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What Is Statistical Inference?

“The use of a 
sample of data to 

draw inferences or 
conclusions about 
some aspect of the 

situation from 
which the data 
were taken.”
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• Typically an alignment of gene sequences, with date and 
location of sampling for each. Sometimes phenotypic trait 
data is available.

• Population genetic inference usually requires that sequences 
are randomly sampled.

• Phylogenetic inference problems often don’t require random 
sampling.

• The data is assumed to be correct, although uncertainty in 
the data can sometimes be modelled (e.g. ambiguous 
nucletoides).

• Alignment uncertainty is usually ignored. 

Data



• A mathematical representation of the situation under study 
(or of some aspect of the situation).

• There are several types of evolutionary models, often used 
in combination.

• Nucleotide substitution models (e.g. JC, HKY, GTR)

• Molecular clock models (e.g. strict, relaxed, local)

• Trait evolution models (e.g. strict, relaxed random walks)

• Population models (e.g. coalescent models)

• Each model has a number of model parameters.

• Is a phylogeny a model or a set of parameters?

Model



•A theory about the situation under study.

•Mathematically, a hypothesis is some statement about the 
parameter values of the model.

e.g. “the dN/dS of my sequences is >1”

e.g. “the date of this phylogenetic node is 1982”

e.g. “the tree topology of my sequences is            ”

•The data can be used to assess whether a given 
hypothesis is reasonable or not.

•The model may have many parameters but the hypothesis 
may only concern one of them. The rest are called 
nuisance parameters.

Hypothesis



POINT ESTIMATION 

• Using the data to estimate values for one or more model parameters.

• e.g. “When was the most recent common ancestor of my sampled 
sequences?”

• Data: sequence alignment, dates of sampling, tree topology

• Model: HKY

• Estimated parameter: age of root node

• Nuisance parameters: ages of the other nodes in the tree

Types of Inference



INTERVAL ESTIMATION 

• Using the data to provide a range that represents the degree of 
uncertainty in the estimate of a parameter.

e.g. “What are the 95% confidence intervals for the evolutionary 
rate of my sequences?”

Types of Inference



HYPOTHESIS TESTING 

• Using the data to measure the relative plausibility of different 
statements about the model parameters.

e.g. “Is my estimated dN/dS value significantly greater than 1?” 

e.g. “Does REV fit my data better than HKY?”

e.g. “Can I reject a strict molecular clock?”

e.g. “Do sequences A, B & C form a clade in my tree?”

Types of Inference



MODEL SELECTION 

• The process of finding the most 
appropriate model for your data.

• It involves a trade-off between 
“goodness of fit” and “predictive 
power’.

• Adding parameters increases the 
former but decreases the latter.

• Remember, even the best-fitting model 
may explain the data poorly.

Types of Inference
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There are no mathematical equations in On the Origin 
of Species. A good thing too, you might think, and it 
is undoubtedly true that Darwin’s clear and fl owing 

narrative style helped ensure the popularity of his writings. 
Modern research in evolutionary biology can make for less 
easy reading. Much of it concerns the development of an 
expanding arsenal of mathematical and statistical techniques, 
necessary to do battle with the relentless onslaught of gene and 
genome sequences. Of course, the discrete, ordered nature of 
genetic information and the stochastic character of Mendelian 
inheritance have naturally lent themselves to numerical 
analysis. Consequently, the mathematical foundations of 
evolutionary genetics have, somewhat unusually for biology, 
tended to precede the data to which they are applied. The 
Genetical Theory of Natural Selection by R. A. Fisher, published 
only fi fty years after Darwin’s death, is full of equations [1].

