached to Tk to any of the 2(k−1) edges or
a new root ρ with edges e1 = (ρ, ρk) and e2 = (ρ, x) is added. So we can construct
2(k−1)+1 = 2k−1 different trees from Tk. By the induction assumption, we have
|RB(k)| = (2k−3)!!. Therefore, |RB(k+1)| = (2k−3)!! ·(2k−1) = (2(k+1)−3)!!
which proves the theorem.

Corollary 2.1.3. Under the uniform model, the probability P[T] of a tree T cho-
sen from the set RB(n) is

P[T] =
1

(2n− 3)!!
=

2n−1

n!cn−1
.

Proof. Since a phylogenetic tree T is chosen from RB(n) uniformly at random in
the uniform model, we have

P[T] =
1

|RB(n)| .

By Theorem (2.1.2) and Lemma (2.1.1), we get P[T] = 1
(2n−3)!!

= 2n−1

n!cn−1
.

2.2 The Yule model

Under the Yule model [18, 8], a random element of rRB(n) is generated in the
following way (cf. Figure 2.2):

• Two elements of X are selected uniformly at random and the two leaves of
a cherry are labeled by them. This cherry is denoted by T and its root has
rank 1.

• In each step, modify T in the following way, until T has n leaves:

– Let the number of leaves of T be k. Choose a pendant edge of T
uniformly at random and subdivide this edge to create a new interior
vertex with rank k.

– Add an edge from the new vertex to a new leaf.

– Select an element of X which is not in the label set of T uniformly at
random and label the new leaf by that element.

In other words, any pendant edge of a binary tree is equally likely to split and
give birth to two new pendant edges. The Yule model is therefore an explicit
model of the process of speciation. This makes it a very important model for
the distribution on trees. Since the labels are added uniformly at random, the

CHAPTER 2. STOCHASTIC MODELS ON TREES 12

21

2

1

1

3

11

1 2 1 2 1 2

4

3 4 3 4 3 4

3
2 22

3

T ′

Figure 2.2: Ranked tree evolving under the Yule model. Let X = {1, 2, 3, 4}.
Suppose the ranked tree T ′ with label set {1, 2, 4} evolved under the Yule model.
There are three possible pendant edges to attach the leaf with the remaining
label 3. Each ranked tree with label set {1, 2, 3, 4} has probability 24−1

4!(4−1)!
= 1/18

according to Theorem (2.2.1).

probability of a tree is invariant under a different leaf labelling (i.e. dependent
only on the ‘shape’ of the tree).

Note that under the Yule model, at each moment in time, the probability of a
speciation event is equal for all the current species. For different points in time,
these probabilities can be quite different though.

Under the Yule model, balanced trees are more likely than unbalanced trees
whereas under the uniform model, every tree is equally likely. Phylogenetic trees
constructed for most sets of species tend to be more balanced than predicted by
the uniform model, but less balanced than predicted by the Yule model. That can
be explained in the following way. In nature, we observe that a species, which has
not given birth to new species for a long time, is not very likely to give birth in the
future either. The Yule model does not take this fact into account. In [15], there
is an extension of the Yule model described which takes care of that biological
observation. One special case of the extended Yule model assumes, that unless a
species has undergone a speciation event within the last ǫ time interval, it will
never do so. It is shown in [15] that for sufficient small ǫ, this model induces the
uniform distribution. So the uniform model can also be interpreted as a process
of speciation.

The Yule and the uniform model can be put in a more general framework. In
[1], the beta-splitting model is introduced, where the Yule and the uniform model
are special cases. In [7], the alpha model is introduced and again, the Yule and
the uniform model are special cases. In both papers, a one parameter family of
probability models on binary phylogenetic trees is introduced which interpolates
continuously between the Yule and the uniform model.

These models are far more complicated than the uniform and Yule model
though, and since especially the Yule model is still a reasonably good model for
speciation, we will now focus on properties of the Yule model. Theorem (2.2.1)

CHAPTER 2. STOCHASTIC MODELS ON TREES 13

and Corollary (2.2.2) have been established in [5]. Here we provide an alternative
proof.

Theorem 2.2.1. The probability under the Yule model of generating a ranked
binary phylogenetic tree (T , r) ∈ rRB(n) is

P[T , r] =
2n−1

n!(n− 1)!
.

That is a uniform distribution over rRB(n).

Proof. We calculate the probability P[T , r] by looking at the generation of the
tree T . In the first step of the generation, we have n possibilities to choose the
label for the left leaf of the cherry and n−1 possibilities to choose the label for the
right leaf of the cherry. So the probability for a certain cherry, with distinguishing
between left and right vertex, is 1

n(n−1)
, since the selection of the labels is uniformly

at random. The root of the cherry has rank 1. When adding a new leaf to a tree
Tk with k leaves, we have k possibilities to choose a pendant vertex and n − k
possibilities to choose a label. So the probability of attaching a new labeled leaf to
a certain edge is 1

k(n−k)
since we choose the pendant edge and the label uniformly

at random. The new interior vertex has rank k. Let the new leaf be x. The leaf x
shall be on the right side of the new cherry. With the process above, we get two
equal trees precisely if every step of the tree generation process is equal for both
trees. While distinguishing between left and right child of an interior vertex, we
count each phylogenetic tree 2|V̊ | = 2n−1 times. Therefore, we get the following
probability for the ranked phylogenetic tree (T , r)

P[T , r] = 2n−1 1

n(n− 1)

1

2(n− 2)

1

3(n− 3)
. . .

1

(n− 1)1
=

2n−1

n!(n− 1)!

Since P[T , r] is independent of T and r, we have a uniform distribution.

Corollary 2.2.2. The number of ranked phylogenetic trees is

|rRB(n)| =
n!(n− 1)!

2n−1

Proof. Since P[T , r] = 2n−1

n!(n−1)!
is uniform under the Yule model and probabilities

add up to 1, we have n!(n−1)!
2n−1 different ranked phylogenetic trees.

Lemma 2.2.3. Let A be a finite set and for each a ∈ A, let B(a) be a finite set
and let Ω = {(a, b) : a ∈ A, b ∈ B(a)}. Let C = (C1, C2) be the (two-dimensional)
random variable which takes a value in Ω selected uniformly at random, i.e. P[C =
(a, b)] = 1/|Ω| for all (a, b) ∈ Ω. Then the conditional probability distribution
P[C = (a, b)|C1 = a] is uniform on B(a).

CHAPTER 2. STOCHASTIC MODELS ON TREES 14

Proof. We have

P[C = (a, b)|C1 = a] =
P[C = (a, b)]

P[C1 = a]
=

1

|Ω|P[C1 = a]

which is independent of b and therefore is uniform on B(a).

Theorem 2.2.4. Assume a given binary phylogenetic tree T with n leaves evolved
under the Yule model. Then the probability of a rank function r on a given tree T
is

P[r|T] =

∏

v∈V̊ λv

(n− 1)!

i.e. P[r|T] is uniform over all rankings r of T .

Proof. Consider the probability distribution induced by the Yule model on A =
RB(n). Let B(a) be the set of all rankings for a tree a ∈ A and let Ω = {(a, b) :
a ∈ A, b ∈ B(a)}. Let C = (C1, C2) be the (two-dimensional) random variable
which takes a value in Ω. The random variable C is uniform on the set Ω by
Theorem (2.2.1) and we can apply Lemma (2.2.3) to obtain

P[C = (T , r)|C1 = T] = P[r|T] =
1

|Ω|P[C1 = T]

which shows that P[r|T] is uniform over all rankings r of T . Since for a tree T ,

we have |V̊ |!Q
v∈V̊

λv
possible rankings by (1.3.8), and |V̊ | = n− 1 for binary trees, we

get

P[r|T] =
1
|V̊ |!Q

v∈V̊ λv

=

∏

v∈V̊ λv

(n− 1)!
.

The following Corollary was established in [4] using induction.

Corollary 2.2.5. The probability of a binary phylogenetic tree T ∈ RB(n) under
the Yule model is

P[T] =
2n−1

n!
∏

v∈V̊

λv

where λv is as defined in Lemma (1.3.8).

Proof. With Theorem (2.2.1) and Theorem (2.2.4) we get

P[T] =
P[T , r]
P[r|T]

=
2n−1

n!(n− 1)!
· (n− 1)!
∏

v∈V̊ λv
=

2n−1

n!
∏

v∈V̊ λv
.

CHAPTER 2. STOCHASTIC MODELS ON TREES 15

Example 2.2.6. Recall again the ranked tree (T , r) in Fig. 1.6. In that tree,
X = {a, b, . . . , k} and n = |X| = 11. Let PY [T , r] be the probability that the
ranked tree (T , r) evolved under the Yule model. With Theorem (2.2.1), we get

PY [T , r] =
2n−1

n!(n− 1)!
=

210

11! × 10!
≈ 0.71 × 10−11

With Corollary (2.2.5), we get

PY [T] =
2n−1

n!
∏

v∈V̊ λv

=
210

11! × 15 × 2 × 3 × 4 × 5 × 10
≈ 0.21 × 10−7

With Theorem (2.2.4), we get

PY [r|T] =

∏

v∈V̊ λv

(n− 1)!
=

15 × 2 × 3 × 4 × 5 × 10

10!
≈ 0.33 × 10−3

Let PU [T] be the probability that T evolved under the uniform model. Then,

PU [T] = 1/(2n− 3)!! ≈ 0.15 × 10−8

Since PY [T]
PU [T]

≈ 0.21
0.15

× 101 = 14 > 1, i.e. PY [T] > PU [T], the tree T (without a

ranking) is more likely to have evolved under the Yule model.

Remark 2.2.7. In Chapter 4, we want to calculate for a given phylogenetic tree
T the probability P[r(v) = i, r ∈ r(T)|T] for a v ∈ V̊ under the Yule model where
r(T) as defined in (1.3.7). By Theorem (2.2.4), the rankings for T all have the
same probability, and therefore

P[r(v) = i, r ∈ r(T)|T] =
|{r ∈ r(T) : r(v) = i}|

|r(T)| .

For the value |r(T)|, a formula is stated in Lemma 1.3.8. The value |{r ∈ r(T) :
r(v) = i}| will be calculated with the algorithm RankCount.

Remark 2.2.8. Another stochastic model on trees is the coalescent model. The
coalescent model starts with n species and goes back in time. At each event, two
species are selected uniformly at random and the two species are joint together,
the joint being a new species, the ancestor. So after n − 1 joining events, we are
left with one species, the root of the tree.

With i remaining species, we have
(

i
2

)

possibilities to choose two species for
the joint. The probability for a specific ranked tree is therefore

P[T , r] =
1

(

n
2

)(

n−1
2

)

. . .
(

2
2

) =
2n−1

n!(n− 1)!

which is equivalent to the Yule model.
Thus, the Yule model and the coalescent model are equivalent as long as edge

lengths are not considered.

CHAPTER 2. STOCHASTIC MODELS ON TREES 16

A B C

Tp

AA B C C B

T ′

1 T ′

2

B C A

T ′

3

u

v1 v2 v3

Figure 2.3: Vertex in Tp with three direct descendants. There are three possible
binary resolutions.

2.2.1 Did the primate tree evolve under Yule?

Consider the primate tree Tp in Appendix C. Tp has n = 218 leaves. We want to

calculate the value PY [Tp]
PU [Tp]

in order to decide whether to favor the Yule model over

the uniform model. Note that PU [T] = 2n−1

n!cn−1
and PY [T] = 2n−1

n!
Q

v∈V̊
λv

.

In Tp, there are six vertices (vertex labels 48, 63, 148, 153, 157 and 200) with
more than two direct descendants because the exact resolution is unclear. Five of
those vertices have three direct descendants.

For each vertex with three direct descendants, there are three possible binary
resolutions, see Fig. 2.3.

Let u be a vertex of Tp with three direct descandants. Let v be the additional
vertex for a binary resolution of vertex u. For the three different binary resolutions
of vertex u, we also write v1, v2, v3 instead of v, see Fig. 2.3.

Let T ′ be a binary resolution of Tp. Let T ′
i , i = 1, 2, 3, be a binary resolution

of Tp where vertex u is resolved as displayed in Fig. 2.3. Let λv(T ′) be the number

CHAPTER 2. STOCHASTIC MODELS ON TREES 17

of descendants of v in resolution T ′. We want to estimate λ̃v.

λ̃v =

∑

T ′

λv(T ′)P[T ′]

∑

T ′

P[T ′]

=

3
∑

i=1

∑

T ′
i

λvi
P[T ′

i]

3
∑

i=1

∑

T ′
i

P[T ′
i]

=

3
∑

i=1

∑

T ′
i

λvi

2n

n!
∏

w∈V̊T ′
i

λw

3
∑

i=1

∑

T ′
i

2n

n!
∏

w∈V̊T ′
i

λw

=

3
∑

i=1

∑

T ′
i

2n

n!
∏

w∈{V̊T ′
i
\vi}

λw

3
∑

i=1

1

λvi

∑

T ′
i

2n

n!
∏

w∈{V̊T ′
i
\vi}

λw

Note that the inner sum is constant for all i, so we get

λ̃v =

∑

T ′
1

2n

n!
∏

w∈{V̊T ′
1
\v1}

λw

3
∑

i=1

1

∑

T ′
1

2n

n!
∏

w∈{V̊T ′
1
\v1}

λw

3
∑

i=1

1

λvi

=
3

3
∑

i=1

1

λvi

With this formula, we estimate the values λ̃v for the new vertex v in the binary
resolution of vertex 48, 63, 153, 157 and 200.

CHAPTER 2. STOCHASTIC MODELS ON TREES 18

w2

v2

w1

t1 t2

v1

Figure 2.4: Vertex in Tp with four leaf-descendants.

The interior vertex with label 148 has four leaves as direct descendants. There
are two different shapes t1 and t2 for a binary tree with four leaves, see Fig. 2.4.
In t1, the new interior vertices v1 and w1 have the value λv1 = 1 and λw1 = 1. In
t2, the new vertex v2 has λv2 = 2, the new vertex w2 has λw2 = 1. We set λ̃w = 1
in Tp since λw1 = 1 and λw2 = 1. We want to estimate λ̃v, the value λ̃v shall be
the weighted sum of the λvi

,

λ̃v =
PY [t1]λv1 + PY [t2]λv2

PY [t1] + PY [t2]
= 1/3 · 1 + 2/3 · 2 = 5/3.

With those estimated values for λ̃v, we now estimate PY [T]
PU [T]

. Let Ti, i = 1, . . . , m,
be the binary resolutions of T . We get

PY [T]

PU [T]
=

∑

i PY [Ti]
∑

i PU [Ti]
≈ cn−1
∏

v∈V̊T
λv ·

∏

λ̃v

≈ 0.25 × 1014

which favors the Yule model over the uniform model. Note that without the esti-
mates for λ̃v, we would have to calculate PY [Ti] and PU [Ti] for the 35 × 15 linear
resolutions of T .

