
Lab Rotation Report

Topological Filtering

Simon Möller

April 8, 2015

Discriminating between various models of complex biological systems is a di�cult task in com-

putational biology. One approach in the study of chemical reaction networks is topological filtering.

Starting from a model that incorporates all hypothetical reactions, this method finds a set of re-

duced models which are still in agreement with given measurement data. Reducing the root model

corresponds to eliminating kinetic parameters that describe the involved reactions. Previously this

elimination was done by setting the parameter to some small " rather than 0. In this report we

demonstrate that this can lead to qualitatively di↵erent results. We also analyze how quality and

quantity of measurement data influence the results of the method for a small test network. Higher

quality data leads to fewer viable models, whereas simply increasing the number of measurements

does not have the same e↵ect. Additionally, we provide the source code for the method as a MAT-

LAB package and describe its usage.

1 Introduction

Computational models are an important tool to understand biological systems and to generate quantitative

predictions that can be experimentally validated. Networks of chemical reactions are often modeled using

ordinary di↵erential equations. In such a model the temporal evolution of the state variables, representing

the concentrations of the chemical species of interest, is determined by the network structure and reaction

rates. These rates depend on kinetic parameters, which constitute parameters of the model. Namely, kinetic

parameters can be assumed to be constant over time. However, values of these parameters are often unknown.

In principle, measuring them precisely is ine�cient (cf. [1]). Additionally, the structure of the network is also

uncertain (i.e. it is unclear which reactions actually happen).

1.1 The topological filtering method

A common approach is to start with a simple, well-established core-model and then add possible hypotheses. In

this study we are looking at a di↵erent approach called topological filtering that was introduced in [2]. Starting

from a root model that incorporates all proposed reactions, the method tries to eliminate in an iterative fashion

unnecessary model parameters, respectively reactions (model space exploration). This is done by an approximate

verification of the model behavior for a wide range of values of its parameters (parameter space exploration).

We assume that some experimental data is given to which we can compare the output of the model for each

set of parameters. Assuming that the errors between model and measurement data, ", are normally distributed

with mean 0, the likelihood of the observed data Y , given a model M and a parameter point ✓ is given by a

1

multivariate normal distribution

p(Y |✓,M) =
1p

(2⇡)⇢|S|
e

� 1
2 "

T
S

�1
"

, (1)

where ⇢ is the number of data points (i.e. number of observable species times number of time points) and S

is the covariance matrix of these data points. To determine the viability of ✓ we check whether the minus

log-likelihood function E(✓, Y,M) := � ln[p(Y |✓,M)] is smaller than the viability threshold:

E

0

(✓⇤,M⇤) := ln(e
p
2⇢

p
(2⇡e)⇢|S|). (2)

The threshold is derived as an expected value plus two standard deviations over all data points of the true

parameter point and true model pair (✓⇤,M⇤). Derivation details of the parameter point viability criterion can

be found in the supplementary material of [2]. Note that only ⇢ and S are needed to compute E

0

.

We use the method described in [3] to explore the parameter space within given bounds of parameter values

and obtain a representative sample of viable parameter space.

For each viable parameter point the parameters are checked for being nonessential one at a time, by setting

their value to zero, or some small value ", and by checking whether the 0 or "-projected parameter point remains

viable. For multiplicative parameters of reaction rates, such as mass action kinetics constants, projection of that

parameter corresponds to an elimination of the respective reaction. For other parameters projection simplifies

the respective reaction rate function. Subsequently, all parameters which are nonessential individually are

projected simultaneously. Fig. 1 illustrates an example in which, for a given parameter point, parameters

1, 2 and 3 are nonessential when eliminated one at a time, whereas parameter 4 is essential. Hence, the

models M�{1}, M�{2}, and M�{3} are viable (colored in green) and the algorithm moves on to checking their

composition M{4} (i.e. only parameter 4 is not projected), skipping the second order models in between (colored

in gray). If M{4} is found to be viable, it is saved as a possible reduced model and serves as a starting point

for another round of topological filtering. If it is not viable for currently given parameter point, the method,

originally, proceeds to the next parameter point. Moreover, since parameter 4 was found to be essential when

eliminated individually, non of the models that eliminate 4 are explored for this parameter point (dashed boxes).