The simplest weapon in the armoury of evolutionary 
genetics is genetic distance, a measure of the number of 
evolutionary changes between sequences from different 
organisms. Genetic distances can be calculated for a pair of 
sequences by simply counting the number of nucleotides 
or amino acids that differ between them. Unfortunately, 
this approach underestimates the amount of evolutionary 
change because it does not account for the fact that each 
site may change more than once during evolutionary history. 
Statistical tools, called nucleotide or amino acid substitution 
models, are therefore used to estimate genetic distances 
between sequences. There is a bewildering hierarchy of 
substitution models available, each making a different and 
specifi c set of assumptions about the evolutionary process 
of sequence change [2]. The simplest models assume that 
all types of mutation are equivalent and that all sites in a 
sequence change at the same rate. More complex models 
loosen these assumptions, allowing heterogeneity in the 
process of sequence change, but they can be reliably applied 
to larger datasets only. The task of deciding amongst these 
competing models is known as statistical model selection 
and can be thought of as a trade-off between model accuracy 
and model complexity. The degree to which a model fi ts 
the data at hand (accuracy) is always improved by adding 
more parameters (complexity), but since the amount of 
data remains constant the statistical uncertainty about each 
parameter increases. In addition, the biological meaning 
of each parameter becomes harder to decipher so the 
explanatory power of the model decreases (Figure 1). 
Thus the chosen model should have enough parameters 
to adequately explain the data—but no more. Once an 
appropriate model is chosen, genetic distances are combined 
using other statistical techniques to generate a phylogenetic 
tree of the sequences being studied [2]. The lengths of the 
branches in the phylogeny thus represent estimated numbers 
of sequence changes (Figure 2A).

However, genetic distances are rather crude indicators of 
evolutionary history. A small genetic distance between two 
sequences may suggest a recent common ancestor, but is 
also consistent with a slower rate of sequence change and 
a more ancient common ancestor (i.e., genetic distance 
= evolutionary rate × time). Genetic distances alone are 
therefore of little use if, for example, we wish to know the age 
of the common ancestor of mammals, or the rate at which 
bacterial antibiotic resistance genes evolve. Such questions 
can be answered only if independent information about 
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Figure 1. An Illustration of the General Properties of Model Selection
(A) A hypothetical dataset consisting of thirteen points plotted on 
two axes. (B) A simple model, represented by a straight line through 
the points. This model has few parameters but does not fi t the data 
particularly well. (C) A very complex model, which fi ts the data almost 
perfectly but has too many parameters. The estimated parameters tell us 
little about the biological process that gave rise to the data. (D) A model 
with an intermediate number of parameters represented by a curve. This 
fi ts the data well but still has relatively few parameters and therefore has 
greater explanatory power.



Inference Frameworks

• There are several different types of statistical inference.

• Evolutionary problems often involve complex models 
with many parameters, sometimes limited amounts of 
data.

• Likelihood and Bayesian inference are practical 
methods in this situation. They are related, but differ 
philosophically in the way they view probability.



• Likelihood (frequentist) inference: Probabilities refer 
only to the outcome of experiments (i.e. data).  They 
represent the frequencies of outcomes if the experiment 
were repeated many times. The degree to which data 
supports a hypothesis is termed likelihood.

• Bayesian inference: Both data and model parameters 
are described by probabilities. Probability reflects our 
degree of belief in a hypothesis, as well as representing 
the outcome of experiments. Hence hypotheses have 
probabilities even in the absence of data.

Inference Frameworks



• BIAS: The average deviation of an estimate from 
the true value.

• VARIANCE:  Imprecision, or the degree of 
uncertainty in an estimate. Reflected in large 
confidence intervals, or in a wide “spread” of 
values when estimation is re-run many times.

• CONSISTENCY: The convergence of an estimate 
to the true parameter value as sample size 
increases.

• ERROR: The failure of hypothesis tests to get the 
right answer as often as they should.

Properties of Inference Methods



• “A technique for assessing the relative merits of different 
hypotheses in the light of the data.”

• The probability of observing data D, given hypothesis H, is 
denoted P(D|H). It is defined by the model and is a 
probability density function.

• The likelihood of hypothesis H, given data D, is denoted   
L(H|D). This is a likelihood function and is directly 
proportional to P(D|H).

i.e.    L(H|D) ∝ P(D|H)

• The constant of proportionality is arbitrary, but is the same 
for all hypotheses under the same data.

• Unlike probabilities, likelihoods do not sum to 1!

Likelihood



• Inferences are made by comparing the likelihoods of 
different hypotheses on the same data (D).

e.g.   hypotheses H1 & H2 have likelihoods L(H1|D) & L(H2|D)

• NEVER COMPARE LIKELIHOODS ON DIFFERENT DATA! 

• Likelihoods are very small numbers, so the natural 
logarithm of the likelihood, denoted l(H|D), is used. 

• Likelihood ratios are therefore log-likelihood differences.
i.e.   L(H1|D) / L(H2|D)  =  l(H1|D) - l(H2|D)

Likelihood Ratios



• Suppose we have a model with one parameter, x1. 

• We find the value of x1 that maximises the likelihood.  This value is the 
maximum likelihood estimate (MLE) of x1.

• A plot of x1 against log-likelihood is a log-likelihood curve.