In Section 4.3, we will assume that the primate tree Tp evolved under the Yule
model.

2.3 Yule model vs. uniform model

As we have seen in Corollary (2.1.3), the probability of generating a given tree T
with n leaves under the uniform model is

PU [T] =
2n−1

n!cn−1
.

By Corollary (2.2.5), the probability of generating a given tree T under the Yule
model is

PY [T] =
2n−1

n!
∏

v∈V̊ λv

.

CHAPTER 2. STOCHASTIC MODELS ON TREES 19

The fraction of the two probabilities, the ‘Bayes factor’ [6], is

PY [T]

PU [T]
=

cn−1
∏

v∈V̊ λv

.

Given a tree T , we want to know if it evolved under the Yule or the uniform
model. The fraction PY [T]

PU [T]
being bigger than 1 suggests favoring the Yule model, the

fraction being smaller than 1 suggests favoring the uniform model. So ln
(

PY [T]
PU [T]

)

being bigger than 0 suggests favoring the Yule model, the logarithm being smaller
than 0 suggests favoring the uniform model. In the following, we want to calculate

the expected value EY [ln
(

PY [T]
PU [T]

)

], given the tree T evolved under the Yule model.

We will see that EY

[

ln
(

PY [T]
PU [T]

)]

is the ‘Kullbach-Liebler’ distance (defined below)

between PY and PU , and show that it goes to infinity with increasing n. Further,

EU

[

ln
(

PU [T]
PY [T]

)]

goes to infinity with increasing n. Therefore, for n large enough,

the value ln
(

PY [T]
PU [T]

)

is relevant to the question of testing whether a tree evolved

under the Yule or uniform model. In Section 3.4, we will actually test the Yule
model against the uniform model.

2.3.1 The Kullbach-Liebler distance

Definition 2.3.1. Let X be a discrete random variable which takes va-
lues in the finite set Ω = {w1, w2, . . . , wn} with associated probabilities
{p(ω1), p(ω2), . . . , p(ωn)}. We call this probability distribution p. The information
content of an event ω ∈ Ω is

I(ω) = − ln p(ω)

The entropy Jp of the probability distribution p is defined as

Jp = E[I(X)] = −
∑

ω∈Ω

p(ω) ln p(ω)

In [9], Chapter 7, the entropy JY for the Yule distribution over RB(n) and the
entropy JU for the uniform distribution over RB(n) are calculated. Recall that

for two functions f(n) and g(n), we write f(n) ∼ g(n) precisely if limn→∞
f(n)
g(n)

= 1.

For JY , one has (from [9])

JY = n
n−1
∑

k=2

g(k)

k + 1
(2.1)

where g(k) = 1−k
k

ln k−1
2

+ ln k
2

+ ln(k + 1) − 1
k

ln k!. Asymptotically, one has

JY − n ln(n) + c1n ∼ −1

2
ln(n) (2.2)

CHAPTER 2. STOCHASTIC MODELS ON TREES 20

where c1 = ln(2) ln(200
49e

) + ln(9) ln(7
10

) + 2Li2(
7
4
) − 2Li2(

5
2
) − 1 ≈ 0.493 and

Li2(x) =
∫ x

1
ln t
1−t
dt.

For JU , one has (again from [9])

JU = ln |RB(n)| = ln(2n− 3)!! (2.3)

and asymptotically
JU − n ln(n) + c2n ∼ − ln(n) (2.4)

where c2 = 1 − ln(2) ≈ 0.307.

Definition 2.3.2. Let p and q be probability distributions over a finite set Ω.
The Kullbach-Liebler distance between p and q is defined as

dKL(p, q) =
∑

ω∈Ω

p(ω) ln
p(ω)

q(ω)
.

Remark 2.3.3. The Kullbach-Liebler distance is positive definite, i.e. dKL(p, q) ≥
0 with dKL(p, q) = 0 iff p = q. Notice that dKL(p, q) = ∞ iff there exists a
u ∈ Ω with p(u) > 0, q(u) = 0. For p = PY and q = PU , both dKL(p, q) and
dKL(q, p) are finite, since PY [T] > 0 and PU [T] > 0 for all T ∈ RB(n). Note
that the Kullbach-Liebler distance between p and q is not symmetric, i.e. we have
dKL(p, q) 6= dKL(q, p) in general.

Remark 2.3.4. Note that the Kullbach-Liebler distance between the probability
distributions p and q over the set Ω equals the following expected value

dKL(p, q) =
∑

ω∈Ω

p(ω) ln
p(ω)

q(ω)
= Ep[ln

p

q
].

Lemma 2.3.5. Let Ω be a finite set. Let p be any probability distribution over Ω,
and let q be the uniform distribution over Ω. Then

dKL(p, q) = Jq − Jp.

Proof. By assumption, q(ω) = 1/|Ω| for all ω ∈ Ω. From the definition of dKL(p, q),

CHAPTER 2. STOCHASTIC MODELS ON TREES 21

it follows that

dKL(p, q) =
∑

ω∈Ω

p(ω) ln
p(ω)

q(ω)

=
∑

ω∈Ω

p(ω) ln p(ω) −
∑

ω∈Ω

p(ω) ln q(ω)

= −Jp −
∑

ω∈Ω

p(ω) ln
1

|Ω|

= −Jp −
(

ln
1

|Ω|

)

∑

ω∈Ω

p(ω)

= −Jp − ln
1

|Ω|

= −Jp −
∑

ω∈Ω

1

|Ω| ln
1

|Ω|
= Jq − Jp.

2.3.2 Kullbach-Liebler distance between PY and PU

In the following, we calculate the Kullbach-Liebler distance between the Yule
distribution PY and the uniform distribution PU over RB(n).

Theorem 2.3.6. Let PY be the Yule distribution and PU be the uniform distri-
bution over RB(n). The Kullbach-Liebler-distance between those two distributions
is

dKL(PY ,PU) = ln(2n− 3)!! − n

n−1
∑

k=2

g(k)

k + 1

where g(k) is again defined as g(k) = 1−k
k

ln k−1
2

+ ln k
2

+ ln(k + 1) − 1
k

ln k!.
Asymptotically, we have

dKL(PY ,PU) − cY n ∼ −1/2 ln(n)

with cY ≈ 0.186.

Proof. From Lemma (2.3.5), we have dKL(PY ,PU) = JU − JY . With Equations

(2.1) and (2.3), we get dKL(PY ,PU) = ln(2n−3)!!−n
∑n−1

k=2
g(k)
k+1

. For the asymptotic
behavior, we get with Equation (2.2) and (2.4)

JU − n ln(n) + c2n− (JY − n ln(n) + c1n) ∼ − ln(n) + 1/2 ln(n)

JU − JY − (c1 − c2)n ∼ −1/2 ln(n)

JU − JY − cY n ∼ −1/2 ln(n)

where cY = c1 − c2 ≈ 0.186.

CHAPTER 2. STOCHASTIC MODELS ON TREES 22

Corollary 2.3.7. For the expected value EY [ln PY

PU
], we get

EY [ln
PY

PU
] − cY n ∼ −1/2 ln(n)

So EY [ln PY

PU
] → ∞ for n→ ∞.

Proof. With Theorem (2.3.6), we get

EY [ln
PY

PU

] − cY n =
∑

T ∈RB(n)

PY [T] ln
PY [T]

PU [T]
− cY n

= dKL(PY ,PU) − cY n

∼ −1/2 ln(n)

That implies dKL(PY ,PU) ∼ cY n and since cY > 0, we have EY [ln PY

PU
] → ∞ for

n→ ∞.

2.3.3 Kullbach-Liebler distance between PU and PY

In the following, we calculate the Kullbach-Liebler distance between the uniform
distribution PU and the Yule distribution PY over RB(n).

Lemma 2.3.8. The central binomial coefficient
(

2m
m

)

can be written as

(

2m

m

)

= 22m

m
∏

j=1

2j − 1

2j
.

Proof.

(

2m

m

)

=
(2m)!

m!m!
=

22m · 2m · (2m− 1) · (2m− 2) . . . 3 · 2 · 1
2m · 2m · 2(m− 1) · 2(m− 1) . . . 4 · 4 · 2 · 2

= 22m

m−1
∏

j=0

2m− 2j − 1

2(m− j)

= 22m
m
∏

j=1

2j − 1

2j
.

Lemma 2.3.9. For the set RB(n), we have

∑

T ∈RB(n)

∑

v∈V̊T

lnλv =

n−1
∑

i=1

ln i

(

n

i+ 1

)

|RB(i+ 1)||RB(n− i)|

where λv is defined as in Lemma (1.3.8).

CHAPTER 2. STOCHASTIC MODELS ON TREES 23

ρ

x1 x2

xi+2

v
xn−1 xn

some tree structure

xi+1xi

Figure 2.5: Counting the pairs (T , v) in Lemma (2.3.9). The variables
(x1, . . . , xi+1) take any distinct values from X ′, the variables (xi+2, . . . , xn−1, xn)
take any distinct values from X ′′.

Proof. We have λv ∈ {1, 2, . . . , (n − 1)} since a binary tree T with n leaves has
n− 1 interior vertices. We rewrite the double sum as

∑

T ∈RB(n)

∑

v∈V̊T

lnλv =
n−1
∑

i=1

ln i · |{(T , v) : T ∈ RB(n), v ∈ V̊T , λv = i}|

To calculate |{(T , v) : T ∈ RB(n), v ∈ V̊T , λv = i}|, we have to count all the pairs
(T , v) with v ∈ V̊T having exactly i interior nodes as descendants. For a binary
tree, this is equivalent to v having i+ 1 leaves as descendants (cf. Figure 2.5). So
for an interior vertex v, we choose a subset X ′ of X consisting of i+ 1 elements,
which shall label the leaf descendants of v. We have

(

n
i+1

)

possibilities to choose
those i+ 1 elements. There are |RB(i+ 1)| possibilities to build up a binary tree
with leaf set X ′ and root v. Let X ′′ = (X \X ′) ∪ v, so |X ′′| = n − i. For the set
X ′′, there are |RB(n− i)| possible binary trees. Combining all those possibilities
yields

|{T , v : T ∈ RB(n), v ∈ V̊T , λv = i}| =

(

n

i+ 1

)

|RB(i+ 1)||RB(n− i)|

which proves the Lemma.

Theorem 2.3.10. For the distance dKL(PU ,PY), it holds that

dKL(PU ,PY) = nSn − ln cn−1

where Sn =
∑n−1

i=2

[

ln i
i+1

∏n−i−1
j=1

1− 1
2j

1− 1
2(j+i)

]

and cn are the Catalan numbers as defined

in Lemma (2.1.1).

Proof. By definition of the Kullbach-Liebler distance and with Corollary (2.1.3)

CHAPTER 2. STOCHASTIC MODELS ON TREES 24

and (2.2.5) and setting N = |RB(n)|, we have,

dKL(PU ,PY) =
∑

T ∈RB(n)

PU [T] ln
PU [T]

PY [T]

=
∑

T ∈RB(n)

2n−1

n!cn−1
ln

2n−1

n!cn−1

2n−1

n!
Q

v∈V̊T
λv

=
∑

T ∈RB(n)

1

N
ln

[

∏

v∈V̊T
λv

cn−1

]

=
1

N

∑

T ∈RB(n)

∑

v∈V̊T

lnλv

− ln cn−1

=
1

N
s− ln cn−1 (2.5)

where s =
∑

T ∈RB(n)

∑

v∈V̊T
lnλv. With Lemma (2.3.9) and Lemma(2.1.1), we get

s =
∑

T ∈RB(n)

∑

v∈V̊T

lnλv

=

n−1
∑

i=2

ln i

(

n

i+ 1

)

|RB(i+ 1)||RB(n− i)|

=

n−1
∑

i=2

ln i

(

n

i+ 1

)

ci(i+ 1)!

2i
· cn−i−1(n− i)!

2n−i−1

=
n!

2n−1

n−1
∑

i=2

ln i
(i+ 1)!(n− i)!

(i+ 1)!(n− i− 1)!
cicn−i−1

=
N

cn−1

n−1
∑

i=2

ln i · (n− i) · cicn−i−1

=
Nn

(

2(n−1)
n−1

)

n−1
∑

i=2

ln i

i+ 1

(

2i

i

)(

2(n− i− 1)

n− i− 1

)

CHAPTER 2. STOCHASTIC MODELS ON TREES 25

With Lemma (2.3.8) we get

s =
Nn

22(n−1)
∏n−1

j=1
2j−1
2j

n−1
∑

i=2

[

ln i

i+ 1
22i

i
∏

j=1

2j − 1

2j
22(n−i−1)

n−i−1
∏

j=1

2j − 1

2j

]

= Nn
n−1
∑

i=2

[

ln i

i+ 1

n−1
∏

j=1

2j

2j − 1

i
∏

j=1

2j − 1

2j

n−i−1
∏

j=1

2j − 1

2j

]

= Nn
n−1
∑

i=2

[

ln i

i+ 1

n−1
∏

j=i+1

2j

2j − 1

n−i−1
∏

j=1

2j − 1

2j

]

= Nn

n−1
∑

i=2

[

ln i

i+ 1

n−i−1
∏

j=1

2(j + i)

2(j + i) − 1

n−i−1
∏

j=1

2j − 1

2j

]

= Nn

n−1
∑

i=2

[

ln i

i+ 1

n−i−1
∏

j=1

(j + i)(2j − 1)

(2(j + i) − 1)j

]

= Nn

n−1
∑

i=2

[

ln i

i+ 1

n−i−1
∏

j=1

2j − 1

2j − 2j
2(j+i)

]

= Nn
n−1
∑

i=2

[

ln i

i+ 1

n−i−1
∏

j=1

1 − 1
2j

1 − 1
2(j+i)

]

Combining this result with Equation (2.5) establishes the theorem.

Lemma 2.3.11. The asymptotic behavior of the n-th Catalan number cn is

cn ∼ n ln 4

Proof. With the Stirling formula, lnn! ∼ n lnn− n (see [3]),we get

ln cn = − ln(n+ 1) + ln

(

2n

n

)

= − ln(n+ 1) + ln(2n)! − 2 lnn!

∼ − ln(n+ 1) + 2n ln 2n− 2n− 2n lnn + 2n

= − ln(n+ 1) + 2n ln 2

∼ n ln 4

Theorem 2.3.12. The Kullbach-Liebler distance between PU and PY is asympto-
tically

dKL(PU ,PY) ∼ cUn

where cU is a positive constant.