1.2 Motivation and results

The goal of this project is to highlight some of the shortcomings of the method itself as well as the previous

implementation. One deviation between that implementation and the theoretical concept was that parameters

were not projected to 0, but rather to some small value " for numerical reasons. By using a simple, two-

species network we will illustrate possible consequences of this. We also aim to provide an understanding of the

method’s uncertainty by analyzing a test network of four species. We analyze how the quality and quantity of

measurements and parameter sampling influences the topological filtering outcome for the model.

In Section 4 we discuss further, in a more general manner, design choices for the method, with possible

influences on its results.

Besides the theoretical work in this project, we also provide the implementation such that the method can

be used as a MATLAB package. A description of the package and a short discussion of the runtime is given in

Section 5.

2 Shortcomings of the parameter projection: a simple example

In the first case study we consider a very simple model that allows us to illustrate some special cases that can

occur during the exploration of the model space.

Model description We consider two chemical species with concentration x

1

and x

2

. The first species is

produced and degraded with rates u(t) and k

1

x

1

(t) respectively. It acts as a ligand that enhances the production

2

M�{1}

M�{1,2} M�{2,3}M�{1,3}

M�{4}M�{3}M�{2}

M{4}

M�{}

M{}

M�{3,4}M�{2,4}M�{1,4}

M{1}M{2}M{3}

Figure 1: Illustration of the model space exploration. The subscripts denote which parameters have been deleted

from (when preceded with a minus sign) or are present in the model. Green and red labels indicate

viable and non-viable models, respectively. The yellow label represents an unchecked model. Gray

labels and dashed boxes indicate models that are not being explored.

of the second species, a target protein, with rate k
3

x

1

(t). The second species is additionally produced at constant

rate k

2

and degraded with rate k

4

x

2

(t):

dx

1

(t)

dt

= �k

1

x

1

(t) + u(t)

dx

2

(t)

dt

= k

2

+ k

3

x

1

(t)� k

4

x

2

(t),

(3)

with initial conditions x
1

(0) = x

0

1

, x

2

(0) = x

0

2

. We consider here the special case with u(t) = 0, x0

1

> 0, i.e. the

ligand is only produced instantaneously at t = 0, and x

0

2

= 0. We get:

dx

1

(t)

dt

= �k

1

x

1

(t)

dx

2

(t)

dt

= k

2

+ k

3

x

1

(t)� k

4

x

2

(t).

(4)

The steady state of this system is

x

⇤
1

= 0

x

⇤
2

= k

2

/k

4

.

(5)

On the other hand, if we consider the reduced model with k

1

= 0, i.e. with a non-degradable ligand, we find

that
x

1

(t) = x

0

1

= const. > 0

x

⇤
2

=
k

3

x

0

1

+ k

2

k4
.

(6)

Experimental setup We assume that we can experimentally observe only the concentration x

2

at one time

point and denote this observable with y

1

. Thus, in Eq. (2) we have ⇢ = 1. Defining S = y

1

� and using a sample

parameter point and measurement error from Table 1 we find that the viability criterion is E
0

= 2.49.

3

Mikolaj Rybinski
missing ^2

Mikolaj Rybinski
missing square error fix: delta = 0.0707

Table 1: Parameter values used for the simulation.

Name Value

k

1

0.04

k

2

8

k

3

1

k

4

1

x

0

1

10

x

0

2

0

y

1

10

� 0.05

20 40 60 80 100
t

5

10

15

x1(t)
x2(t)
k2

Figure 2: Time course of model 1 with the parameters given in Table 1. The concentration of the ligand, x
1

,

decreases exponentially, while the concentration of the protein, x
2

, first increases steeply and then

slowly approaches its steady state from above (k
2

, shown as a dashed line).

