Stereoselective Preparation of 3-Amino-2-fluoro Carboxylic Acid Derivatives, and Their Incorporation in Tetrahydropyrimidin-4(1H)-ones, and in Open-Chain and Cyclic β-Peptides

by Tomohiro Yoshinari ${ }^{1}$), François Gessier 2), Christian Noti ${ }^{3}$), Albert K. Beck, and Dieter Seebach*
Laboratorium für Organische Chemie, Departement für Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich
(phone: +41-44-632-2990; fax: +41-44-632-1144, e-mail: seebach@org.chem.ethz.ch)

The preparation of $(2 S, 3 S)$ - and $(2 R, 3 S)$-2-fluoro and of (3S)-2,2-difluoro-3-amino carboxylic acid derivatives, $\mathbf{1}-\mathbf{3}$, from alanine, valine, leucine, threonine, and $\beta^{3} \mathrm{~h}$-alanine (Schemes 1 and 2, Table) is described. The stereochemical course of (diethylamino)sulfur trifluoride (DAST) reactions with N, N -dibenzyl-2-amino-3-hydroxy and 3-amino-2-hydroxy carboxylic acid esters is discussed (Fig. 1). The fluoro- β-amino acid residues have been incorporated into pyrimidinones (11-13; Fig. 2) and into cyclic β-tri- and β-tetrapeptides 17-19 and 21-23 (Scheme 3) with rigid skeletons, so that reliable structural data (bond lengths, bond angles, and Karplus parameters) can be obtained. β-Hexapeptides $\operatorname{Boc}[(2 S)$ $\left.\beta^{3} \mathrm{hXaa}(\alpha \mathrm{F})\right]_{6} \mathrm{OBn}$ and $\operatorname{Boc}\left[\beta^{3} \mathrm{hXaa}\left(\alpha, \alpha \mathrm{F}_{2}\right)\right]_{6}-\mathrm{OBn}, 24-26$, with the side chains of Ala, Val, and Leu, have been synthesized (Scheme 4), and their CD spectra (Fig. 3) are discussed. Most compounds and many intermediates are fully characterized by IR- and ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR spectroscopy, by MS spectrometry, and by elemental analyses, $[\alpha]_{\mathrm{D}}$ and melting-point values.

1. Introduction. - The effect of backbone substitution \mathbf{A} by F-atom(s) (or other heteroatoms) of a peptide consisting of proteinogenic α-amino acids cannot be studied due to hydrolytic instability ${ }^{4}$). In constrast, F -substituted β - and γ-amino acid derivatives $\mathbf{B}[1][3-6]$ and \mathbf{C} [7] are stable. For incorporation of 3-amino-2-fluoro and 3-amino-2,2-difluoro acid moieties into β-peptides D-F and $\mathbf{D}-\mathrm{F}_{2}$, or for syntheses of β peptides $\mathbf{E}-\mathrm{F}$ and $\mathbf{E}-\mathrm{F}_{2}$ bearing F -atom in each residue, we needed an access to configurationally pure building blocks of type 1,2, and $\mathbf{3}$ with N-Boc protection for solution synthesis [4] and N-Fmoc protection for solid-phase peptide synthesis [5].

One aim of the present paper is to describe the preparation of such α-fluoro- β amino acid derivatives in full detail ${ }^{5}$), and to discuss some mechanistic aspects. A
${ }^{1}$) Postdoctoral Research Fellow at ETH Zürich (2010/2011), financed by the Japan Society for the Promotion of Science for Young Scientists (JSPS No. 200909778) and by the Swiss National Science Foundation (SNF-Project No. 200020-126693).
${ }^{2}$) Postdoctoral Research Fellow at ETH Zürich (2001-2003), financed by ETH Zürich, Swiss National Science Foundation (SNF-Project No. 2000-058831) and Novartis Pharma AG, Basel.
$\left.{ }^{3}\right)$ Part of the Master Thesis (Diplomarbeit) of C. N., ETH Zürich, 2002/2003.
${ }^{4}$) See the discussion in [1]. For a γ, γ-difluoro- δ-amino acid, see [2].
${ }^{5}$) Only the preparation of the alanine-derived compounds $\mathbf{1}-\mathbf{3}, \mathrm{R}^{1}=\mathrm{Me}$, has been described in full detail [4]. For the NMR-structural analyses of four peptides with a central fluoro- or difluorosubstituted building block, see: [1][5][6]. Polyfluorinated peptides of type E-F and E-F 2 are mentioned in a preliminary communication [3], and in the hitherto unpublished master thesis of C. Noti (see Footnote 3). For determination of proteolytic stabilities of F-substituted β-peptides, see [4].