CHAPTER 2. STOCHASTIC MODELS ON TREES 26

Proof. From Theorem (2.3.10), we have

dKL(PU ,PY) = nSn − ln cn−1

with Sn =
∑n−1

i=2

[

ln i
i+1

∏n−i−1
j=1

1− 1
2j

1− 1
2(j+i)

]

and cn being the n-th Catalan number. By

Lemma (2.3.11), it holds cn−1 ∼ n ln 4. In Section 2.3.4, we show that

ln 4 < 1.44 < Sn < S ′ +N

for all n ≥ 200 with S ′ and N being some fixed constants. This yields to

dKL(PU ,PY) = nSn − ln cn−1 ∼ nSn − n ln 4 ∼ cUn

with cU being a positive constant.

Corollary 2.3.13. We obtain

EU [ln
PU

PY
] → ∞ for n→ ∞

since EU [ln PU

PY
] = dKL(PU ,PY) by Remark (2.3.4).

2.3.4 Calculating Sn

In Theorem (2.3.10), we obtain the following formula for the Kullbach-Liebler
distance between PU and PY :

dKL(PU ,PY) = nSn − ln cn−1

with Sn =
∑n−1

i=2

[

ln i
i+1

· an,i

]

and an,i =
∏n−i−1

j=1

1− 1
2j

1− 1
2(j+i)

. In the following, we will

calculate an upper and a lower bound for Sn. Note that {an,i, n ∈ N} is monotone
decreasing for fixed i and an,i > 0. So limn→∞ an,i exists.

ai := lim
n→∞

an,i =

∞
∏

j=1

1 − 1
2j

1 − 1
2(j+i)

=

i
∏

j=1

(

1 − 1

2j

)

> 0

S ′
n :=

n−1
∑

i=2

[

ln i

i+ 1
· ai

]

With the property

ln(1 − x) = −x−
∞
∑

i=2

xi

i
≤ −x

for 0 ≤ x < 1 (see [19]) and the property

i
∑

j=1

1

j
≥
∫ i

1

1

x
dx = ln(i)

CHAPTER 2. STOCHASTIC MODELS ON TREES 27

we get the following:

ln ai =

i
∑

j=1

ln(1 − 1

2j
)

≤ −1

2

i
∑

j=1

1

j

≤ −1

2
ln(i)

So we have

ai ≤
1√
i

In the following, we show that S ′
n converges.

S ′
n =

n−1
∑

i=2

[

ln i

i+ 1
· ai

]

≤
n−1
∑

i=2

ln i

i3/2

Since
∑∞

i=2
ln i
i3/2 converges, it follows that {S ′

n, n ∈ N} is bounded. The sequence

{S ′
n, n ∈ N} is monotone increasing since ln i

i+1
· ai > 0 for all i ∈ N, i ≥ 2. So

limn→∞ S ′
n exists and we define

lim
n→∞

S ′
n := S ′.

Now we calculate an upper and a lower bound for Sn. Since ai,n → ai, there exists
an N ∈ N s.t. ai,n < (1 + 1/S ′)ai for all n > N .

Sn =
n−1
∑

i=2

[

ln i

i+ 1
· an,i

]

< (N−1)+
n−1
∑

i=N+1

[

ln i

i+ 1
· (1 + 1/S ′)ai

]

< (N−1)+(1+1/S ′)S ′
n

Since S ′
n is monotone increasing, we get

Sn < (N − 1) + (1 + 1/S ′)S ′
n < (N − 1) + (1 + 1/S ′)S ′

which yields to
Sn < S ′ +N.

Since ai,n > ai, we have

Sn =

n−1
∑

i=2

[

ln i

i+ 1
· an,i

]

>

n−1
∑

i=2

[

ln i

i+ 1
· ai

]

= S ′
n

So we get Sn > S ′
n for all n. With Maple, I calculated S ′

200 ≈ 1.44 > ln 4. Overall,
we have

ln 4 < 1.44 < Sn < S ′ +N

for all n ≥ 200.

Chapter 3

Trees and Martingales

In this chapter, we have a closer look at the process of the tree generation. We will
see that the tree generation is a certain stochastic process, a martingale. Under
the uniform model, the martingale fulfills the conditions for the Azuma inequality.

We make use of this property at the end of the chapter. We test the Yule mo-
del against the uniform model with the log-likelihood-ratio test. With the Azuma
inequality, we find an analytical bound for the power of the test. Since the algo-
rithms in Chapter 4 work in particular for trees under the Yule model, it will be
useful to have a test for deciding whether a tree evolved under Yule.

First, we provide some basic definitions and properties on conditional proba-
bility and martingales.

3.1 Conditional probability and martingales

Definition 3.1.1. Let X (resp. Y) be a discrete random variable which takes
values {xi, i ∈ N} (resp. {yi, i ∈ N}). The conditional expectation

Z = E[X|Y] =
∑

j

xjP[X = xj |Y]

is a random variable. Z takes values

zi =
∑

j

xjP[X = xj |Y = yi]

on the set {Y = yi} with probability P[Z = zi] = P[Y = yi].

The two equations in the next Lemma are stated in [13] with a brief verification.
We will give a full proof.

Lemma 3.1.2. Let X (resp. Y , U) be a discrete random variable which takes
values {xi, i ∈ N} (resp. {yi, i ∈ N}, {ui, i ∈ N}). Further, assume E[|X|] < ∞.
Then, we get the following two equalities:

E[X] = E[E[X|Y]] (3.1)

E[X|U] = E[E[X|Y, U]|U] (3.2)

28

CHAPTER 3. TREES AND MARTINGALES 29

Proof. Let Z = E[X|Y]. We obtain Equation (3.1) from

E[E[X|Y]] =
∑

i

ziP[Z = zi]

=
∑

i

∑

j

xjP[X = xj |Y = yi]P[Y = yi]

=
∑

i

∑

j

xjP[X = xj , Y = yi] (∗)

=
∑

j

∑

i

xjP[X = xj , Y = yi]

=
∑

j

xjP[X = xj]

= E[X]

The summation order in (∗) can be changed since E[|X|] <∞.
It is left to verify (3.2). Let W = E[X|Y, U]. The random variable W takes a

value
wj1,j2 =

∑

k

xkP[X = xk|Y = yj1, U = uj2]

with probability P[Y = yj1, U = uj2] where j1 ∈ N and j2 ∈ N. Let Z = E[W |U].
The random variable Z takes a value

zi = E[W |U = ui]

with probability P[U = ui] where i ∈ N. We transform zi to

zi = E[W |U = ui]

=
∑

j1,j2

wj1,j2P[W = wj1,j2|U = ui]

=
∑

j1,j2

∑

k

xkP[X = xk|Y = yj1, U = uj2]P[Y = yj1, U = uj2|U = ui]

=
∑

j1

∑

k

xkP[X = xk|Y = yj1, U = ui]P[Y = yj1|U = ui]

=
∑

j1

∑

k

xkP[X = xk, Y = yj1, U = ui]/P[U = ui] (∗∗)

=
∑

k

∑

j1

xkP[X = xk, Y = yj1, U = ui]/P[U = ui]

=
∑

k

xkP[X = xk, U = ui]/P[U = ui]

=
∑

k

xkP[X = xk|U = ui]

= E[X|U = ui]

The summation order in (∗∗) can be changed since E[|X|] <∞. So we obtain

E[E[X|Y, U]|U = ui] = E[X|U = ui]

CHAPTER 3. TREES AND MARTINGALES 30

for all i ∈ N, i.e. E[E[X|Y, U]|U] = E[X|U].

Definition 3.1.3. A stochastic process {Zn, n ∈ N} is called a martingale if

E[|Zn|] <∞ ∀n ∈ N

and
E[Zn+1|Z1, Z2, . . . , Zn] = Zn. (3.3)

Remark 3.1.4. Taking expectations of (3.3) with Equation (3.1) gives

E[Zn+1] = E[Zn].

The results of Lemma (3.1.5) and Theorem (3.1.6) are already stated in [13].
Again, the following proofs are more detailed.

Lemma 3.1.5. Let {Zn, n ∈ N} be a discrete stochastic process with E[|Zn|] <∞.
Let Y be a vector of discrete random variables. If

E[Zn+1|Z1, . . . , Zn,Y] = Zn

then {Zn} is a martingale.

Proof. It holds E[Zn|Z1, . . . , Zn] = Zn since E[Zn|Z1 = z1, . . . , Zn = zn] = zn.
With that property and with Equation (3.2), we get

E[Zn+1|Z1, . . . , Zn] = E[E[Zn+1|Z1, . . . , Zn,Y]|Z1, . . . , Zn]

= E[Zn|Z1, . . . , Zn]

= Zn.

Theorem 3.1.6. Let X, Y1, Y2, . . . be discrete random variables such that E[|X|] <
∞ and let

Zn = E[X|Y1, . . . Yn]

for all n ∈ N. Then {Zn, n ∈ N} is a martingale.

Proof. With Equation (3.1), we get E[|Zn|] = E[|E[X|Y1, . . . , Yn]|] ≤
E[E[|X||Y1, . . . , Yn]] = E[|X|] <∞. To check the second condition for a martinga-
le, it is, by Lemma (3.1.5), sufficient to show that E[Zn+1|Z1, . . . Zn, Y1, . . . , Yn] =
Zn. We have

E[Zn+1|Z1, . . . Zn, Y1, . . . , Yn] = E[Zn+1|Y1, . . . , Yn]

= E[E[X|Y1, . . . , Yn+1]|Y1, . . . , Yn]

= E[X|Y1, . . . , Yn] (from (3.2))

= Zn

which proves the theorem.

CHAPTER 3. TREES AND MARTINGALES 31

3.1.1 The Azuma inequality

Let {Zi, i ∈ N} be a martingale. If the random varialbes Zi do not change too fast
over time, Azuma’s inequality gives us some bounds on their probabilities.

The following theorem, the Azuma inequality, is stated in [13] with a detailed
proof.

Theorem 3.1.7 (Azuma’s Inequality). Let {Zi, i ∈ N} be a martingale with
E[Zi] = µ. Let Z0 = µ and suppose that for nonnegative constants αj, βj, j ≥ 1,

−αj ≤ Zj − Zj−1 ≤ βj .

Then for any i ≥ 0, a > 0:

(i) P[Zi − µ ≥ a] ≤ exp{− 2a2

∑i
j=1(αj + βj)2

}

(ii) P[Zi − µ ≤ −a] ≤ exp{− 2a2

∑i
j=1(αj + βj)2

}

The following corollary will be very useful for the next section.

Corollary 3.1.8. Let {Zi, i ∈ N} be a martingale with E[Zi] = µ. Let Z0 = µ and
suppose that for a nonnegative constant C , j ≥ 1,

|Zj − Zj−1| ≤ C

Then for any i ∈ N:

P[Zi ≤ 0] ≤ exp{− µ2

2iC 2
}

Proof. Let αi = βi = C for all i ∈ N and a = µ. Then inequality (ii) in Theorem
(3.1.7) establishes the corollary.

3.2 A martingale process on trees under the uni-

form model

In this section, we assume that a tree T ∈ RB(n) evolved under the uniform
model. Consider the following setting:

• Let hU : RB(n) → R with hU(T) = ln PU [T]
PY [T]

= ln
Q

v∈V̊T
λv

cn−1
.

• For j ∈ {1, . . . , n}, let Yj : RB(n) → RB(j) with Yj(T) = T |{1...j}.

• For j > n, let Yj : RB(n) → RB(n) with Yj(T) = T .

• Let Zi = E[hU |Y1, . . . Yi].

CHAPTER 3. TREES AND MARTINGALES 32

We have E[|hU(T)|] < ∞ since T is chosen from the finite set RB(n) and
maxT ∈RB(n) |hU(T)| < ∞. With Theorem (3.1.6), we obtain that {Zi, i ∈ N}
is a martingale. Note that

Zi = E[hU |Y1, . . . Yi] = E[hU |Yi].

For all i ≥ n, we have

Zi = E[hU(T)|Yi = T] = hU (T).

The expected value µU of Zn is, with Remark (2.3.4),

µU = E[Zn] = E[hU(T)] = dKL(PU ,PY).

Theorem (2.3.12) shows
dKL(PU ,PY) ∼ cUn

which means
µU ∼ cUn.

In the following, we want to apply Azuma’s inequality to the tree martingale
{Zi, i ∈ N}. First, set Z0 := E[Zn] = dKL(PU ,PY). To apply Azuma’s inequality,
we have to verify |Zi − Zi−1| ≤ CU for all i ∈ N.

• For i = 1, note that by definiton, we have

Z1 = E[hU (T)|Y1] = E[hU (T)] = dKL(PU ,PY) = Z0

so |Z1 − Z0| = 0.

• For i ≥ n, note that Zi = E[hU (T)|T] = hU(T). So |Zi − Zi−1| = 0 for all
i > n.

• Section (3.2.1) will establish |Zi − Zi−1| ≤ lnn for 2 ≤ i ≤ n.

With Corollary (3.1.8), we then have

P[Zn ≤ 0] ≤ exp{− µ2
U

2n(lnn)2
}

∼ exp{− c2Un

2(lnn)2
} → 0 for n→ ∞

Note that Zn = hU(T) = ln PU [T]
PY [T]

. So for a tree T generated under the uniform

model, the probability that PU [T] is smaller than PY [T] tends to 0 quickly with

n as the number of leaves tends to ∞. Therefore the Bayes factor PU [T]
PY [T]

is a very
good indicator as to whether a ‘big’ tree evolved under the uniform model or not.

CHAPTER 3. TREES AND MARTINGALES 33

3.2.1 Calculating a bound in the Azuma inequality

Let {Zi, i ∈ N} be the tree martingale introduced above. We can transform Zi

into

Zi = E[hU |Yi]

=
∑

T ∈RB(n)

hU(T)P[T |Yi]

=
∑

T ∈RB(n)

ln

∏

v∈V̊T
λv

cn−1
P[T |Yi]

=
∑

T ∈RB(n)

∑

v∈V̊T

lnλv − ln cn−1

P[T |Yi]

=

∑

T ∈RB(n)

∑

v∈V̊T

lnλv

P[T |Yi]

− ln cn−1

The random variable Zi therefore takes values

zi,t =

∑

T ∈RB(n)

∑

v∈V̊T

lnλv

P[T |Yi = t]

− ln cn−1

for all t ∈ RB(i).
Assuming that T was generated under the uniform model, i.e.

P[T |Yi = t] =
P[T]

P[t]
=

|RB(i)|
|RB(n)|

we get, for t ∈ RB(i),

zi,t =

∑

T ∈RB(n)
T |{1,...,i}=t

∑

v∈V̊T

lnλv

|RB(i)|
|RB(n)|

− ln cn−1

=
|RB(i)|
|RB(n)|

∑

T ∈RB(n)
T |{1,...,i}=t

∑

v∈V̊T

lnλv

− ln cn−1.

Let T be a binary phylogenetic tree. For the subtree T |{1,...,i}, we will write T (i).
The set of all binary phylogenetic trees with leave set {1, . . . , i−1, i+1, . . . n} shall
be RB(n, i). In the following, we will calculate an upper bound for |Zi − Zi−1|.
Note that

|Zi − Zi−1| = max
t∈RB(i)

|zi,t − z(i−1),t(i−1)|.