Fig. 2 shows the time course of x
1

and x

2

for the parameters specified in Table 1.

Assume now that k

3

and k

4

are fixed at given values, and we only explore parameter space for k

1

and k

2

.

Fig. 3 depicts the viable parameter space at three di↵erent time points. The threshold contour is shown in red.

As time progresses the horizontal stripe of viable space around k

2

= y

1

= 10 extends towards the k

2

-axis. This

is because we have x

⇤
2

= k

2

for k
1

> 0 (Eq. (5)), i.e. x
2

(t) approaches the value of k
2

as t goes to infinity. For

the reduced model with k

1

= 0 we have we have x

⇤
2

= x

0

1

+ k

2

= y

1

+ k

2

(Eq. (6)), i.e. the origin is always a

viable parameter point.

Observations Using above setup, Fig. 4 illustrates two cases which show how a projection to some small " can

lead to qualitatively very di↵erent results than a projection to 0. Fig. 4a illustrates one of the shortcomings of

the previous implementation. Assume 0.1 as the lower bound of k
1

for parameter sampling. To check whether

k

1

is essential, the viable parameter points are projected to some small value k
1

= "

1

rather than to k

1

= 0. Fix

"

1

= 0.01, i.e. one order of magnitude smaller than the lower boundary. As the figure shows, the "-projection of

the viable parameter point still lies within the viable region, while a projection to k

1

= 0 would not thus giving

rise to a false positive. For any "

1

and any lower bound for k

1

one can fix a large enough measurement time

point such that this case would occur.

Analogously, Fig. 4b shows (for di↵erent values of the sampling boundary and "

1

) how two false positive

predictions of one at a time "-projections can lead to a true positive prediction when combined. The one at

a time projections of k
1

and k

2

to "

1

and "

2

, respectively, are incorrectly classified as viable. A subsequent

check of the simultaneous elimination of both parameters would, however, correctly classify the resulting model

as viable. Using a projection to 0, this reduced model would not have been identified as the one at a time

projections would not have been viable.

4

Mikolaj Rybinski
0.0707 (cf. text)

0.00 0.02 0.04 0.06 0.08
0

2

4

6

8

10

12

k1

k 2

(a) t = 50

0.00 0.02 0.04 0.06 0.08
0

2

4

6

8

10

12

k1

k 2

(b) t = 100

0.00 0.02 0.04 0.06 0.08
0

2

4

6

8

10

12

k1

k 2

20

60

100

140

(c) t = 200

Figure 3: Contour plot of the cost function at three di↵erent time points using the parameters in Table 1. The

contour for the threshold at E
0

= 2.49 is depicted in red.

5

0.00 0.02 0.04 0.06 0.08 0.10 0.12
6

7

8

9

10

11

12

k1

k 2

(a) While the "-projection still lies within the

viable space, a projection to k1 = 0 would

not.

0.0000 0.0005 0.0010 0.0015 0.0020
0

2

4

6

8

10

k1

k 2

(b) The two "-projections are incorrectly classi-

fied as viable thus predicting correctly that

the combination of eliminating k1 and k2 is

viable as well.

Figure 4: Contour plots of the cost function for t = 250 and a sampled parameter point in di↵erent scenarios.

The projection to some " is shown as a black, dashed line, the lower boundary for sampling of k
1

is

depicted by the orange, dashed line.

The current implementation allows the user to specify for each parameter to which value it should be projected.

3 Uncertainty assessment in the method

Since the parameter exploration in the topological filtering method is random, di↵erent results can be produced

for the same model and data set. The goal of this part of the experiment is to assess the reliability of the results.

Additionally we want to find out how the set of viable models depends on the the quantity and quality of the

measurement data.

