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The carbonyl group plays the central role in synthetic
organic chemistry.[1–3] Of special interest is a group of
transformations, in which the carbonyl oxygen is replaced
by two new substituents in a single preparative procedure
consisting of more than one reaction step. Examples are the
carbonyl-to-methylene reduction, the reductive amination,
alkylation, acylation, and carboxylation, the alkylative or
carbo-amination, and the geminal disubstitution by two
carbon residues (alkyl, alkenyl, alkynyl, aryl); the carbonyl
olefination may also be included (Scheme 1).[4]

One of the transformations shown in Scheme 1 has been
the subject of a number of papers published in recent years:
the replacement of the carbonyl oxygen by two carbon
substituents (C=O!CR1R2). Depending on the nature of the
carbonyl compound employed (aldehyde, ketone, ester,
amide), secondary, tertiary, and quaternary centers are
formed.[8] In most cases the starting materials are converted

Methods for replacing the carbonyl oxygen by two new
substituents (C=O!CR1R2) are discussed in this Minireview,
whereby R may be H, NR2, alkyl, allyl, benzyl, vinyl, alkynyl, aryl,
heteroaryl, or acyl groups. The most frequently used starting
materials for geminal disubstitution with the formation of two C�C
bonds (R1,R2¼6 H, NR2) are amides and thioamides, which react
with organometallic nucleophiles R�M (M = Li, MgX, CeX2, TiX3,
ZrX3) to give tertiary sec- and tert-alkylamines. Quaternary centers
can be built directly from ketones by treatment with Me3Al,
MeTiCl3, or Me2TiCl2 (R1R2C=O!R1R2CMe2). The scope and
limitations of the various methods and mechanistic models are
briefly discussed. The remarkable variety and diversity of struc-
tures thus accessible are demonstrated by numerous examples.

Scheme 1. Transformations in which the car-
bonyl oxygen atom is replaced by two new
substituents. The representation is taken
from publications from 1982 (Scheme 1 in
Ref. [5]) and 1983 (Scheme 12 in Ref. [6]), as
well as from a dissertation from 1986
(Scheme 5 in Ref. [7]).

Scheme 2. Geminal disubstitution of carbonyl oxygens via isolated
derivatives. a) b-Alkoxyenones and b) imidate esters[9] react by addi-
tion/elimination/addition. c) Thioamide groups are activated in situ by
S-methylation and then treated with organometallic reagents;[10–12] this
is possible either by direct addition of 2 equiv of a metal derivative
or by stepwise addition of two different polar organometallic re-
agents,[13–15] M = Li, MgX, or CeCl2. For examples see Scheme 3.
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to activated derivatives that are isolated and reacted in one or
more than one step with organometallic reagents (Scheme 2).

Preferred intermediates are thioamides for the prepara-
tion of tertiary amines with a sec or tert substituent on
nitrogen; these products are important targets for various
purposes.[16] The procedure involves methylation on sulfur
(with MeI or MeOTf) to form methylthioiminium salts and in

situ addition of an organolithium compound to give an—
isolable[10, 11]— N,S-acetal or ketal, which is usually directly
treated with a Grignard reagent, leading to the product of
geminal disubstitution (Scheme 2c, Scheme 3a). For the
introduction of two identical substituents in situ treatment
of the methylthioimminium salts with excess RMgX or
RCeCl2

[12] is recommended.
Thioformamides may also be converted to tertiary sec-

alkylamines by treatment with an organolithium or -magne-
sium reagent, without prior S-methylation.[13–15] This is
remarkable for two reasons: The thioformyl (CH=S)[20] as
well as the formyl (CH=O)[21, 22] hydrogen is acidic and is
deprotonated by LDA (!R2N-CX-Li),[23] while RLi and
RMgX obviously add to the C=X group. In this case LiSMgX
or S(MgX)2, quite unusual leaving groups, must be eliminated
from the tetrahedral intermediates (see Scheme 3b).[24]

To avoid the use of the Lawesson reagent and the
formation of nasty-smelling by-products (MeSH, H2S) it
would be desirable to replace amide oxygens directly by two
R groups. To this end, stronger activating reagents or more
oxophilic metal derivatives are required than those used when
thioamides serve as the starting material.[17–19] The former
procedure has been realized recently:[17] amides or lactams
are triflated on oxygen (trifluoromethanesulfonic acid anhy-
dride/2,6-di(tert-butyl)-4-methylpyridine (DTBMP)) and
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Scheme 3. Procedures for the geminal disubstitution of amide carbonyl oxygens with formation of tertiary sec- and tert-alkylamines and proposed
reactive intermediates.[10–15, 17–19] The thioamide precursors for reactions (a) and (b) are prepared from amides and lactams, respectively, with the
Lawesson reagent. For examples see Table 1.
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treated in situ with Grignard reagents; two different Mg
compounds, added stepwise, cleanly lead to the transfer of
two different R groups (see Scheme 3 c); the method is
expensive: 50 g (CF3SO2)2O cost roughly E 300 and 25 g
DTBMP cost about E 410.[25a]

More economical is the use of Si, Ti, and Zr derivatives.
These metals have strong affinities for oxygen (cf. bond
energies Me3Si�OMe 122, (iPrO)3Ti�OiPr 115, (iPrO)3Zr�
OiPr 132 kcal mol�1)[25b] and are literally able to “suck”
oxygen out of organic compounds, as evidenced by numerous
applications.[26–31] One method, which is restricted to forma-
mides, for preparing sec-alkyl amines is outlined in
Scheme 3d. It involves reaction of the formamide with
2 equiv Grignard reagent and 1 equiv Me3SiCl in the presence
of 3 mol% Ti(OiPr)4 and, surprisingly, employment of a 1:1
mixture of MeMgCl and ArlMgBr cleanly leads to the
“mixed” products R2N-CHMeArl![18] Tertiary tert-alkyl
amines R1

2N-CMe2R
2 are formed from various amides,

MeMgBr, and TiCl4 (1:3:1); this reaction is limited to
methylation[19, 32] (vide infra; geminal dimethylations with
MeTi derivatives were published almost 20 years earlier[30, 31]).