CHAPTER 3. TREES AND MARTINGALES 34

The difference |zi,t − z(i−1),t(i−1)| is

∆i,t = |zi,t − z(i−1),t(i−1)|

=

∣

∣

∣

∣

∣

∣

∣

∣

|RB(i)|
|RB(n)|

∑

T ∈RB(n)
T (i)=t

∑

v∈V̊T

lnλv −
|RB(i− 1)|
|RB(n)|

∑

T ∈RB(n)
T (i−1)=t(i−1)

∑

v∈V̊T

lnλv

∣

∣

∣

∣

∣

∣

∣

∣

=
|RB(i− 1)|
|RB(n)|

∣

∣

∣

∣

∣

∣

∣

∣

(2i− 3)
∑

T ∈RB(n)
T (i)=t

∑

v∈V̊T

lnλv −
∑

t′∈RB(i)
t′(i−1)=t(i−1)

∑

T ∈RB(n)
T (i)=t′

∑

v∈V̊T

lnλv

∣

∣

∣

∣

∣

∣

∣

∣

=
|RB(i− 1)|
|RB(n)|

∣

∣

∣

∣

∣

∣

∣

∣

∑

t′∈RB(i)
t′(i−1)=t(i−1)

∑

T ∈RB(n)
T (i)=t

∑

v∈V̊T

lnλv −
∑

t′∈RB(i)
t′(i−1)=t(i−1)

∑

T ∈RB(n)
T (i)=t′

∑

v∈V̊T

lnλv

∣

∣

∣

∣

∣

∣

∣

∣

=
|RB(i− 1)|
|RB(n)|

∣

∣

∣

∣

∣

∣

∣

∣

∑

t′∈RB(i)
t′(i−1)=t(i−1)

∑

T ∈RB(n)
T (i)=t

∑

v∈V̊T

lnλv −
∑

T ∈RB(n)
T (i)=t′

∑

v∈V̊T

lnλv

∣

∣

∣

∣

∣

∣

∣

∣

=
|RB(i− 1)|
|RB(n)|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

t′∈RB(i)
t′(i−1)=t(i−1)

∑

T ′∈RB(n,i)
T ′(i−1)=t(i−1)

∑

T ∈RB(n)
T \i=T ′

T (i)=t

∑

v∈V̊T

lnλv −
∑

T ∈RB(n)
T \i=T ′

T (i)=t′

∑

v∈V̊T

lnλv

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ |RB(i− 1)|
|RB(n)|

∑

t′∈RB(i)
t′(i−1)=t(i−1)

∑

T ′∈RB(n,i)
T ′(i−1)=t(i−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

T ∈RB(n)
T \i=T ′

T (i)=t

∑

v∈V̊T

lnλv −
∑

T ∈RB(n)
T \i=T ′

T (i)=t′

∑

v∈V̊T

lnλv

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Define

s :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

T ∈RB(n)
T \i=T ′

T (i)=t

∑

v∈V̊T

lnλv −
∑

T ∈RB(n)
T \i=T ′

T (i)=t′

∑

v∈V̊T

lnλv

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Consider the tree T in Fig. 3.1. Moving leaf i to a new position will change λv of
a vertex v, if v is on the path P from vi to v′i. The change of λv, when v <T vi, is
λnew

v = λv − 1. For the other vertices on that path, we have λnew
v = λv + 1. So we

CHAPTER 3. TREES AND MARTINGALES 35

ii

ρ

v′i

vi

path P

Figure 3.1: Tree T where leaf i is moved

get, with the property lnx− ln y = ln x/y,

s =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

T ∈RB(n)
T \i=T ′

T (i)=t

∑

v∈V̊T \vi
v∈P

v<T vi

(

ln
λv

λv − 1

)

+
∑

v∈V̊T \vi
v∈P

v<T v′i

(

ln
λv

λv + 1

)

+ lnλvi
− lnλ′vi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

T ∈RB(n)
T \i=T ′

T (i)=t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

v∈V̊T \vi
v∈P

v<T vi

(

ln
λv

λv − 1

)

+
∑

v∈V̊T \vi
v∈P

v<T v′i

(

ln
λv

λv + 1

)

+ lnλvi
− lnλ′vi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

T ∈RB(n)
T \i=T ′

T (i)=t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

v∈V̊T \vi
v∈P

v<T vi

(

ln
λv

λv − 1

)

+
∑

v∈V̊T \vi
v∈P

v<T v′i

(

ln
λv

λv + 1

)

+ s′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

with

s′ =

∑λvi
i=λ′

vi
+1 ln i

i−1
if λ′vi

≤ λvi

∑λ′
vi

i=λvi+1 ln i−1
i

if λvi
< λ′vi

Note that for any v, w ∈ P with v, w <T vi or v, w <T v′i, we have λv 6= λw. That
yields to

s ≤
∑

T ∈RB(n)
T \i=T ′

T (i)=t

n−1
∑

k=1

ln
k + 1

k

CHAPTER 3. TREES AND MARTINGALES 36

Overall, we get, with using the property ln(1 + x) < x for x > 0,

|zi,t − z(i−1),t(i−1)| ≤ |RB(i− 1)|
|RB(n)|

∑

t′∈RB(i)
t′(i−1)=t(i−1)

∑

T ′∈RB(n,i)
T ′(i−1)=t(i−1)

∑

T ∈RB(n)
T \i=T ′

T (i)=t

n−1
∑

k=1

ln
k + 1

k

=
|RB(i)|
|RB(n)|

∑

T ′∈RB(n,i)
T ′(i−1)=t(i−1)

∑

T ∈RB(n)
T \i=T ′

T (i)=t

n−1
∑

k=1

ln

(

1 +
1

k

)

=
|RB(i)|
|RB(n)|

∑

T ∈RB(n)
T (i)=t

n−1
∑

k=1

ln

(

1 +
1

k

)

=
n−1
∑

k=1

ln

(

1 +
1

k

)

<
n−1
∑

k=1

1

k

<

∫ n

1

1

x
dx

= lnn.

Therefore,
|Zi − Zi−1| = max

t∈RB(i)
|zi,t − z(i−1),t(i−1)| ≤ lnn.

3.3 A martingale process on trees under the Yu-

le model

In this section, we assume that a tree T evolved under the Yule model. Consider
the following setting:

• Let hY (T) = −hU (T) = ln PY [T]
PU [T]

.

• For j ∈ {1, . . . , n}, let Yj : RB(n) → RB(j) with Yj(T) = T |{1...j}.

• For j > n, let Yj : RB(n) → RB(n) with Yj(T) = T .

• Let Z̃i = E[hY |Y1, . . . Yi].

Since hY = −hU , the process {Z̃i, i ∈ N} is a martingale with the same argumen-
tation as in Section 3.2. Further, from Section 3.2, we get

Z̃i = −

∑

T ∈RB(n)

∑

v∈V̊T

lnλv

P[T |Yi]

+ ln cn−1

CHAPTER 3. TREES AND MARTINGALES 37

and

z̃i,t = −

∑

T ∈RB(n)

∑

v∈V̊T

lnλv

P[T |Yi = t]

+ ln cn−1

for all t ∈ RB(i).

3.4 Hypothesis testing: Did T evolve under the

Yule model?

In this section, the hypothesis that a given tree T evolved under the Yule model
is tested against the uniform model.

In [10], a test between the Yule and the uniform model is developed by counting
cherries. It is shown that the number of cherries in a tree is normally distributed
with different expected values for the two models. The power of the test stated in
[10] is above 0.90 for trees with more than 80 leaves. The power is only stated as
an asymptotic result though.

We will give an analytic result for the power of the log-likelihood-ratio test for
the Yule model against the uniform model.

First, we recall the basics about hypothesis testing. In a hypothesis test, we
test for a given dataset x if a hypothesis H0 is rejected in favor of a hypothesis
H1 or if H0 is accepted. The hypothesis test is characterized by a decision rule, it
decides if H0 is accepted.

The Type I error of a hypothesis test is

α = P[H0 rejected |H0 true].

The Type II error of a hypothesis test is

β = P[H0 retained |H1 true].

The power of the test is 1 − β.

The next Lemma, the Neyman-Pearson Lemma (see [13]), states that for a
given Type I error, the likelihood-ratio test is the test with the smallest Type II
error.

Lemma 3.4.1 (Neyman-Pearson Lemma). When performing a hypothesis test
between two point hypotheses H0 and H1, then the likelihood-ratio test which rejects
H0 in favor of H1 when

P[x|H0 true]

P[x|H1 true]
≤ k

with k being some positive constant, is the most powerful test of size α, where
α = P[P[x|H0 true]

P[x|H1 true]
≤ k|H0 true] = P[H0 rejected|H0 true] as defined above.

CHAPTER 3. TREES AND MARTINGALES 38

Note that the log-likelihood-ratio test, i.e. rejecting H0 if

ln
P[x|H0 true]

P[x|H1 true]
≤ ln k

is equivalent to the likelihood-ratio test. We will test the Yule model against the
uniform model with the log-likelihood-ratio test to get the smallest Type II error.

Let H0 and H1 be the following hypotheses.

H0: T evolved under the Yule model
H1: T evolved under the uniform model

The decision rule for this test shall be:

• Z̃n = ln PY [T]
PU [T]

> 0 ⇒ accept H0.

• Z̃n = ln PY [T]
PU [T]

≤ 0 ⇒ reject H0.

The Type I and Type II error can be obtained with simulations, i.e. construct
a lot of trees with n leaves under the Yule model and estimate α and β.

With the results from the previous sections, we can provide an analytical bound
for the Type II error.

A bound for the Type II error of this test is, with Corollary (3.1.8) and Theorem
(2.3.10),

β = P[H0 retained |H1 true] = PU [ln
PY [T]

PU [T]
> 0]

= PU [ln
PU [T]

PY [T]
< 0]

≤ exp{− µ2
U

2nC 2
U

}

≤ exp{− µ2
U

2n(lnn)2
}

= exp{−(nSn − ln cn−1)
2

2n(lnn)2
} (3.4)

with Sn and cn as defined in Theorem (2.3.10). Asymptotically, we get, with
Theorem (2.3.12),

β ∼ exp{− (cUn)2

2n(lnn)2
}

≤ exp{−((1.44 − ln 4)n)2

2n(lnn)2
}

≈ exp{−0.00144
n

(lnn)2
}

CHAPTER 3. TREES AND MARTINGALES 39

So the power of the test, 1 − β, tends to 1 as n tends to ∞.
With the current bound, the power of the test, calculated by Equation (3.4), is

bigger than 0.85 only for trees with more than 600 leaves. It is probably possible
to improve the bound for the Azuma inequality though. If the current bound, lnn,
could be improved to 1/4 lnn, the power of the test would be bigger than 0.90
for trees with more than 50 leaves. A bound of 1/2 lnn would result in a power
bigger than 0.90 for trees with more than 170 leaves.

Chapter 4

The Rank Function

Consider the primate tree in Appendix C. Was speciation event with label 76 more
likely to be an early event in the tree or a late event? What is the probability
that 76 was the 6th speciation event? Was it more likely that speciation event 76
happened before speciation event 162 or 162 before 76? This chapter will provide
an answer to those questions, under the assumption that each rank function is
equally likely, which is, in particular, the case under the Yule model.

The algorithms RankProb, Compare and an algorithm for obtaining the
expected rank and variance for a vertex were implemented in Python. The code
is attached in Appendix B. This is joint work with Daniel Ford from Stanford
University.

In Section 4.3, we will show how to estimate edge lengths in a tree by cal-
culating the probability distribution of the rank of a vertex. This question was
posed by Arne Mooers and Rutger Vos, who constructed the primate supertree
and wanted to estimate the edge lengths for it (see [16]).

4.1 Probability distribution of the rank of a ver-

tex

Let T be a binary phylogenetic tree. Specifying an order for the speciation events
(i.e. the interior nodes) in T is equivalent to introducing a rank function on T .
In this chapter, we are interested in the distribution of the possible ranks for a
certain vertex, i.e. we want to know the probability of r(v) = i for a given v ∈ V̊ .
In other words, we want to calculate P[r(v) = i|T], with r ∈ r(T), r(T) is the set
of possible rank functions on the tree T . If every rank function on a given tree is
equally likely, we have

P[r(v) = i|T] =
|{r : r(v) = i, r ∈ r(T)}|

|r(T)| (4.1)

A formula for the denominator is given in Lemma (1.3.8). The enumerator will
be calculated in polynomial time by algorithm RankCount.

40

CHAPTER 4. THE RANK FUNCTION 41

Examples of stochastic models on phylogenetic trees where each rank function is
equally likely:

• For the Yule model, we have seen in Theorem (2.2.4), that P[r|T] is the
uniform distribution.

• As we have seen in Remark (2.2.8), the coalescent model has the same
probability distribution on rooted binary ranked trees as the Yule model. So
P[r|T] is the uniform distribution.

• In the uniform model no rank function is induced when a tree is generated.
We can assume though that for a given tree T , each rank function is equally
likely. Then, Equation (4.1) holds as well.

Definition 4.1.1. Let T be a rooted phylogenetic tree. Define

αT ,v(i) := |{r : r(v) = i, r ∈ r(T)}|
for v ∈ V̊ , i ∈ 1, . . . , |V̊ |. In other words, αT ,v(i) denotes the number of rank
functions r for T in which v comes in the i-th position.

The following results will be needed in the next sections.

Lemma 4.1.2. Let
x1 = {x1

1, x
1
2 . . . x

1
n1
}

x2 = {x2
1, x

2
2 . . . x

2
n2
}

...

xd = {xd
1, x

d
2 . . . x

d
nd
}

be d disjoint sets with the linear order xi
1 < xi

2 < . . . < xi
ni

for each i ∈ {1, . . . , d}.
The number L of possible linear orders on the set x1 ∪ x2 ∪ . . . ∪ xd, with the
linear order of each original set xi being preserved, is

L =

(

d
∑

i=1

ni

)

!

d
∏

i=1

ni!

Proof. The number L̃ of linear orders of the
∑d

i=1 ni elements of x1∪x2∪ . . .∪xd,

allowing any order on xi, is L̃ =
(

∑d
i=1 ni

)

!. The number L̃i of linear orders

of the ni elements of xi is (ni)!. Since for L , we only allow the linear order
xi

1 < xi
2 < . . . < xi

ni
on xi, it holds

L =
L̃

d
∏

i=1

L̃i

=

(

d
∑

i=1

ni

)

!

d
∏

i=1

ni!

CHAPTER 4. THE RANK FUNCTION 42

Corollary 4.1.3. For d = 2 in Lemma (4.1.2), we have

L =

(

n1 + n2

n1

)

possible linear orders on x1 ∪ x2, preserving the linear order on x1 and x2.