Model description We use a small test network that was described and analyzed in [2] (see Fig. 5a). In this

network a substrate A is converted through an intermediate species B into a product C in a two-step process,

with the first step being modeled using the two-parameter Michaelis-Menten kinetics rate law. The product

can be converted back to substrate or degrade. A fourth species D is a complex of the substrate and the

product, introducing reversible inhibitory mechanism for the substrate-product conversion cycle. Seven kinetic

parameters are describing the reactions. The true model, used to generated data, excludes C degradation and

D species reactions. The mathematical details of the model can be found in the supplementary material of [2].

This model illustrates one of the caveats that need to be kept in mind for the model space exploration: The

parameter k
7

, standing for D dissociation back into A and C, can not be eliminated individually, even though

it was set to 0 to generate the data. It can only be removed in combination with the parameter of the reverse

reaction k

6

. This shows the necessity for “recursive search”, i.e. using already reduced models to further explore

model space. In this case parameter k
6

can be eliminated individually and subsequently we can also eliminate

k

7

(in fact, the value of k
7

is of no importance once k
6

is eliminated since the concentration of D will remain 0).

Experimental setup To assess the influence of the quality and quantity of the measured data on the results we

used synthetic datasets. We generated the datasets by simulating the model for the same parameters as in [4].

In that setup, k
5

= k

6

= k

7

= 0, i.e. degradation of C and the inhibition by D do not take place. We based our

6

(a) Example network with four chemical species

and seven kinetic parameters. Dashed lines

represent reactions that were eliminated

when we generated the artificial data. The

figure was taken from [2].

0 200 400
50
100
150

t

[A
](t
)

0 200 400
20
40
60

t

[C
](t
)

(b) Time course of the concentrations of

species A and C for a simulation of

the model using the parameters given

in [4].

Figure 5

analysis on the work in [2] and considered species A and C as observable. The time course of the concentration

for those two species is shown in Fig. 5b.

In the first part of the experiment we took the results at 20 uniformly distributed time points between 25

and 500 seconds. We then set the standard deviation for species x 2 A,C at each measurement point t to

�

x

(t) = �x(t) + 0.02x
max

, (7)

where � is the relative standard deviation, x(t) is the concentration of either species A or C at time t and x

max

is the maximum concentration of the respective species over the entire course of the simulation. We generated

datasets for � 2 {0.05, 0.1, 0.15}. For the second part of the experiment, we fixed � = 0.1 and varied the number

of time points to 10, 20, and 30, again creating three datasets.

For all six datasets, we performed ten runs of topological filtering with S = diag
�
�

x

(t
1

), . . . ,�
x

(t
p

)
�
. We

counted how often each of the reduced models was found to be viable. The parameters for the parameter space

exploration were fixed to nmont = 100 and nelip = 30. We explored all parameters in the range [10�4

, 104].

Parameter k

2

corresponds to a Michaelis-Menten constant and was projected to " = 10�5, while all other

parameters were projected to 0.

We also investigated how the parameter space sampling quality a↵ects the outcome of the method. For

� = 0.1 and 20 time points, we chose nmont 2 {102, 103, 104} always setting nelip = nmont/10, performing 10

runs of topological filtering.

Reproduction of previous results This test network has been analyzed using the topological filtering method

before for data with 20 time points [2]. Seven reduced viable models were reported. We discovered additional

models in our experiments. The discussion on this model in [2] was, however, very brief. In particular, it was

not stated explicitly how the noise for the artificial data was generated which can explain the deviation between

the findings. Also, the topological filtering method is not exact so varying outcomes can occur.

Observations Changing the standard deviation results in a change of the covariance matrix S which in turn

a↵ects the viability threshold E

0

(cf. Eq. (2)) as well as the likelihood function p (cf. Eq. (1)). For the three

di↵erent relative standard deviations �, we find E

0

= 126.62, 146.65, and 159.92, respectively. Therefore it is

expected that more models will be viable for larger values of � which is indeed the case as illustrated in Fig. 6.

