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What Is Statistical Inference?

“The use of a
sample of data to
draw inferences or
conclusions about
some aspect of the
situation from
which the data
were taken.”
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* Typically an alignment of gene sequences, with date and
location of sampling for each. Sometimes phenotypic trait
data is available.

* Population genetic inference usually requires that sequences
are randomly sampled.

* Phylogenetic inference problems often don’t require random
sampling.

* The data is assumed to be correct, although uncertainty in
the data can sometimes be modelled (e.g. ambiguous
nucletoides).

e Alignment uncertainty is usually ignored.



* A mathematical representation of the situation under study
(or of some aspect of the situation).

* There are several types of evolutionary models, often used
in combination.

* Nucleotide substitution models (e.g.]C, HKY, GTR)
* Molecular clock models (e.g. strict, relaxed, local)
* Trait evolution models (e.g. strict, relaxed random walks)

* Population models (e.g. coalescent models)
* Each model has a number of model parameters.

* Is a phylogeny a model or a set of parameters!?



Hypothesis

* A theory about the situation under study.

* Mathematically, a hypothesis is some statement about the
parameter values of the model.
e.g.“the dN/dS of my sequences is >1”

e.g."the date of this phylogenetic node is 1982”

’

e.g."the tree topology of my sequences is

* The data can be used to assess whether a given
hypothesis is reasonable or not.

* The model may have many parameters but the hypothesis
may only concern one of them.The rest are called
nuisance parameters.



Types of Inference

POINT ESTIMATION

* Using the data to estimate values for one or more model parameters.

* e.g.""When was the most recent common ancestor of my sampled
sequences?”

* Data: sequence alignment, dates of sampling, tree topology
* Model: HKY
* Estimated parameter: age of root node

* Nuisance parameters: ages of the other nodes in the tree



Types of Inference

INTERVAL ESTIMATION

* Using the data to provide a range that represents the degree of
uncertainty in the estimate of a parameter.

e.g."What are the 95% confidence intervals for the evolutionary
rate of my sequences?”




Types of Inference

HYPOTHESIS TESTING

* Using the data to measure the relative plausibility of different
statements about the model parameters.

e.g.”’ls my estimated dN/dS value significantly greater than |?”

e.g."Does REV fit my data better than HKY?”

e.g.Can | reject a strict molecular clock?”

e.g."Do sequences A, B & C form a clade in my tree?”




Types of Inference

MODEL SELECTION o

* The process of finding the most
appropriate model for your data.

* It involves a trade-off between
“goodness of fit” and “predictive
power’.

* Adding parameters increases the
former but decreases the latter.

* Remember, even the best-fitting model
may explain the data poorly.




Inference Frameworks

* There are several different types of statistical inference.

* Evolutionary problems often involve complex models

with many parameters, sometimes limited amounts of
data.

* Likelihood and Bayesian inference are practical
methods in this situation. They are related, but differ
philosophically in the way they view probability.




Inference Frameworks

* Likelihood (frequentist) inference: Probabilities refer
only to the outcome of experiments (i.e. data). They
represent the frequencies of outcomes if the experiment
were repeated many times. The degree to which data
supports a hypothesis is termed likelihood.

* Bayesian inference: Both data and model parameters
are described by probabilities. Probability reflects our
degree of belief in a hypothesis, as well as representing
the outcome of experiments. Hence hypotheses have
probabilities even in the absence of data.



Properties of Inference Methods

BIAS: The average deviation of an estimate from
the true value.

VARIANCE: Imprecision, or the degree of

uncertainty in an estimate. Reflected in large
confidence intervals, or in a wide “spread” of
values when estimation is re-run many times. Biased Precise

CONSISTENCY:The convergence of an estimate

to the true parameter value as sample size
increases.

ERROR: The failure of hypothesis tests to get the
right answer as often as they should.

Unbiased

Imprecise




Likelihood

e “A technique for assessing the relative merits of different
hypotheses in the light of the data.”

* The probability of observing data D, given hypothesis H, is
denoted P(D|H). It is defined by the model and is a
probability density function.

* The likelihood of hypothesis H, given data D, is denoted
L(H|D).This is a likelihood function and is directly
proportional to P(D|H).

ie. L(H|D) o P(D|H)

 The constant of proportionality is arbitrary, but is the same
for all hypotheses under the same data.

e Unlike probabilities, likelihoods do not sum to I!



Likelihood Ratios

* |nferences are made by comparing the likelihoods of
different hypotheses on the same data (D).

e.g. hypotheses H; & H; have likelihoods L(H|D) & L(H:|D)
e NEVER COMPARE LIKELIHOODS ON DIFFERENT DATA!