Proof. From Lemma (4.1.2) follows

L =

(

2
∑

i=1

ni

)

!

2
∏

i=1

ni!

=
(n1 + n2)!

(n1)!(n2)!
=

(

n1 + n2

n1

)

Remark 4.1.4. The values
(

n
k

)

for all n, k ≤ N (n, k,N ∈ N) can be calculated
in O(N2), cf. Pascal’s Triangle. In Appendix B, a dynamic programming version
for calculating

(

n
k

)

is implemented. Thus, after O(N2) calculations, any value
(

n
k

)

with n, k ≤ N can be obtained in constant time in an algorithm.

4.1.1 Polynomial-time algorithms

In the following, we give a polynomial algorithm to determine αT ,v(i) for v ∈ V̊

and i = 1, . . . , |V̊ | in a binary phylogenetic tree T .

Algorithm: RankCount(T , v)
Input: A rooted binary phylogenetic tree T and an interior vertex v.
Output: The values of αT ,v(i) for i = 1, . . . , |V̊ |.
1: Denote the vertices of the path from v to root ρ with

(v = x1, x2, . . . , xn = ρ).
2: Denote the subtree of T , consisting of root xm and all its descendants, by Tm

for m = 1, . . . , n. (cf. Figure 4.1).
3: for m = 1, . . . , n do

4: for i = 1, . . . , |V̊T | do

5: αTm,v(i) := 0
6: end for

7: end for

8: αT1,v(1) :=
|V̊T1

|!
∏

v∈V̊T1

λv

9: for m = 2, . . . , n do

10: T ′
m−1 := Tm|LTm\LTm−1

(cf. Figure 4.2)

11: RT ′
m−1

:=
|V̊T ′

m−1
|!

∏

v∈V̊T ′
m−1

λv

CHAPTER 4. THE RANK FUNCTION 43

xn

xn−1

x2

x1

T1

T2

subtree

Figure 4.1: Labeling the tree for RankCount

12: for i = m, . . . , |V̊Tm| do

13: M := min{|V̊T ′
m−1

|, i− 2}
14: αTm,v(i) :=

∑M
j=0 αTm−1,v(i− j − 1)RT ′

m−1

(|V̊Tm−1
|+|V̊T ′

m−1
|−(i−1)

|V̊T ′
m−1

|−j

)(

i−2
j

)

(∗)

15: end for

16: end for

17: RETURN αT ,v := αTn,v

Theorem 4.1.5. RankCount returns the quantities

αT ,v(i) = |{r : r(v) = i, r ∈ r(T)}|

for each given v ∈ V̊ and all i ∈ 1, . . . , |V̊ |.

Proof. We have to show that all the αTm,v(i) produced by RankCount equal
the αTm,v(i) defined in (4.1.1). In the following, we denote the values αTm,v(i)

produced by the algorithm with αAlg
Tm,v(i) and αTm,v(i) shall denote the number of

rank functions with r(v) = i as defined in (4.1.1). We will show αTm,v(i) = αAlg
Tm,v(i)

for m = 1, . . . , n, i = 1, . . . , |V̊T |. This is done by induction over m.
For m = 1, αT1,v(1) = αAlg

T1,v(1) since (1.3.8) holds. Vertex v is the root of T1, so
αT1,v(i) = 0 for all i > 1.

Let m = k and αTm,v(i) = αAlg
Tm,v(i) holds for all m < k. αTk ,v(i) = 0 clearly holds

for all i > |V̊Tk
| since rTk

: v → {1, . . . , |V̊Tk
|}. So it is left to verify that the

term (∗) returns the right values for αTk,v(i). Assume that the vertex v is in the
(i − j − 1)-th position in Tk−1 (with i − j − 1 > 0) for some rank function rTk−1

and v shall be in the i-th position in Tk. We want to combine the linear order in
the tree Tk−1 induced by rTk−1

with a linear order in T ′
k−1 induced by rT ′

k−1
to get

CHAPTER 4. THE RANK FUNCTION 44

xn

xm−1

xm

xn−1

Tm

Tm−1

T ′

m−1

Figure 4.2: Labeling the tree for recursion in RankCount

a linear order on Tk. The first j vertices of T ′
k−1 must be inserted between vertices

of Tk−1 with lower rank than v so that v ends up to be in the i-th position of the
tree Tk. We will count the number of possibilities to do so. The tree T ′

k−1 has

RT ′
k−1

=
|V̊T ′

k−1
|!

∏

v∈V̊T ′
k−1

λv

possible rank functions. Combining a rank function rTk−1
with a rank function

rT ′
k−1

for getting a rank function rTk
with rTk

(v) = i means inserting the first j

vertices of T ′
k−1 anywhere between the first (i− j − 2) vertices of Tk−1. There are

(

(i− j − 2) + j

j

)

=

(

i− 2

j

)

possibilities according to Corollary 4.1.3. For combining the |V̊Tk−1
| − (i − j − 1)

vertices of rank larger than v in Tk−1 with the remaining |V̊T ′
k−1

| − j vertices in
T ′

k−1, we have

(|V̊Tk−1
| − (i− j − 1) + |V̊T ′

k−1
| − j

|V̊T ′
k−1

| − j

)

=

(|V̊Tk−1
| + |V̊T ′

k−1
| − (i− 1)

|V̊T ′
k−1

| − j

)

possibilities. This follows again from Corollary 4.1.3. The number of rank functions
rTk−1

with rTk−1
(v) = i − j − 1 is αTk−1,v(i− j − 1) by the induction assumption.

Multiplying all those possibilities gives

αTk−1,v(i− j − 1)RT ′
k−1

(|V̊Tk−1
| + |V̊T ′

k−1
| − (i− 1)

|V̊T ′
k−1

| − j

)(

i− 2

j

)

CHAPTER 4. THE RANK FUNCTION 45

xn

xn−1

x2

v

Figure 4.3: Illustration for runtime of RankCount

αTk,v(i) is then the sum over all possible j which is equal to the term (∗) for

αAlg
Tk,v(i). This establishes the theorem.

Theorem 4.1.6. The runtime of RankCount is O(|V̊ |2).

Proof. Note that the number of rank functions RT = |V̊T |!Q
v∈V̊T

λv
on a tree T with

V̊ interior vertices can be calculated in O(|V̊ |), i.e. in linear time.
Further, note that the combinatorial factors

(

n
k

)

for all n, k ≤ |V̊ | can be
calculated in advance in quadratic time, see Remark (4.1.4). In the algorithm,
those factors can then be obtained in constant time.

Contributions to the runtime from each line in RankCount (the runtime is
always w.r.t. |V̊ |):
Line 1–2: linear time
Line 3–7: quadratic time
Line 8: linear time
Line 9–16: quadratic time since:

Line 11: RT ′
m−1

can be calculated in O(|V̊ |). This has to be done for m =

1, . . . , n, so overall the runtime for calculating all RT ′
m−1

is no more than O(|V̊ |2)
since n ≤ |V̊ |.

Line 14: We add up all calculations needed for obtaining αTm,v(i),m = 1, . . . , n,

i = 1, . . . , |V̊Tm|:
n
∑

m=2

|V̊Tm||V̊T ′
m−1

| ≤
n
∑

m=2

|V̊ ||V̊T ′
m−1

| = |V̊ |
n
∑

m=2

|V̊T ′
m−1

| ≤ |V̊ |2

The last inequality holds since the vertices of the T ′
m, m = 1, . . . , n − 1, are

distinct. Therefore, line 14 contributes a quadratic runtime.
Line 17: constant time

So overall, the runtime is no more than O(|V̊ |2). Figure 4.3 shows a tree for
which the runtime of RankCount is actually quadratic. Counting all the calcu-

CHAPTER 4. THE RANK FUNCTION 46

lations for term (∗) in the algorithm for the tree in 4.3 yields to

n
∑

m=2

|V̊Tm |
∑

i=m

|V̊T ′
m−1

| + 1 =

n
∑

m=2

|V̊Tm |
∑

i=m

2

=
n
∑

m=2

2(|V̊Tm| − (m− 1))

=
n
∑

m=2

2((2m− 1) − (m− 1))

=
n
∑

m=2

2m

= n(n + 1) − 2

Since n = (|V̊ | + 1)/2, we have a quadratic runtime.

Corollary 4.1.7. The probability P[r(v) = i|T] can be calculated in O(|V |2). We
have

P[r(v) = i|T] =
αT ,v(i)

∑|V̊ |
i=1 αT ,v(i)

=
αT ,v(i)

∏

v∈V̊ λv

|V̊ |!
. (4.2)

Proof. The first equality in (4.2) follows from basic probability theory. The second

equality holds since |V̊ |!Q
v∈V̊

λv
=
∑

i αT ,v(i) by (1.3.8). The complexity of the runtime

follows from (4.1.6).

Remark 4.1.8. We will write P[r(v) = i] instead of P[r(v) = i|T] in the following.
With P[r(v) = i] from Corollary (4.1.7), the expected value µr(v) and the variance
σ2

r(v) for r(v) can be calculated by

µr(v) =

|V̊ |
∑

i=1

iP[r(v) = i]

σ2
r(v) =

|V̊ |
∑

i=1

i2P[r(v) = i] − µ2
r(v)

Example 4.1.9. We will illustrate the algorithm RankCount for the tree in
Figure 4.4. We get the following values:

αT1,v(1) = 2!
2·1

= 1

αT2,v(2) = αTm−1,v(1)1
(

2+1−1
1

)(

0
0

)

= 2

αT2,v(3) = αTm−1,v(1)1
(

2+1−2
1

)(

1
0

)

= 1
αT2,v(4) = 0

CHAPTER 4. THE RANK FUNCTION 47

x2

ρ = x3

v = x1

Figure 4.4: Tree to illustrate the algorithm RankCount

αT3,v(3) = αTm−1,v(2)2
(

4+3−2
3

)(

1
0

)

+ αTm−1,v(1)2
(

4+3−2
2

)(

1
1

)

= 40 + 0 = 40

αT3,v(4) = αTm−1,v(3)2
(

4+3−3
3

)(

2
0

)

+ αTm−1,v(2)2
(

4+3−3
2

)(

2
1

)

= 8 + 48 = 56

αT3,v(5) = αTm−1,v(3)2
(

4+3−4
2

)(

3
1

)

+ αTm−1,v(2)2
(

4+3−4
1

)(

3
2

)

= 18 + 36 = 54

αT3,v(6) = αTm−1,v(3)2
(

4+3−5
1

)(

4
2

)

+ αTm−1,v(2)2
(

4+3−5
0

)(

4
3

)

= 24 + 16 = 40

αT3,v(7) = αTm−1,v(3)2
(

4+3−6
0

)(

5
3

)

= 20
αT3,v(8) = 0

With αT3,v = αT ,v, we get

P[r(v) = 1] = 0

P[r(v) = 2] = 0

P[r(v) = 3] =
40

40 + 56 + 54 + 40 + 20
=

40

210
=

20

105

P[r(v) = 4] =
28

105

P[r(v) = 5] =
27

105

P[r(v) = 6] =
20

105

P[r(v) = 7] =
10

105
P[r(v) = 8] = 0

Therefore, the expected value µr(v) is

µr(v) =

8
∑

i=1

iP[r(v) = i) =
497

105
≈ 4.73

and the variance σ2
r(v) is

σ2
r(v) =

8
∑

i=1

i2P[r(v) = i) − µ2
r(v) =

2513

105
− 4972

1052
=

344

225
≈ 1.53

CHAPTER 4. THE RANK FUNCTION 48

Remark 4.1.10. Note that P[r(v) = i] =
αT ,v(i)P
j αT ,v(j)

. Common factors in all

αT ,v(i), i = 1, . . . , |V̊Tv | will therefore cancel out.

The next algorithm, RankProb, is a modification of RankCount such that
common factors of αT ,v(i), i = 1, . . . , |V̊Tv |, will not be included. Therefore, the
numbers we have to deal with in the algorithm stay smaller and the number of
calculations is reduced.

Algorithm: RankProb(T , v)
Input: A rooted binary phylogenetic tree T and an interior vertex v.
Output: The probabilities P[r(v) = i] for i = 1, . . . , |V̊ |.
1: Denote the vertices of the path from v to root ρ with

(v = x1, x2, . . . , xn = ρ).
2: Denote the subtree of T , consisting of root xm and all its descendants, by Tm

for m = 1, . . . , n. (cf. Figure 4.1).
3: for m = 1, . . . , n do

4: for i = 1, . . . , |V̊T | do

5: α̃Tm,v(i) := 0
6: end for

7: end for

8: α̃T1,v(1) := 1
9: for m = 2, . . . , n do

10: T ′
m−1 := Tm|LTm\LTm−1

(cf. Figure 4.2)

11: for i = m, . . . , |V̊Tm| do

12: M := min{|V̊T ′
m−1

|, i− 2}

13: α̃Tm,v(i) :=

M
∑

j=0

α̃Tm−1,v(i− j − 1)

(|V̊Tm−1 | + |V̊T ′
m−1

| − (i− 1)

|V̊T ′
m−1

| − j

)(

i− 2

j

)

14: end for

15: end for

16: for i = 1, . . . , |V̊T | do

17: P[r(v) = i] :=
α̃Tn,v(i)P
j α̃Tn,v(j)

18: end for

19: RETURN P[r(v) = i], i = 1, . . . , |V̊ |.

Theorem 4.1.11. RankProb returns the quantities

P[r(v) = i]

for each given v ∈ V̊ and all i ∈ 1, . . . , |V̊ |. The runtime is O(|V̊ |2).
Proof. Note that the structure of RankProb is the same as the structure of
RankCount. The only difference is that common factors to αTm,v(i) for all i are
not included. Those common factors do not change the probabilities since they
cancel out once calculating the probabilities. Therefore, since RankCount works
correct, also RankProb works correct.

CHAPTER 4. THE RANK FUNCTION 49

It is left to verify the runtime. The only time consuming step in RankProb is
line 13. This line is of the same complexity as line 14 in RankCount. Line 14 in
RankCount contributed a quadratic time. Therefore, the runtime of RankProb
is quadratic as well.

4.1.2 Non-binary trees and ranks

Let T be a non-binary phylogenetic tree. Assume that any possible rank function
on T is equally likely. With that assumption, we have

P[r(v) = i] =
αT ,v(i)

|r(T)| .

To calculate these probabilities, the algorithm RankProb can be generalized to
non-binary trees. We call the generalized algorithm RankProbGen.