Note that positive counts below 10 indicate that the respective model was only found to be viable in some of

the runs. Better quality of measurements, leads to a smaller viable space for the reduced models and thus the

7

5 10 15
0

5

10
0000010

co
un

ts

5 10 15
0

5

10
0000011

5 10 15
0

5

10
0000100

5 10 15
0

5

10
0000110

5 10 15
0

5

10
0000111

5 10 15
0

5

10
0001000

5 10 15
0

5

10
0001010

co
un

ts

5 10 15
0

5

10
0001011

5 10 15
0

5

10
0001100

5 10 15
0

5

10
0001110

5 10 15
0

5

10
0001111

5 10 15
0

5

10
0100000

5 10 15
0

5

10
0100011

co
un

ts

5 10 15
0

5

10
0100100

5 10 15
0

5

10
0100110

5 10 15
0

5

10
0100111

5 10 15
0

5

10
0101000

5 10 15
0

5

10
0101010

5 10 15
0

5

10
0101011

co
un

ts

rel. std [%]
5 10 15

0

5

10
0101100

rel. std [%]
5 10 15

0

5

10
0101110

rel. std [%]
5 10 15

0

5

10
0101111

rel. std [%]
5 10 15

0

5

10
1001100

rel. std [%]
5 10 15

0

5

10
1101100

rel. std [%]

Figure 6: For three di↵erent values of the relative standard deviation, �, we performed ten runs of topological

filtering and counted how often each reduced model was discovered as viable. The title string of each

subplot encodes the reduced model as a binary string with a 1 in the ith position indicating that the

ith parameter has been eliminated.

likelihood of sampling a parameter in that space decreases (cf. Fig. 6, models 0001110 and 0001111, or models

1001100 and 1101100). Model 1101100 corresponds to a chemical reaction network that di↵ers substantially

from the one that was used to generate the data. Fig. 7 shows, however, that the resulting time course of

concentrations does resemble the original data under high enough measurement uncertainty.

Fig. 8 shows the results for varying the number of time points. Again, increasing the number increases the

threshold E

0

, in this case to 75.07, 146.65, and 217.62, respectively. The results are, however, di↵erent from

the previous case. For each model, the number of times it is found viable is similar for all obtained values of

E

0

. The changes in the shape of the viable parameter space due to additional time points appear to o↵set the

increase in the threshold. We do clearly see that some models are found with far greater reliability than others.

Increasing the number of sampled parameter points as well as repeated sampling during the recursive search

would probably reduce this di↵erence.

It should be noted that in our experiment the measurements were exact and we simply fixed the standard

deviation to a certain value. In a real experiment, the measurement will be noisy and in such a situation adding

more measurements will most likely a↵ect the outcome of the method.

The results for the experiment in which we varied the number of sampled parameter points are shown in

Fig. 9. Exploring the viable parameter space in more detail increases the chances to find viable reduced models

which occupy a small viable subspace of the sampled parameter space. Examples for such models are 0001110

and 0101111 that were only discovered for nmont = 104. Other models (such as 0100000 in which only k

2

has

been reduced) are found in every run for all values of nmont. In general, increasing the number of runs or the

number of explored parameters increases the chances of finding additional reduced models that are viable at

the cost of higher computation time (compare section 5.2).

8

0 200 400
50
100
150

t
[A
](t
)

0 200 400
20
40
60

t

[C
](t
)

Figure 7: Example time course for the reduced model 1101100 (i.e. parameters k

1

, k

2

, k

4

, and k

5

have been

eliminated) together with artificial measurement for � = 0.15 for which this model was found to be

viable. The remaining parameters were set to k

3

= 0.0117, k
4

= 0.0004, and k

7

= 0.0599 resulting in

a cost of E = 159.74 barely under the threshold E

0

= 159.92.