* Likelihoods are very small numbers, so the natural
logarithm of the likelihood, denoted I(H|D), is used.

* Likelihood ratios are therefore log-likelihood differences.
i.e. L(H\|D)/L(H2|D) = I(H:|D) - I(H2|D)



Maximum Likelihood Estimation

Suppose we have a model with one parameter, x;.

We find the value of x; that maximises the likelihood. This value is the

maximum likelihood estimate (MLE) of x;.

A plot of x| against log-likelihood is a log-likelihood curve.

Algebra or optimisation algorithms find the highest point of the curve.

max[l(x7 |D)] |

(X7 |D)

MLE




Maximum Likelihood Estimation

Situation:
Flipping a coin n=10 times

Data:
h=6 Heads, (n-h)=4 Tails

Model:
binomial distribution 6.00E-05-
Likelihood function: >008-051
, , 4.00E-05-
n n-
L[p‘h,n]: (h) p (1 ‘p) L 3.00E-05-
MIE- 2.00E-05-
1.00E-051
ﬁ = h/n
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Maximum Likelihood Estimation

* |f we have two parameters, x; &
x2, then the pair of x; & x2
values that maximises the
likelihood function must be
found.

e Optimisation algorithms try to
find the maximum point.

* This can be a computationally
difficult problem.




Likelihood Ratio Statistic

e The likelihood ratio statistic (LRS) is used to compare
hypotheses.

e Suppose we have two hypotheses, H; & Hz. These can represent

specific parameter values, or regions of parameter space, or
whole models.

e LRS =2 *{ max[I(H|D)] - max[I(H2|D)] }




Likelihood Ratio Statistic

* |f the hypotheses are nested (one is a special case of the other)
then the LRS can be used to compare their goodness-of-fit.*

e The LRS is also used to calculate confidence limits for MLEs.*

* Non-nested hypotheses can be compared using the Akaike
Information Criterion (AIC). For hypothesis

AIC(H) = max[ I(H|D) ] - n

where n is the number of parameters in the model.

e “Better” hypotheses have higher AIC values.

* Not covered in this lecture.



SEVENERRINTE E

e Bayesian inference produces a posterior probability distribution rather
than a likelihood curve.

* The “posterior” combines information from the data and from previous
knowledge. (Likelihood = the data only.)

e Each parameter in the model has a prior probability distribution
representing our previous knowledge about that parameter.

* The “prior” can be strong or weak...

e e.g. “Human heights follow a normal distribution with mean = |.7m and
standard deviation = |5cm”

e e.g.“Human heights follow a uniform (flat) distribution between 10-'m
and 102 m.”
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SEVENERRINTE E

If the posterior and the prior look similar then the data is
not very informative about the parameter in question.
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Posterior distributions are defined using Bayes’ Theorem.*

* Not covered in this lecture.



Posterior Distributions

Posterior distributions are very difficult to calculate directly. However, we
can approximate the posterior distribution by using Markov Chain Monte

Carlo (MCMC) sampling.

This algorithm walks around parameter space in a pseudo-random way. It
moves quickly through ‘low’ regions and slowly in ‘high’ regions whilst
keeping a record of where it has been.
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Posterior Distributions

Parameters are estimated by finding the mean or median of the
posterior distribution. These are Bayesian posterior estimates (BPEs).

posterior probability
distribution

BPE
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Posterior Distributions

Here, the posterior is cut off at x=0.75 by the prior.The data support values
of x>0.75, but the prior won’t allow this.
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Credible Regions

The Bayesian equivalent of a confidence interval is called the
highest posterior density (HPD) credible region. This is the
smallest region that contains 95% of the posterior probability.
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Credible Regions
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Bayesian Hypothesis Testing

* Posteriors are proper probability distributions (unlike
likelihood curves). So hypotheses can be tested by simply

inspecting areas under the curve (e.g. is parameter
x>1.0?)

* The Bayesian equivalent of the likelihood ratio statistic is

the “Bayes Factor”.
That is the worst model |
have ever seen.




Bayesian Model Selection

* The Bayes factor (BF) is the ratio of the probability of
model | to the probability of model 2, on data D.

BF = p(D|M)) / p(D|M>)

e The models don’t have to be nested.

* M;and M; can represent different models or different
regions of parameter space (e.g. M=x<I| vs M=x>1).

e Calculating p(D|M)) is computationally difficult.



Bayesian Model Selection

Bayes factor Interpretation
<1 M1 is actually worse than M2
1to3 Barely worth mentioning
3t0 10 Substantial support for M1
10 to 30 Strong support for M1
30 to 100 Very strong support for M1
>100 Decisive evidence in favour of M1