Algorithm RankProbGen (T , v)
Input: A rooted phylogenetic tree T and an interior vertex v.
Output: The probabilities P[r(v) = i] for i = 1, . . . , |V̊ |.
1: Denote the vertices of the path from v to root ρ with

(v = x1, x2, . . . , xn = ρ).
2: Denote the subtree of T , consisting of root xm and all its descendants, by Tm

for m = 1, . . . , n.
3: for m = 1, . . . , n do

4: for i = 1, . . . , |V̊T | do

5: α̃Tm,v(i) = 0
6: end for

7: end for

8: α̃T1,v(1) = 1
9: for m = 2, . . . , n do

10: Label the subtree Tm \ Tm−1 by T ′
m−1 (cf. Figure 4.5)

11: M = min{|V̊T ′
m−1

| − 1, i− 2}
12: for i = m, . . . , |V̊Tm| do

13: α̃Tm,v(i) :=
M
∑

j=0

α̃Tm−1,v(i−j−1)

(|V̊Tm−1 | + |V̊T ′
m−1

| − 1 − (i− 1)

|V̊T ′
m−1

| − 1 − j

)(

i− 2

j

)

14: end for

15: end for

16: for i = 1, . . . , |V̊T | do

17: P[r(v) = i] =
α̃Tn,v(i)P
j α̃Tn,v(j)

18: end for

19: RETURN P[r(v) = i], i = 1, . . . , |V̊ |.

Theorem 4.1.12. RankProbGen returns the probabilities

P[r(v) = i]

CHAPTER 4. THE RANK FUNCTION 50

xn

xm

xn−1

xm−1

Tm

nonbinary tree

T ′

m−1

Tm−1

Figure 4.5: Labelling the tree for algorithm RankProbGen.

for each given v ∈ V̊ and all i ∈ 1, . . . , |V̊ |. The runtime is O(|V̊ |2).

Proof. The algorithm is the same as RankProb. The only difference is that in
each step, we define T ′

m−1 := Tm \ Tm−1, i.e. the root of T ′
m is xm. For any rank

function on T ′
m, we now insert the first j elements (excluding the root xm) before

the vertex v. The number of ways to insert these vertices is counted analogously
to the proof of Theorem (4.1.5). The number of possible rank functions on T ′

m

does not have to be calculated, since these factors cancel out when calculating the
probabilities.

Since we do the same iterations as in RankProb, the algorithm RankProb-
Gen has quadratic runtime as well.

4.2 Comparing two interior vertices

Assume again that every rank function on a binary phylogenetic tree T is equal-
ly likely. We want to compare two interior vertices u and v of T . Was u more
likely before v or v before u (cf. Fig. 4.6)? In other words, we want to know the
probability

Pu<v := P[r(u) < r(v)|T]

where r(T) is the set of all possible rank functions on T . This probability is,
by Theorem (2.2.4), equivalent to counting all the possible rank functions on T
in which u has lower rank than v and divide that number by all possible rank
functions on T . The algorithm Compare will solve this problem in quadratic time.

Algorithm Compare (T , u, v)
Input: A rooted phylogenetic tree T and two distinct interior vertices u and v.
Output: The probability Pu<v := P[r(u) < r(v)|T].

1: Denote the most recent common ancestor of u and v by ρ1.

CHAPTER 4. THE RANK FUNCTION 51

uv

Figure 4.6: What is the probability that vertex u has smaller rank than vertex v?

2: if ρ1 = v then

3: RETURN Pu<v = 0.
4: end if

5: if ρ1 = u then

6: RETURN Pu<v = 1.
7: end if

8: Let Tρ1 be the subtree of T which is induced by ρ1.
9: Delete the vertex ρ1 from Tρ1 . The two evolving subtrees are labeled Tu and

Tv with u ∈ Tu and v ∈ Tv.
10: Run RankProb(Tu, u) and RankProb(Tv, v) to get P[r(u) = i] on Tu and

P[r(v) = i] on Tv for all possible i.
11: for i = 1, . . . , |V̊Tu| do

12: ucum(i) :=
∑i

k=1 P[r(u) = i]
13: end for

14: Pu<v := 0
15: for i = 1, . . . , |V̊Tv | do

16: for j = 1, . . . |V̊Tu| do

17: p := P[r(v) = i] ·
(

i−1+j
j

)

·
(|V̊Tv |−i+|V̊Tu |−j

|V̊Tu |−j

)

· ucum(j) (∗)
18: Pu<v := Pu<v + p
19: end for

20: end for

21: tot :=
(|V̊Tu |+|V̊Tv |

|V̊Tv |

)

22: Pu<v := Pu<v/tot
23: RETURN Pu<v

Theorem 4.2.1. The algorithm Compare returns the value

Pu<v = P[r(u) < r(v)|T].

Proof. Note that the probability of u having smaller rank than v in tree Tρ1

equals the probability of u having smaller rank than v in tree T , since for any
rank function on Tρ1 , there is the same number of linear extensions to get a rank
function on the tree T .

So it is sufficient to calculate the probability Pu<v in Tρ1 . If ρ1 = u, u is before
v in T and we return Pu<v = 1. If ρ1 = v, v is before u in T and we return
Pu<v = 0.

CHAPTER 4. THE RANK FUNCTION 52

In the following, let ρ1 6= u, ρ1 6= v. The run of RankProb gives us the
probability P[r(u) = i] in the tree Tu and P[r(v) = i] in Tv for all i. We want to
combine these two linear orders. Assume that r(v) = i and we insert j vertices
of Tu before v. Inserting j vertices of Tu into the linear order of Tv before v is
possible in

(

i−1+j
j

)

ways (see Corollary 4.1.3). Putting the remaining vertices in a

linear order is possible in
(|V̊Tv |−i+|V̊Tu |−j

|V̊Tu |−j

)

ways. The probability that the vertex u

is among the j vertices which have smaller rank than v is P[r(u) ≤ j] = ucum(j).
There are |r(Tu)| possible linear orders on Tu and |r(Tv)| possible linear orders on
Tv. The number of linear orders where vertex v has rank i in Tv, v has rank i+ j
in Tρ1 and r(u) < i+ j therefore equals

p′i,j = P[r(v) = i] · |r(Tv)| ·
(

i− 1 + j

j

)

·
(|V̊Tv | − i+ |V̊Tu| − j

|V̊Tu| − j

)

· ucum(j) · |r(Tu)|

Adding up the p′ for each i and j gives us the number of linear orders where u is
earlier than v.

Combining a linear order on Tv with a linear order on Tu is possible in

tot :=

(|V̊Tu| + |V̊Tv |
|V̊Tv |

)

different ways (see Corollary 4.1.3). There are |r(Tu)| linear orders on Tu and
|r(Tv)| linear orders on Tv, so on Tρ1 , we have

tot′ :=

(|V̊Tu| + |V̊Tv |
|V̊Tv |

)

|r(Tv)||r(Tv)|

linear orders. Therefore we get

Pu<v =

∑

i,j p
′
i,j

tot′
=

∑

i,j pi,j

tot

with pi,j = P[r(v) = i] ·
(

i−1+j
j

)

·
(|V̊Tv |−i+|V̊Tu |−j

|V̊Tu |−j

)

· ucum(j). This shows that Com-

pare works correct.

Theorem 4.2.2. The runtime of Compare is O(|V̊ |2).

Proof. Again, note that the combinatorial factors
(

n
k

)

for all n, k ≤ |V̊ | can be
calculated in advance in quadratic time, see Remark (4.1.4). In the algorithm,
those factors can then be obtained in constant time.

Contributions to the runtime from each line in Compare (the runtime is
always w.r.t. |V̊ |):
Line 1: linear time
Line 2–7: constant time
Line 8: linear time
Line 9: constant time
Line 10: quadratic time, since RankProb has quadratic runtime

CHAPTER 4. THE RANK FUNCTION 53

Tρ1

uv

ρ

ρ1

Figure 4.7: Example for Compare: Calculate the probability of u < v in the
displayed tree T .

Line 11–13: linear time
Line 14: constant time
Line 15–20: quadratic time since (∗) has to be evaluated |V̊Tu| · |V̊Tu| ≤ |V̊T |2 times
Line 21–23: constant time

Therefore, the overall runtime of Compare is O(|V̊ |2).

Example 4.2.3. Fig. 4.7 displays the tree T . We want to calculate the probabi-
lity Pu<v, i.e. the probability of vertex u having a smaller rank than vertex v.

A run of the Python code attached in Appendix B with input (T , u, v) returns
Pu<v = 9

20
.

4.3 Application of RankProb - Estimating edge

lengths in a Yule tree

In [16], a primate supertree on 218 species was constructed with the MRP me-
thod (Matrix Representation using Parsimony analysis, see [2, 12]). The resulting
supertree is shown in Appendix C. This tree has only 210 interior vertices. The-
re are six ‘soft’ polytomies in the supertree, i.e. six vertices have more than two
direct descendants because the exact resolution is unclear (i.e. the supertree is
non-binary).

Since for most of the interior vertices, no molecular estimates were available,
the edge lengths for the tree were estimated. Here, the length of an edge represents
the time between two speciation events.

A very common stochastic model for trees with edge lengths is the continuous-
time Yule model. As in the discrete-time Yule model, at every point in time, each
species is equally likely to split and give birth to two new species. The expected
waiting time for the next speciation event in a tree with n leaves is 1/n. That is,
each species at any given time has a constant speciation rate (normalized so that
1 is the expected time until it next speciates).

It was assumed that the primate tree Tp evolved under the continuous-time
Yule model. In [16], 106 rank functions on Tp were drawn uniformly at random.

CHAPTER 4. THE RANK FUNCTION 54

u

v

Tv

Tu

Figure 4.8: Labeling the tree for estimating the edge lengths.

For each of those rank functions, the expected time intervals, i.e. the edge lengths,
between vertices were considered (the expected waiting time after the (n − 1)th
event until the nth event is 1/n).

The authors of [16] concluded their paper by asking for an analytical approach
to the estimation of the edge length, and we provide this now.

4.3.1 Analytical estimation of the edge length

Let (u, v) be an interior edge in T with u <T v. Let X be the random variable
‘length of the edge (u, v)’ given that T is generated according to the continuous-
time Yule model.

The expected length E[X] of the edge (u, v) is given by

E[X] =
∑

i,j

E[X|r(u) = i, r(v) = j]P[r(u) = i, r(v) = j].

Since under the continuous-time Yule model, the expected waiting time for the
next event is 1/n, we have

E[X|r(u) = i, r(v) = j] =

j−i
∑

k=1

1

i+ k
.

It remains to calculate the probability P[r(u) = i, r(v) = j]. We count all the
possible rank functions where r(u) = i and r(v) = j. The subtree Tv consists of v
and all its descendants. The tree Tu evolves from T when we replace the subtree
Tv by a leaf, see Fig. 4.8.

Note that P[r(u) = i, r(v) = j] = 0 if |V̊Tu| < j − 1. Therefore, assume
|V̊Tu| ≥ j − 1 in the following.

The number of rank functions in Tu is denoted by RTu . The probability
P[r(u) = i] can be calculated with RankProb(Tu, u). So the number of rank
functions in Tu with P[r(u) = i] is P[r(u) = i] · RTu .

The number of rank functions in Tv is denoted by RTv . Let any linear order
on the tree Tu and Tv be given. Combining those two linear orders to an order on
T , where r(v) = j holds, means, that the vertices with rank 1, 2, . . . , j − 1 in Tu

keep their rank. Vertex v gets rank j. The remaining |V̊Tu| − (j − 1) vertices in Tu

CHAPTER 4. THE RANK FUNCTION 55

and |V̊Tv | − 1 vertices in Tv have to be shuffled together. According to Corollary
(4.1.3), this can be done in

(|V̊Tu| − (j − 1) + |V̊Tv | − 1

|V̊Tv | − 1

)

=

(|V̊Tu| + |V̊Tv | − j

|V̊Tv | − 1

)

different ways. Overall, we have

P[r(u) = i] · RTu ·RTv ·
(|V̊Tu| + |V̊Tv | − j

|V̊Tv | − 1

)

different rank functions on T with r(u) = i and r(v) = j. For the probability
P[r(u) = i, r(v) = j], we get

P[r(u) = i, r(v) = j] =
P[r(u) = i] · RTu · RTv ·

(|V̊Tu |+|V̊Tv |−j

|V̊Tv |−1

)

∑

i,j P[r(u) = i] · RTu · RTv ·
(|V̊Tu |+|V̊Tv |−j

|V̊Tv |−1

)

Since RTu and RTv are independent of i and j, those factors cancel out, and we
get

P[r(u) = i, r(v) = j] =
P[r(u) = i] ·

(|V̊Tu |+|V̊Tv |−j

|V̊Tv |−1

)

∑

i,j P[r(u) = i] ·
(|V̊Tu |+|V̊Tv |−j

|V̊Tv |−1

)

Further, we note that

(|V̊Tu| + |V̊Tv | − j

|V̊Tv | − 1

)

=
(|V̊T | − j)!

(|V̊Tv | − 1)!(|V̊T | − j − (|V̊Tv | − 1))!

Again, since (|V̊Tv | − 1)! is independent of i and j, this factor cancels out, and we
are left with

P[r(u) = i, r(v) = j] =
P[r(u) = i] ·

∏|V̊Tv |−2
k=0 (|V̊T | − j − k)

∑

i,j P[r(u) = i] ·
∏|V̊Tv |−2

k=0 (|V̊T | − j − k)

Let Ω = {(i, j) : i < j, i, j ∈ {1, . . . , |V̊ |}, |V̊Tu| ≥ j − 1}. With that notation, the
expected edge length E[X] is

E[X] =
∑

(i,j)∈Ω

E[X|r(u) = i, r(v) = j]P[r(u) = i, r(v) = j]

=
∑

(i,j)∈Ω

(

j−i
∑

k=1

1

i+ k

)

P[r(u) = i] ·
∏|V̊Tv |−2

k=0 (|V̊T | − j − k)
∑

(i,j)∈Ω

[

P[r(u) = i] ·
∏|V̊Tv |−2

k=0 (|V̊T | − j − k)
]

=

∑

(i,j)∈Ω

[(

∑j−i
k=1

1
i+k

)

· P[r(u) = i] ·∏|V̊Tv |−2
k=0 (|V̊T | − j − k)

]

∑

(i,j)∈Ω

[

P[r(u) = i] ·
∏|V̊Tv |−2

k=0 (|V̊T | − j − k)
] (4.3)

CHAPTER 4. THE RANK FUNCTION 56

Remark 4.3.1. With Equation (4.3), we can estimate the length of all the interior
edges. For the pendant edges, the approach above gives us no estimate though.
All we know is that the time from the latest interior vertex, which has rank n−1,
until the presence is expected to be at most 1/n where n is the number of leaves.

Remark 4.3.2. In a supertree, we can have interior vertices which are not fully
resolved, i.e. an interior vertex can have more than two descendants, because the
exact resolution is unclear. Our calculation for the expected edge length assumes
a binary tree though.

However, we can calculate the expected edge length for each possible binary
resolution of the supertree. Assume the supertree T has the possible binary re-
solutions T1, . . . , Tm. For an edge (u, v) in T where u <T v, the expected edge
length is calculated in the trees Ti for i = 1, . . . , m. The expected edge length in
Ti is denoted by ei for i = 1, . . . , m.