10 20 30
0

5

10
0000010

co
un

ts

10 20 30
0

5

10
0000011

10 20 30
0

5

10
0000100

10 20 30
0

5

10
0000110

10 20 30
0

5

10
0000111

10 20 30
0

5

10
0001000

10 20 30
0

5

10
0001010

co
un

ts

10 20 30
0

5

10
0001011

10 20 30
0

5

10
0001100

10 20 30
0

5

10
0001110

10 20 30
0

5

10
0001111

10 20 30
0

5

10
0100000

10 20 30
0

5

10
0100010

co
un

ts

time points
10 20 30

0

5

10
0100011

time points
10 20 30

0

5

10
0100100

time points
10 20 30

0

5

10
0100111

time points
10 20 30

0

5

10
0101000

time points
10 20 30

0

5

10
0101100

time points

Figure 8: Similar to Fig. 6, but this time we varied the number of time points to three di↵erent values.

9

2 3 4
0

5

10
0000010

co
un

ts

2 3 4
0

5

10
0000011

2 3 4
0

5

10
0000100

2 3 4
0

5

10
0000110

2 3 4
0

5

10
0000111

2 3 4
0

5

10
0001000

2 3 4
0

5

10
0001010

co
un

ts

2 3 4
0

5

10
0001011

2 3 4
0

5

10
0001100

2 3 4
0

5

10
0001110

2 3 4
0

5

10
0001111

2 3 4
0

5

10
0100000

2 3 4
0

5

10
0100010

co
un

ts

2 3 4
0

5

10
0100011

2 3 4
0

5

10
0100100

2 3 4
0

5

10
0100110

2 3 4
0

5

10
0100111

2 3 4
0

5

10
0101000

nmont [1e]

2 3 4
0

5

10
0101010

co
un

ts

nmont [1e]
2 3 4

0

5

10
0101011

nmont [1e]
2 3 4

0

5

10
0101100

nmont [1e]
2 3 4

0

5

10
0101110

nmont [1e]
2 3 4

0

5

10
0101111

nmont [1e]

Figure 9: Similar to Fig. 6, but this time we varied the number of sampled parameters in the Monte Carlo

exploration, nmont, to 102, 103, and 104.

4 Further considerations for the method

The topological filtering method is a heuristic tool to find viable models without exploring the entire model

space. Such approaches always seek to find a balance between computational burden an accuracy. For topological

filtering there are several design choices that may influence the result.

4.1 Backtracking and recursive search

Fig. 1 illustrates the entire model space for a root model with four parameters. Given a set of viable parameter

points, a subset of this space is explored for each of them. In the example, models M�{1}, M�{2}, and M�{3}

are viable for at least some parameter points. For those points, the algorithm checks the composed model M{4}.

If that model is found to be nonviable for some parameter point, we have the option to perform backtracking :

This checks the models that are composed of a subset of the reduced parameters (i.e. M�{1,2}, M�{2,3}, and

M�{1,3}). This can be done for each parameter point as soon as M{4} is found nonviable, or it can be seen as

a last resort, once M{4} has been checked for all parameter points.

Conversely, if M{4} is found viable for some parameter point, we have the option of using it as a starting point

for recursive search: In this procedure, M{4} becomes the starting point for another iteration of topological

filtering. In the example, the only model left to check is the fully reduced model M{}. Exploration of the model

space from the root model had found that the fourth parameter was essential when eliminated individually and

therefore did not explore M{}. However, now that the other three parameters have already been eliminated,

parameter four may not be essential any longer (just like in the ABCD example of the previous section in which

k

7

could only be eliminated together with k

6

).

10

4.2 Sampling frequency

Another important decision concerns the question how often the viable parameter space should be sampled for

points from which then reduced models are explored. In particular one can sample only once using the root

model, or every time topological filtering is started again during the recursive search, or even for each reduced

model (when considering all parameter points at once). In particular, new parameter points could also be

sampled during backtracking.