A more generally applicable method is outlined in
Scheme 4: after addition of an organolithium compound to
an amide carbonyl group[34] the tetrahedral intermediate is
transmetalated to a titanium a-aminoalkoxide, a precursor of
an iminium salt, to which a second Li compound is added (see
the examples collected in Table 2, and a typical procedure
described in reference [35]). Due to the fact that amides (as
well as thioamides) and carbamates can also be metalated
adjacent to nitrogen (!R1-CX-NR2(CHLiR3))[36–39] or ortho-
metalated on N-aryl groups,[40] the moderate to good yields of
this process are remarkable. The method was described in
1986 in an ETH dissertation[7] but never published (motto:
“He who comes late misses the boat”).

All the geminal disubstitutions discussed so far are carried
out with amides or thioamides. They most likely occur
through the quite stable imminium ion intermediates (R2C=

NR2
+, see Schemes 3 and 4) and produce tertiary sec- and tert-

alkylamines.[41] Quaternary centers can be generated by
reaction of ketones or acid chlorides with trimethylalumi-
num[42] or methyltitanium chlorides[43] (Scheme 5), methods
that were published 36 and 29 years ago, respectively. By first

adding an organolithium reagent and then MexTiCl4�x to an
aromatic ketone, an alkyl and a methyl group can be
introduced.[44] None of the more recent papers on geminal
dialkylation refer to this old work (motto: “Premature
discoveries are ignored”). A disadvantage of these, at first
sight so simple transformations is the necessity of working
with solutions of pyrophoric Me3Al and Me2Zn (cf. tBuLi!).
Thus, the reagent Me2TiCl2 is generated in CH2Cl2 by
combining TiCl4 with Me2Zn.[43b] Although the reactions
supposedly[30, 31,42–44] take place through intermediate tertiary
carbocations no Wagner–Meerwein rearrangements, cyclo-
propane ring openings, or transannular reactions have been
reported (see the examples in Table 3).

Another geminal disubstitution, not involving iminium
ion intermediates, is observed when maleic or phthalic
anhydride is treated with allylic halides and indium powder
(Scheme 6);[45] with 3-substituted allylic bromides (Me-CH=

CH-CH2Br, Me2C=CH-CH2Br) only a simple carbonyl addi-

Scheme 4. a) Alkylative amination of aromatic (or other non-enoliza-
ble) aldehydes[5–7, 27–31, 33] and b) geminal disubstitution of amide oxy-
gens[7] via a-amino–Li and –Ti alkoxides; when R4Li is a Li enolate,
Mannich bases are formed.[33b] For examples see Table 2.

Scheme 5. Di- and trimethylations and alkylative methylation of ke-
tones and acid chlorides with Me3Al[42] and Me-Ti reagents. For reviews
on the Ti reagents see Refs. [30,31]; for examples see Table 3.

Scheme 6. Geminal diallylation[45] of maleic and phthalic anhydrides
with In powder and allylic halides (ratio 1:2:3 equiv) in DMF at room
temperature (1 h). Metathesis of the products should lead to cyclo-
pentane derivatives.
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tion with formation of a hydroxy lactone takes place. Details
about the mechanism of this reaction are unknown (see
Ref. [8a]).

Table 1: Structural formulae of amines prepared from amides.[a]

[a] The corresponding methods (Scheme 3) are described in the
references. The bonds in bold were created by geminal disubstitution.
In the red/black combinations the red-colored bond indicates the
primary introduction of a substituent with RLi, while the black-colored
bond was generated with RMgX. In the black/black combinations the
bonds were formed with two different Grignard reagents; the numbers 1
and 2 indicate the order of bond formation. The green-colored bonds
resulted from reaction with RCeCl2.

Table 2: Geminal disubstitution of amide carbonyl oxygen atoms
(Scheme 4b) by sequential addition of R2 Li (1 equiv), TiCl4 (1 equiv),
and R4 Li (2 equiv) to a toluene solution of the amide (R1-CO-NR3

2 in
Scheme 4).[a]

Amide R2Li R4Li Product Yield [%]

MeLi MeLi 70

MeLi MeLi 20

BuLi MeLi 74

BuLi 67

MeLi MeLi 70

MeLi MeLi 39

BuLi MeLi 42

[a] For typical procedures see Ref. [7] and footnote [35].

Table 3: Geminal dimethylation and alkylation/methylation of ketones
and trimethylation of acid chlorides by the methods outlined in
Scheme 5.[a]

[a] For general reviews on organotitanium chemistry see Refs. [6] , [27],
[28], [30], [31]. The C�C bonds created in the process are in bold; the
numbers 1 and 2 indicate the order of their formation.
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The multitude and variety of compounds with secondary,
tertiary, and quaternary carbon centers available by means of
geminal disubstitution of carbonyl oxygens by two carbon
residues, are evident from the representative examples
collected in Tables 1, 2, and 3 and in Scheme 6. Other
methods for the, also enantioselective, generation of tertiary
and quaternary centers (“a formidable challenge”[46]) have
been summarized in a monograph published in 2005,[47] in
review articles,[48] and in a most recent Synlett Cluster.[46,49–51]
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