We calculate the expected edge length E[X] of (u, v) in the supertree T by

E[X] =

∑

i eiP[Ti]
∑

i P[Ti]
(4.4)

where the probability P[Ti] is calculated according to Corollary (2.2.5).
Note that if u is a vertex with more than two descendants in T , v is in general

not a direct descendant of u in Ti. The value ei in resolution Ti is then the sum
of all expected edge lengths on the path from u to v in Ti.

Remark 4.3.3. In the primate supertree in Appendix C, there are six interior
vertices with more than two descendants (vertex labels 48, 63, 148, 153, 157 and
200). For the vertices labeled with 63 and 200, only one resolution is possible (up
to the labeling).

The interior vertices with label 48, 153 and 157 have three descendants each.
So there are 33 possible binary resolutions. The interior vertex 148 has four leaf-
descendants. There are two possible binary resolutions (up to the labeling). To
calculate the expected edge lengths for the primate supertree, we therefore have
to calculate the expected edge lengths on 33 · 2 binary trees and then calculate
the weighted sum from Equation (4.4).

Chapter 5

Speciation Rates

This chapter was motivated by Craig Moritz and Andrew Hugall, biologists from
Berkeley and Adelaide. They looked at a tree showing the relationships between
a set of snails. Each of those snails lives either in rain forest or open forest. The
tree has edge lengths assigned. Moritz and Hugall asked if the rate of speciation
is different for rain forest snails and open forest snails.

Mathematically, determining the rate of speciation is the following problem.
The leaves are divided into two classes, α and β (e.g. rain forest and open forest
snails). Given the rate that a species belonging to class α changes to a species
belonging to class β (and vice versa), we calculate the expected length of an edge
between two species of group α (resp. β). This expected length is an estimate for
the inverse of the rate of speciation and is calculated in linear time.

5.1 Some notation

Definition 5.1.1. Let X ′ be a non-empty subset of X. Let C be a non-empty set.
A character on X is a function χ : X ′ → C. C is the character state set of χ. If
X ′ = X, we say χ is a full character. If |C| = 2, we say χ is a binary character.

Definition 5.1.2. Let T be a rooted phylogenetic X-tree with vertex set V and
leaf set L ⊂ V . Let χ be a full binary character on T , χ : X → {α, β}. Define

β β βα α αβββα α β β βα α αβββα α

α

α

α

α

α

β
β

α

β

β

Figure 5.1: A phylogenetic tree with a full character on the left and a phylogenetic
state tree on the right (without the leaf labels).

57

CHAPTER 5. SPECIATION RATES 58

v1

v2

γ-edge e

Figure 5.2: With s(v1) = γ1 and s(v2) = γ2, the edge e = (v1, v2) is a γ-edge.

βα

rα

rβ

Figure 5.3: Rate of the state change for a binary character

s : V → {α, β} with s|L = χ ◦ φ−1. (T , s) is called a phylogenetic state tree, s a
state function.

In the following, the phylogenetic state tree (T , s) shall have assigned a func-
tion l : E → R+. l shall denote the edge lengths of T . Let η ∈ {α, β} throughout
this chapter. Let v be any node in (T , s) with s(v) = η. We then say that the
state of v is η. Let γ ∈ {α, β} × {α, β} throughout the chapter, i.e. γ = (γ1, γ2)
with γ1, γ2 ∈ {α, β}. An edge e = (v1, v2) of (T , s) where v1 <T v2 and s(v1) = γ1,
s(v2) = γ2 is called a γ − edge.

5.2 Markov Chain Model

Throughout evolution, assume that state α changes to state β with rate rα and
state β changes to state α with rate rβ, so the rates only depend upon the state of
the last vertex (see Fig. 5.3). This means that the state change follows a Markov
Chain model, and for that model, we want to calculate the transision matrix

P (l(e)) =

(

pαα(l(e)) pαβ(l(e))
pβα(l(e)) pββ(l(e))

)

where pγ1γ2(l(e)) = P [(s(v2) = γ2)|(s(v1) = γ1)] with e = (v1, v2) and v1 <T v2.
The rate matrix R is defined as

R =

(

−rα rα

rβ −rβ

)

CHAPTER 5. SPECIATION RATES 59

Diagonalization of R yields

R =

(

−rα rα

rβ −rβ

)

= S

(

0 0
0 −(rα + rβ)

)

S−1

with

S =

(

1 rα

1 −rβ

)

From stochastic processes, we know that the connection between the rate matrix
and the transition matrix is

P ′(l(e)) = RP (l(e))

Solving this differential equation yields

P (l(e)) = P (0)eR(l(e))

with P (0) = Id since l(e) = 0 means staying in the vertex. Therefore P (l(e)) can
be rewritten as

P (l(e)) = eR(l(e))

= exp{S
(

0 0
0 −(rα + rβ)

)

S−1l(e)}

= S exp{
(

0 0
0 −(rα + rβ)

)

l(e)}S−1

= S

(

1 0
0 e−(rα+rβ)l(e)

)

S−1

=

(

1
rα+rβ

(

rβ + rαe
−(rα+rβ)l(e)

)

rα

rα+rβ

(

1 − e−(rα+rβ)l(e)
)

rβ

rα+rβ

(

1 − e−(rα+rβ)l(e)
)

1
rα+rβ

(

rα + rβe
−(rα+rβ)l(e)

)

)

The initial probability of vertex v being in state η shall be πη, η ∈ {α, β}. It
holds

(

πα πβ

)

R =
(

πα πβ

)

(

−rα rα

rβ −rβ

)

= 0

so
π =

(

πα πβ

)

=
(

rβ

rα+rβ

rα

rα+rβ

)

Therefore, for any given phylogenetic tree T with edge lengths l(e), the pro-
bability of its vertices being in states according to a state function s is

P[s] = πs(ρ)

∏

e∈E
e=(v1,v2)
v1<T v2

ps(v1),s(v2) (5.1)

Furthermore, it holds for any e ∈ E with e = (v1, v2)

ps(v1),s(v2)(l(e)) =
rs(v1)

rs(v2)
ps(v2),s(v1)(l(e)) (5.2)

CHAPTER 5. SPECIATION RATES 60

5.3 Expected length of a γ-edge

Given a phylogenetic tree T with character χ, edge length l(e) and rate matrix
R, we want to calculate the expected average length of a γ-edge over all (T , s).
The inverse of this length is an estimate for the rate of speciation.

Calculating the expected average length of a γ-edge over all (T , s) means
calculating

Eχ

∑

e∈E, e γ−edge

l(e)

of γ − edges

where Eχ denotes the expected value over all s given s|L = χ. Trying to calculate
this expected value turns out to give us very nasty recursion formulas.
So we change the problem slightly and try to calculate instead

Ψγ =

Eχ

[

∑

e∈E, e γ−edge

l(e)

]

Eχ [# of γ − edges]

Define the random variable

Xγ(e) :=

{

1 if e is γ-edge
0 else

With that, we get

Ψγ =

Eχ

[

∑

e∈E, e γ−edge

l(e)

]

Eχ [# of γ − edges]

=

Eχ

[

∑

e∈E

l(e)Xγ(e)

]

Eχ

[

∑

e∈E

Xγ(e)

]

=

∑

e∈E

l(e)P [(Xγ(e) = 1)|χ]

∑

e∈E

P [(Xγ(e) = 1)|χ]
(5.3)

where P [(Xγ(e) = 1)|χ] denotes the probability of e being a γ-edge given s|L = χ.
So it is basically left to calculate P [(Xγ(e) = 1)|χ]. To do so, we first define two
subtrees of T (see also Fig. 5.4). Denote the end vertices of e by ρ1 and ρ2 with
ρ1 <T ρ2. By deleting the γ-edge e in T , we get two new trees T1 and T2, T1

with ρ1 ∈ T1 and character χ1 = χ|φ−1(LT1
), and T2 with ρ2 ∈ T2 and character

CHAPTER 5. SPECIATION RATES 61

ρ2

ρ1

ρ2

xn−1

ρ = xn

ρ1 = x1
T1

T2

T1

T2

Figure 5.4: Calculating the expected edge length: Defining T1 and T2

χ2 = χ|φ−1(LT2
) where LTi

denotes the set of leaves of Ti, i ∈ {1, 2}. The root in
Ti shall be ρi, so ρ becomes an ordinary vertex in T1.

P [χi|(s(ρi) = γi)] shall denote the probability of the character χi on the tree
Ti given s(ρi) = γi. P

[

χT \T2
|(s(ρ1) = γ1)

]

shall denote the probability of the
character χT \T2

on the tree T \ T2 given s(ρ1) = γ1. P[χT , s] shall denote the
probability of the character χ and the state function s on the tree T . We denote
the vertices on the path from ρ1 to ρ by ρ1 = x1, x2, . . . , xn−1, xn = ρ. With (5.1)
and (5.2), it holds

P [χ1, s] =
πs(ρ1)

∏n−1
i=1 ps(xi),s(xi+1)

πs(ρ)

∏n−1
i=1 ps(xi+1),s(xi)

P
[

χT \T2
, s
]

=
πs(ρ1)

∏n−1
i=1 ps(xi),s(xi+1)

πs(ρ)

∏n−1
i=1

rs(xi+1)

rs(xi)
ps(xi),s(xi+1)

P
[

χT \T2 , s
]

=
πs(ρ1)rs(x1)

πs(ρ)rs(xn)

P
[

χT \T2
, s
]

=

rαrβ

rα+rβ

rαrβ

rα+rβ

P
[

χT \T2
, s
]

= P
[

χT \T2 , s
]

This yields

P [χ1|(s(ρ1) = γ1)] =
∑

s:s(ρ1)=γ1

P [χ1, s]

=
∑

s:s(ρ1)=γ1

P
[

χT \T2
, s
]

= P
[

χT \T2
|(s(ρ1) = γ1)

]

With that result, we get

CHAPTER 5. SPECIATION RATES 62

r1

r

r2

T ′ T ′′

Figure 5.5: Calculating the expected edge length: Defining T̃

P [(Xγ(e) = 1)|χ] =

=
P [(Xγ(e) = 1)] P [χ|(Xγ(e) = 1)]

P [χ]

=
πγ1pγ1γ2(l(e))P

[

χT \T2
|(s(ρ1) = γ1)

]

P [χ2|(s(ρ2) = γ2)]
∑

γ=(γ1,γ2)

πγ1pγ1γ2(l(e))P [χT1 |(s(ρ1) = γ1)] P [χT2 |(s(ρ2) = γ2)]

=
πγ1pγ1γ2(l(e))P [χ1|(s(ρ1) = γ1)] P [χ2|(s(ρ2) = γ2)]

∑

γ=(γ1,γ2)

πγ1pγ1γ2(l(e))P [χT1 |(s(ρ1) = γ1)] P [χT2 |(s(ρ2) = γ2)]
(5.4)

P [χi|(s(ρi) = γi)] is calculated in a recursive way, starting from the bottom of the
tree.

Suppose we have the subtree T̃ as in Fig. 5.5 and either r1, r2 are leaves or we
know P [χT ′ |(s(r1) = η)] on tree T ′, P [χT ′′|(s(r2) = η)] on tree T ′′, for η ∈ {α, β}.
With that, we get the following recursive formulas for the probabilities on tree
T̃ .

• For r1 and r2 leaves:

P [χT̃ |(s(r) = η)] =
pηχ(r1)pηχ(r2)
∑

η1,η2∈{α,β}

pηη1pηη2

• For r1 leave, r2 interior node:

P [χT̃ |(s(r) = η)] =

∑

η1∈{α,β}

P [χT ′|(s(r1) = η1)] pηχ(r2)pηη1

∑

η1,η2∈{α,β}

P [χT ′|(s(r1) = η1)] pηη2pηη1

• For r1 and r2 interior nodes:

P [χT̃ |(s(r) = η)] =

∑

η1,η2∈{α,β}

P [χT ′ |(s(r1) = η1)] P [χT ′′ |(s(r2) = η2)] pηη1pηη2

CHAPTER 5. SPECIATION RATES 63

Algorithm EdgeLength (T , χ)
Input: A rooted binary phylogenetic tree T and a character χ on T with state
change rates rα and rβ

Output: The values Ψγ for γ ∈ {α, β} × {α, β} (cf. Equation (5.3))

• Define the subtrees T1 and T2 of T as described above.

• Calculate P [χTi
|(s(ρi) = γj)] for i ∈ {1, 2}, j ∈ {1, 2}, with the recursive

formulas from above.

• Evaluate P [(Xγ(e) = 1)|χ] according to (5.4) for all γ ∈ {α, β} × {α, β}.

• Evaluate Ψγ according to (5.3) for all γ ∈ {α, β} × {α, β}.

Theorem 5.3.1. EdgeLength works correct, i.e. it returns

Ψγ =

Eχ

[

∑

e∈E, e γ−edge

(l(e))

]

Eχ [# of γ − edges]

The complexity is O(|V |), so it is linear.

Proof. The correctness of the algorithm follows from the construction above. It is
left to verify the runtime.
Calculating the probabilities P [(χTi

|(s(ρi) = γj)] for i ∈ {1, 2}, j ∈ {1, 2} with
the recursive formulas requires O(|V |) calculations since we have to evaluate one
recursion formula for each vertex. For each edge e, P [(Xγ(e) = 1)|χ] can then be
calculated according to (5.4) with a constant number of calculations. So obtaining
P [(Xγ(e) = 1)|χ] for all e requires O(|E|) = O(|V |) calculations. Calculating Ψγ

according to (5.3) requires again O(|E|) calculations. Therefore, the complexity
is linear.

Outlook

There are several topics in the thesis which suggest further work.

In Chapter 3, we conclude with the log-likelihood-ratio test for deciding if a
tree evolved under Yule. The given bound for the power of the test, Equation
(3.4), depends on the bound for the Azuma inequality. The bound lnn for the
Azuma inequality was obtained in 3.2.1 by a lot of rough estimations. So we are
very confident that there can be found a better bound c lnn, with c ≪ 1 being
a constant. This would lead to an improved bound for the power of the log-
likelihood-ratio test (i.e. one could show analytically that the log-likelihood-ratio
test is very good even on trees with a small number of leaves).

The edge lengths estimation in Section 4.3 will be implemented by Rutger Vos
in Perl for his library and in Java for Mesquite (Mesquite is a tree manipulation
software suite). Once implemented, the algorithm can finally be applied to real
data. One can then estimate the edge lengths of a constructed supertree.

Section 5 provides an algorithm for calculating Ψα,α and Ψβ,β which estimate
the average edge lengths. Let ψα be the speciation rate for species of class α
and let ψβ be the speciation rate for species of class β. One could test the

hypothesis ψα,α = ψβ,β against ψα,α 6= ψβ,β with the statistic Ψα,α

Ψβ,β
. For evalua-

ting this test, i.e. obtaining the Type I and Type II error, one can use simulations.