5 Code

5.1 MATLAB package

The code for carrying out the topological filtering method is contained in a MATLAB package. It requires the

HYPERSPACE [3] and the SBTOOLBOX2 [5] package to run properly.

For the most part, this package performs the same analysis as done in [2]. In fact, we generalized the code

that was used in that study. Also, the option for backtracking was added and recursive search can be carried

out automatically.

5.1.1 Quickstart

To analyze your own model you need to create the following files:

1. A description of your model following the SBTOOLBOX2 specifications.

2. A description of the experimental data in a txt file that includes (always separated by whitespace)

a) the time points of the measurements in the first line

b) the names of the observed species in the second line

c) the average measurements at each time point, for each species in a new line

d) the measurement error as either

i. two numbers: the relative error and relative base error (e.g. 0.1 0.02, modeString=’relative’)

ii. the standard deviation of each measurement, again as one line per species (modeString=’stds’)

3. A description of the model parameters in a txt file in which every line looks like:

<parameter name> <p r o j e c t i o n value>

<lower bound f o r exp lo ra t i on> <upper bound f o r exp lo ra t i on>

e.g.

k1 0 0 .001 100

k2 0 .0001 0 .001 10

Copy setupTemplate.m into the folder containing your files and adjust it accordingly. Additional parameters

that can be adjusted in the beginning of that file and their meaning are listed in Table 2. After execution is

finished, the workspace variables will be saved in the file specified in fname. One of those variables is the matrix

allViableProjections which contains in its rows all viable projections that were found as boolean vectors

(true if the parameter was reduced). Additionally, the vector viableProjectionCounts contains in the ith

row the number of runs in which the ith projection in allViableProjections was found viable.

11

Table 2: Parameters of the package that can be adjusted.

Name Meaning

fname filename for results (i.e. workspace variables will be saved there)

numRuns number of runs that should be performed

nmont maximum number of integrations in Monte Carlo sampling (cf.[3])

nelip maximum number of integrations in ellipsoids sampling (cf.[3])

backtrack flag that determines, whether backtracking should be performed

recursive flag that determines, whether the reduced models should be used as a starting

point for another run of topological filtering

5.1.2 Passing additional arguments

For some experiments it may be convenient to have more control over the code. The program therefore computes

values for the following variables itself only if they have not been set externally before:

• p0: This is the starting point used for the exploration of parameter space. If not provided simplexSB

optimization from the SBTOOLBOX2 package is used to find it.

• expData: This is a MATLAB structure that needs to contain the following fields:

– timePoints: column vector containing the time points at which measurements were taken

– observables: column cell array containing the names of the observable species as strings

– measurements: a matrix in which each row represents the measurements for one species at each time

point

Additionally it needs to contain either

– S: a ⇢ ⇥ ⇢ covariance matrix made up of k (number of time points) blocks of size l ⇥ l (l is number

of species) that are placed along the diagonal. Each such block contains the covariance between the

measurements for all species at that time point.

or

– logDetS, invS: these two values represent ln |S| and S

�1, respectively. The first one is a scalar, the

last one a matrix.

• logDetS, invS: As in the description for expData; these parameters can also be supplied by themselves.

5.1.3 Overwriting functions

All source code is contained in the source directory of the package. If you wish to overwrite specific function

calls (e.g. to adjust the evalModel function to fit your experiment specifically) make sure they have higher

precedence than the one in the source directory.

5.2 Computation time

We recorded the runtime for the experiment described in Section 3 for the three di↵erent values of nmont. We

find that the runtime scales exponentially with the logarithm of nmont (Fig. 10).