• Algebra or optimisation algorithms find the highest point of the curve. 

Maximum Likelihood Estimation

l(x
1
 |D
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max[l(x1 |D)]
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Maximum Likelihood Estimation
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Situation: 
Flipping a coin n=10 times 

Data: 
h=6 Heads, (n-h)=4 Tails 

Model:  
binomial distribution 

Likelihood function: 

MLE: 



• If we have two parameters, x1 & 
x2, then the pair of x1 & x2 
values that maximises the 
likelihood function must be 
found.

• Optimisation algorithms try to 
find the maximum point.

• This can be a computationally 
difficult problem.

Maximum Likelihood Estimation

44 Jonathan Richard Shewchuk
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Figure 37: Convergence of the nonlinear Conjugate Gradient Method. (a) A complicated function with many

local minima and maxima. (b) Convergence path of Fletcher-Reeves CG. Unlike linear CG, convergence

does not occur in two steps. (c) Cross-section of the surface corresponding to the first line search. (d)

Convergence path of Polak-Ribière CG.



• The likelihood ratio statistic (LRS) is used to compare 
hypotheses.

• Suppose we have two hypotheses, H1 & H2. These can represent 
specific parameter values, or regions of parameter space, or 
whole models. 

• LRS = 2 * { max[l(H1|D)] - max[l(H2|D)] } 

Likelihood Ratio Statistic



• If the hypotheses are nested (one is a special case of the other) 
then the LRS can be used to compare their goodness-of-fit.*

• The LRS is also used to calculate confidence limits for MLEs.*

• Non-nested hypotheses can be compared using the Akaike 
Information Criterion (AIC). For hypothesis H:

AIC(H) = max[ l(H|D) ] - n 

where n is the number of parameters in the model.

• “Better” hypotheses have higher AIC values. 

Likelihood Ratio Statistic

* Not covered in this lecture. 



• Bayesian inference produces a posterior probability distribution rather 
than a likelihood curve.

• The “posterior” combines information from the data and from previous 
knowledge. (Likelihood = the data only.)

• Each parameter in the model has a prior probability distribution 
representing our previous knowledge about that parameter.

• The “prior” can be strong or weak...

• e.g.  “Human heights follow a normal distribution with mean = 1.7m and 
standard deviation = 15cm”

• e.g. “Human heights follow a uniform (flat) distribution between 10-10 m 
and 1026 m.”

Bayesian Inference



https://xkcd.com/1132/



Bayesian Inference

If the posterior and the prior look similar then the data is 
not very informative about the parameter in question.

Posterior distributions are defined using Bayes’ Theorem.*

* Not covered in this lecture. 



Posterior Distributions

Posterior distributions are very difficult to calculate directly. However, we 
can approximate the posterior distribution by using Markov Chain Monte 

Carlo (MCMC) sampling. 

This algorithm walks around parameter space in a pseudo-random way. It 
moves quickly through ‘low’ regions and slowly in ‘high’ regions whilst 

keeping a record of where it has been. 



Posterior Distributions
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Parameters are estimated by finding the mean or median of the 
posterior distribution. These are Bayesian posterior estimates (BPEs).



Posterior Distributions
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Credible Regions

Parameter (x)

The Bayesian equivalent of a confidence interval is called the 
highest posterior density (HPD) credible region. This is the 

smallest region that contains 95% of the posterior probability.
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Credible Regions
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• Posteriors are proper probability distributions (unlike 
likelihood curves). So hypotheses can be tested by simply 
inspecting areas under the curve (e.g. is parameter 
x>1.0?)

• The Bayesian equivalent of the likelihood ratio statistic is 
the “Bayes Factor”.

Bayesian Hypothesis Testing

That is the worst model I 
have ever seen. 



• The Bayes factor (BF) is the ratio of the probability of 
model 1 to the probability of model 2, on data D.

• The models don’t have to be nested. 

• M1 and M2 can represent different models or different 
regions of parameter space (e.g. M1=x<1 vs M2=x>1).

• Calculating p(D|M1) is computationally difficult.

Bayesian Model Selection

BF = p(D|M1) / p(D|M2)



Bayesian Model Selection

Bayes factor Interpretation

<1 M1 is actually worse than M2

1 to 3 Barely worth mentioning

3 to 10 Substantial support for M1

10 to 30 Strong support for M1

30 to 100 Very strong support for M1

>100 Decisive evidence in favour of M1