Further, in Section 5, we assumed that the transition rates rα and rβ are
given. An interesting open question is how to handle the problem without having
these transition rates in advance.

64

Appendix A

List of Symbols

Symbol Meaning page

≤T partial order on the vertices of a tree T 6
≤T partial order on the vertices of T 6
(2n− 1)!! (2n− 1) × (2n− 3) . . . 3 × 1 10
(T , s) phylogenetic state tree 6
(T , r) ranked phylogenetic tree T with rank function r 6

αT ,v(i) |{r : r(v) = i, r ∈ r(T)}| 41
χ character on a phylogenetic tree 57
δ(v) degree of vertex v 5

λv number of elements of V̊ that are descendants of v 7
π initial probability distribution of Markov chain 59
ρ root of a tree 5
φ labelling function of a phylogenetic tree T 5
Ψγ estimated length of a γ-edge 60

T phylogenetic X-tree 5
Tp Primate supertree constructed in [16] 73
Tv phylogenetic subtree of T induced by vertex v 6
TX′ phylogenetic subtree of T with label set X ′ 6

Jp Entropy of the probability distribution p 19
Pu<v Probability P[r(u) < r(v)|T] 50
PU Uniform distribution on RB(X) 18
PU [T] Probability of T under the uniform model 18
PY Yule distribution on RB(X) 18
PY [T] Probability of T under the Yule model 18

cn Catalan number 10
C set of character states 57
d(v) number of direct descendants of vertex v 6

65

APPENDIX A. LIST OF SYMBOLS 66

dKL(p, q) Kullbach-Liebler distance between p and q 20
E,ET Edges of a phylogenetic tree T 5
l(e) Length of edge e in T 58
L,LT Leaf set of a (phylogenetic) tree 5
pγ1,γ2 probability of state change from γ1 to γ2 58
P (l(e)) transition matrix of Markov chain,

dependent on edge length 58
rα(rβ) rate of change from state α to β (β to α) 58
r, rT rank function of phylogenetic tree T 6
r(T) Set of rank functions on T 6
rRB(n) Set of ranked binary phylogenetic X-trees

with X = {1, 2, . . . n} 9
rRB(X) Set of ranked binary phylogenetic X-trees 8
R rate matrix of a Markov chain 58
RB(n) Set of binary phylogenetic X-trees

with X = {1, 2, . . . n} 9
RB(X) Set of binary phylogenetic X-trees 8
s state function 58
V, VT Set of vertices of a (phylogenetic) tree 5

V̊ , V̊T Set of interior vertices of a (phylogenetic) tree 5

Appendix B

Algorithms coded in Python

Rank functions

Daniel Ford, Tanja Gernhard 2006

#

Functions:

#

rankprob(t,u) - returns the probability distribution

of the rank of vertex "u" in tree "t"

expectedrank(t,u) returns the expected rank

of vertex "u" and the variance

compare(t,u,v) - returns the probability that "u"

is below "v" in tree "t"

import random

How we store the trees:

The interior vertices of a tree with n leaves are

labeled by 1...n-1

Example input tree for all the algorithms below:

The tree "t" below has n=9 leaves and the inner nodes have

label 1...8

t1 = (((), (), {’leaves_below’: 2, ’label’: 4}), (),

{’leaves_below’: 3, ’label’: 3})

t2 = (((), (), {’leaves_below’: 2, ’label’: 7}), ((), (),

{’leaves_below’: 2, ’label’: 8}),

{’leaves_below’: 4, ’label’: 6})

t3 = ((), (), {’leaves_below’: 2, ’label’: 5})

t4 = (t1,t3,{’leaves_below’: 5, ’label’: 2})

t = (t2,t4,{’leaves_below’: 9, ’label’: 1})

67

APPENDIX B. ALGORITHMS CODED IN PYTHON 68

Calculation of n choose j

This version saves partial results for use later

nc_matrix = [] #stores the values of nchoose(n,j)

-- note: order of indices is reversed

def nchoose_static(n,j,nc_matrix):

if j>n:

return 0

if len(nc_matrix)<j+1:

for i in range(len(nc_matrix),j+1):

nc_matrix += [[]]

if len(nc_matrix[j])<n+1:

for i in range(len(nc_matrix[j]),j):

nc_matrix[j]+=[0]

if len(nc_matrix[j])==j:

nc_matrix[j]+=[1]

for i in range(len(nc_matrix[j]),n+1):

nc_matrix[j]+=[nc_matrix[j][i-1]*i/(i-j)]

return nc_matrix[j][n]

dynamic programming verion

def nchoose(n,j):

return nchoose_static(n,j,nc_matrix)

#nc_matrix acts as a static variable

get the number of descendants of u and of all vertices on the

path to the root (subroutine for rankprob(t,u))

def numDescendants(t,u):

if t == ():

return [False,False]

if t[2]["label"]==u:

return [True,[t[2]["leaves_below"]-1]]

x = numDescendants(t[0],u)

if x[0] == True:

if t[1]==():

n = 0

else:

n = t[1][2]["leaves_below"]-1

return [True,x[1]+[n]]

y = numDescendants(t[1],u)

if y[0] == True:

if t[0]==():

n = 0

else:

n = t[0][2]["leaves_below"]-1

APPENDIX B. ALGORITHMS CODED IN PYTHON 69

return [True,y[1]+[n]]

else:

return [False,False]

A version of rankprob which uses the function numDescendants

def rankprob(t,u):

x = numDescendants(t,u)

x = x[1]

lhsm = x[0]

k = len(x)

start = 1

end = 1

rp = [0,1]

step = 1

while step < k:

rhsm = x[step]

newstart = start+1

newend = end+rhsm+1

rp2 = []

for i in range(0,newend+1):

rp2+=[0]

for i in range(newstart,newend+1):

q = max(0,i-1-end)

for j in range(q,min(rhsm,i-2)+1):

a = rp[i-j-1]*nchoose(lhsm + rhsm - (i-1),rhsm-j)

*nchoose(i-2,j)

rp2[i]+=a

rp = rp2

start = newstart

end = newend

lhsm = lhsm+rhsm+1

step+=1

tot = float(sum(rp))

for i in range(0,len(rp)):

rp[i] = rp[i]/tot

return rp

For tree "t" and vertex "u" calculate the

expected rank and variance

def expectedrank(t,u):

rp = rankprob(t,u)

mu = 0

sigma = 0

APPENDIX B. ALGORITHMS CODED IN PYTHON 70

for i in range(0,len(rp)):

mu += i*rp[i]

sigma += i*i*rp[i]

return (mu,sigma-mu*mu)

GCD - assumes positive integers as input

(subroutine for compare(t,u,v))

def gcd(n,m):

if n==m:

return n

if m>n:

[n,m]=[m,n]

i = n/m

n = n-m*i

if n==0:

return m

return gcd(m,n)

Takes two large integers and attempts to divide them and give

the float answer without overflowing

(subroutine for compare(t,u,v))

does this by first taking out the gcd

def gcd_divide(n,m):

x = gcd(n,m)

n = n/x

m = m/x

return n/float(m)

returns the subtree rooted at the common ancestor of u and v

(subroutine for compare(t,u,v))

return

True/False - have we found u yet

True/False - have we found v yet

the subtree - if we have found u and v

the u half of the subtree

the v half of the subtree

def subtree(t,u,v):

if t == ():

return [False,False,False,False,False]

[a,b,c,x1,x2]=subtree(t[0],u,v)

[d,e,f,y1,y2]=subtree(t[1],u,v)

if (a and b):

APPENDIX B. ALGORITHMS CODED IN PYTHON 71

return [a,b,c,x1,x2]

if (d and e):

return [d,e,f,y1,y2]

#

x = (a or d or t[2]["label"]==u)

y = (b or e or t[2]["label"]==v)

#

t1 = False

t2 = False

#

if a:

t1 = x1

if b:

t2 = x2

if d:

t1 = y1

if e:

t2 = y2

#

if x and (not y):

t1 = t

elif y and (not x):

t2 = t

#

if t[2]["label"]==u:

t1 = t

if t[2]["label"]==v:

t2 = t

return [x,y,t,t1,t2]

Gives the probability that vertex labeled v is

below vertex labeled u

def compare(t,u,v):

[a,b,c,d,e] = subtree(t,u,v)

if not (a and b):

print "This tree does not have those vertices!"

return 0

if (c[2]["label"]==u):

return 1.0

if (c[2]["label"]==v):

return 0.0

tu = d

tv = e

usize = d[2]["leaves_below"]-1

APPENDIX B. ALGORITHMS CODED IN PYTHON 72

vsize = e[2]["leaves_below"]-1

x = rankprob(tu,u)

y = rankprob(tv,v)

for i in range(len(x),usize+2):

x+=[0]

xcumulative = [0]

for i in range(1,len(x)):

xcumulative+=[xcumulative[i-1]+x[i]]

rp = [0]

for i in range(1,len(y)):

rp+=[0]

for j in range(1,usize+1):

a = y[i]*nchoose(i-1+j,j)*nchoose(vsize-i+usize-j,

usize-j)*xcumulative[j]

rp[i]+=a

tot = nchoose(usize+vsize,vsize)

return sum(rp)/float(tot)

Appendix C

Primate Supertree

73

APPENDIX C. PRIMATE SUPERTREE 74

Figure C.1: Primate Supertree - Figure 3

Figure C.2: Primate Supertree - Figure 4

APPENDIX C. PRIMATE SUPERTREE 75

Figure C.3: Primate Supertree - Figure 5

Figure C.4: Primate Supertree - Figure 6

APPENDIX C. PRIMATE SUPERTREE 76

Figure C.5: Primate Supertree - Figure 7

Figure C.6: Primate Supertree - Figure 8

APPENDIX C. PRIMATE SUPERTREE 77

Figure C.7: Primate Supertree - Figure 9

Figure C.8: Primate Supertree - Figure 10

Figure C.9: Primate Supertree - Figure 11

APPENDIX C. PRIMATE SUPERTREE 78

Figure C.10: Primate Supertree - Figure 12

Figure C.11: Primate Supertree - Figure 13

Bibliography

[1] D. Aldous and R. Pemantle, editors. Random discrete structures, volume 76
of The IMA Volumes in Mathematics and its Applications. Springer-Verlag,
New York, 1996. Papers from the workshop held in Minneapolis, Minnesota,
November 15–19, 1993.

[2] B. R. Baum. Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees. Taxon, 41(1):3–10,
1992.

[3] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch
der Mathematik. Verlag Harri Deutsch, Thun, expanded edition, 2001.

[4] J. K. M. Brown. Probabilities of evolutionary trees. Syst. Biol., 43(1):78–91,
1994.

[5] A. W. F. Edwards. Estimation of the branch points of a branching diffusion
process. (With discussion.). J. Roy. Statist. Soc. Ser. B, 32:155–174, 1970.

[6] B. S. Everitt. The Cambridge dictionary of statistics. Cambridge University
Press, Cambridge, 1998.

[7] D. J. Ford. Probabilities on cladograms: introduction to the alpha model.
Manuscript, 2005.

[8] E. F. Harding. The probabilities of rooted tree-shapes generated by random
bifurcation. Advances in Appl. Probability, 3:44–77, 1971.

[9] A. McKenzie. Stochastic Speciation Models for Evolutionary Trees. PhD
thesis, University of Canterbury, 2000.

[10] A. McKenzie and M. Steel. Distributions of cherries for two models of trees.
Math. Biosci., 164(1):81–92, 2000.

[11] I. Pinelis. Evolutionary models of phylogenetic trees. Roy. Soc. Lond. Proc.
Ser. Biol. Sci., 270(1522):1425–1431+15, 2003. With an electronic appendix
[DOI 10. 1098 spb. 2003. 2374].

[12] M. Ragan. Phylogenetic inference based on matrix representation of trees.
Mol. Phylogenet. Evol., 1:53–58, 1992.

79

BIBLIOGRAPHY 80

[13] S. M. Ross. Stochastic processes. Wiley Series in Probability and Statistics:
Probability and Statistics. John Wiley & Sons Inc., New York, second edition,
1996.

[14] C. Semple and M. Steel. Phylogenetics, volume 24 of Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford, 2003.

[15] M. Steel and A. McKenzie. Properties of phylogenetic trees generated by
Yule-type speciation models. Math. Biosci., 170(1):91–112, 2001.

[16] R. A. Vos and A. O. Mooers. A dated MRP supertree for the order primates.
Manuscript.

[17] Wikipedia. http://en.wikipedia.org/wiki/.

[18] G. U. Yule. A mathematical theory of evolution: based on the conclusions of
Dr. J.C. Willis. Philos. Trans. Roy. Soc. London Ser. B, 213:21–87, 1924.

[19] D. Zwillinger, S. G. Krantz, and K. H. Rosen, editors. CRC standard ma-
thematical tables and formulae. CRC Press, Boca Raton, FL, 30th edition,
1996.

Index

γ-edge, 58

algorithm Compare, 50
algorithm EdgeLength, 63
algorithm RankCount, 42
algorithm RankProb, 48
algorithm RankProbGen, 49
ancestor, 6

direct, 6
Azuma’s inequality, 31

balanced tree, 6
binary resolution, 16

Catalan number, 10
character, 57

binary, 57
full, 57

character state set, 57
cherry, 5
coalescent model, 15
conditional expectation, 28
cycle, 5

descendant, 6
direct, 6

edge, 5
interior, 5
length, 58
pendant, 5

entropy, 19
uniform, 20
Yule, 19

exchangeabilitiy, 9

graph, 5
connected, 5

hypothesis test, 37

information content, 19
initial probability distribution, 59

Kullbach-Liebler distance, 19
uniform-Yule, 23
Yule-uniform, 21

label set, 5
labeled tree, 5
labeling function, 5
leaf, 5
likelihood-ratio test, 37
log-likelihood-ratio test, 38

Markov Chain model, 58
martingale, 30
martingale on trees, 31

Neyman-Pearson Lemma, 37

partial order on a tree, 6
path, 5
phylogenetic X-tree, 5
phylogenetic state tree, 57
phylogenetic tree, 5

number of, 10
ranked, 6

polytomy, 53
power of a test, 37
primates, 53

rank function, 6
number of, 7

ranked phylogenetic tree, 6
number of, 13

rate matrix, 58
rate of speciation, 57

81

INDEX 82

root, 5

state function, 58
state of vertex, 58
subgraph, 5
subtree, 5

induced by v, 6
phylogenetic, 6

supertree, 53

transition matrix, 58
tree, 5

binary, 5
rooted, 5

tree shape, 5
Type I error, 37
Type II error, 37

unbalanced tree, 6
uniform model, 9

entropy, 20
probability of T , 11

vertex, 5
degree of, 5
interior, 5
suppressed, 5

Yule model, 11
continuous-time, 53
entropy, 19
probability of (T , r), 13
probability of T , 14
probability of r given T , 14