For a more realistic test, we repeated the analysis of a model described in [2] that analyses 17 parameters in

a network of 30 reactions. Performing one run of topological filtering with backtracking disabled and recursive

search enabled and using nmont = 104 and nelip = 103 took 30 hours on ETH’s Euler cluster (Intel Xeon E5,

2.7 GHz). In this setup of sampling method we were able to replicated results reported in [2], i.e. parameters of

12

1e2 1e3 1e4
0

50

100

150

200

250

nmont
ru

nt
im

e
[m

]

Figure 10: Runtime for the ABCD model for varying number of sampled parameters running MATLAB on a

Linux Desktop PC with an Intel i5, 3.4 GHz.

reactions r
1

-r
5

were found to be always essential; namely, parameters V
max

for all 5 reactions and additionally

K

M

for r
1

, r
3

, and r

5

.

6 Discussion

This report provides further insights into the topological filtering method. We have shown using a small

example network how the projection value for a parameter can influence the resulting viability. For another

small network we have demonstrated that the quality of available measurement data impacts the outcome of

the method, while the number of measurements did not have such an impact, despite viability threshold varying

more. This illustrates the interplay between the cost function and the viability threshold. Increasing the number

of sampled parameters was proven to increase the number of viable models that are discovered. We pointed

out further design choices that may a↵ect the outcome of the model such as backtracking from nonviable and

recursive search from viable models. Finally, we described how our implementation of the method in a MATLAB

package can be used and reported the runtime for some examples.

In all experiments, we have sampled the parameter space only once for the initial root model. While this

greatly reduces computational burden in comparison to sampling the space in every iteration of the recursive

search, further investigation should clarify how far this limits the reduced models that can be explored. Also,

future studies could help to understand how exactly the shape of the viable parameter space (i.e. the cost

function and the threshold) is influenced by changing quality and quantity of measurement data and how this,

in turn, a↵ects the e�ciency of parameter sampling.

The provided implementation should allow others to perform topological filtering for their model, but there

is still room for further improvements. For instance, by using MATLAB’s symbolic toolbox reaction rates could

be simplified after the elimination of a parameter. For example, this would allow to project Michealis-Menten

constant to 0 without risking numerical errors, because the reaction rate r = v

max

[S]/(K
M

+ [S]) would simply

reduce to r = v

max

for K
M

= 0. In the current implementation a projection to 0 may cause numerical problems

for small concentration of S because the fraction is not simplified. Also, support for parallel computation has

the potential to greatly reduce the runtime of the program. Exploration of the parameter space, the recursive

search and the iteration over all viable points are steps that could be done in parallel.

References

[1] Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R Myers, and James P

Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol, 3(10):e189,

13

10 2007.

[2] Mikael Sunn̊aker, Elias Zamora-Sillero, Reinhard Dechant, Christina Ludwig, Alberto Giovanni Busetto,

Andreas Wagner, and Joerg Stelling. Automatic generation of predictive dynamic models reveals nuclear

phosphorylation as the key msn2 control mechanism. Science Signaling, 6(277):ra41–ra41, 2013.

[3] Elias Zamora-Sillero, Marc Hafner, Ariane Ibig, Joerg Stelling, and Andreas Wagner. E�cient characteri-

zation of high-dimensional parameter spaces for systems biology. BMC systems biology, 5(1):142, 2011.

[4] Hans-Michael Kaltenbach, Sotiris Dimopoulos, and Jörg Stelling. Systems analysis of cellular networks

under uncertainty. FEBS Letters, 583(24):3923–3930, 2009.

[5] SBTOOLBOX2 Web page. http://www.sbtoolbox2.org/main.php?display=documentationSBT&menu=

overview. Last accessed 08-April-2014.

14

http://www.sbtoolbox2.org/main.php?display=documentationSBT&menu=overview
http://www.sbtoolbox2.org/main.php?display=documentationSBT&menu=overview

	Introduction
	The topological filtering method
	Motivation and results

	Shortcomings of the parameter projection: a simple example
	Uncertainty assessment in the method
	Further considerations for the method
	Backtracking and recursive search
	Sampling frequency

	Code
	MATLAB package
	Quickstart
	Passing additional arguments
	Overwriting functions

	Computation time

	Discussion