A

B

C

D-F

D-F2

E-F

$\mathrm{E}-\mathrm{F}_{2}$

1 ((2S) $\left.-\beta^{3} \mathrm{hAla}(\alpha \mathrm{F})\right)$

$2\left((2 R)-\beta^{3} \mathrm{hAla}(\alpha \mathrm{F})\right)$

$3\left(\beta^{3} \mathrm{hAla}\left(\alpha, \alpha \mathrm{F}_{2}\right)\right)$
$\mathrm{R}^{1}=\mathrm{Me}(\mathrm{a}),{ }^{\mathrm{i}} \operatorname{Pr}(\mathrm{b}),{ }^{i} \mathrm{Bu}(\mathrm{c})$
$\mathrm{R}^{2}=\mathrm{H}(\mathrm{a}), \mathrm{Boc}(\mathrm{b}), \mathrm{Cbz}$ (c), Fmoc (d)
$\mathrm{X}=\mathrm{OH}(\mathrm{a}), \mathrm{MeO}(\mathrm{b}), \mathrm{BnO}(c), \mathrm{NH}_{2}$ (d)

(S, S)

(R, S)

F-F 2
second purpose is to present cyclic and macrocyclic F -substituted β-amino acid derivatives $\mathbf{F}-\mathbf{F}$ and $\mathbf{F}-\mathrm{F}_{2}$, which fulfill the following stringent requirements: i) they should be crystalline (for X-ray analysis) and ii) they are likely to have the same conformation in solution (for NMR analysis) and in the solid state; this would provide experimental data (Karplus parameters) for the interpretation of NMR spectra and for comparison with structures calculated by ab initio or molecular-dynamics methods ${ }^{6}$).
${ }^{6}$) It turned out that both the NMR analysis and the MD calculation of F-substituted β-peptides gave confusing results, due to lack of reliable parameters [5] [6] [8].
2. Preparation of the \mathbf{F}-Substituted $\boldsymbol{\beta}$-Amino Acid Derivatives 1-3. - We have chosen three stereospecific methods for the introduction of F-substituents, all starting from natural α-amino acids alanine, valine, leucine, and threonine ${ }^{7}$). The F-atoms were introduced nucleophilically with (diethylamino)sulfur trifluoride (DAST; ' F^{-}) [9] and electrophilically with $\left(\mathrm{PhSO}_{2}\right)_{2} \mathrm{NF}\left({ }^{\prime} \mathrm{F}^{+}\right)$) [9b][10].

The 'work-horse' route (Scheme 1) started from the aldehydes $\mathbf{4 a}-\mathbf{4 c}$ [11] obtained by N, N-dibenzylation and $\mathrm{CO}_{2} \mathrm{H}$ reduction of the corresponding amino acids. Reetz's diastereoselective non-chelation-controlled $\left(\mathrm{BF}_{3}\right)$ and chelation-controlled $\left(\mathrm{TiCl}_{4}\right)$ cyanohydrin reaction with $\mathrm{Me}_{3} \mathrm{SiCN}(\rightarrow \mathbf{5 a}-\mathbf{5 c})$ [12] was followed by the Pinner reaction with aqueous workup to give the 3-amino-2-hydroxy carboxyclic acid esters $\mathbf{6 a - 6 c}$, treatment of which with DAST led to mixtures of the constitutional isomers $\mathbf{7}$ and iso- $\mathbf{7}$ with higher regioselectivities in the l-series of compounds (i.e., $\mathbf{6} \rightarrow \mathbf{7}$) than in the u-series (i.e., epi-6 \rightarrow epi-7; see mechanistic discussion in Sect.3). For the preparation of the geminal difluoro- β-amino acid esters, a 'cheaper' non-diastereoselective version of the cyanohydrin reaction was used [13] (Scheme 1; lower part). Swern oxidation of the mixture of diastereoisomers $\mathbf{6} /$ epi- $\mathbf{6}$ to the α-keto esters and in situ treatment with DAST provided the difluoro esters $\mathbf{8}$ in enantiomerically pure form ${ }^{8}$).

For preparation of the butanoate derivative epi-7a, there is a shorter route (Scheme 2, a) [15]: the N, N-dibenzylthreonine benzyl ester (9) undergoes a fluorinating rearrangement when treated with DAST to give epi-7aBn of $(2 R, 3 S)$-configuration as the major product. As with the other mixtures of isomers 7/iso-7 (Scheme 1, upper part) chromatographic separation from the 'direct' substitution product iso-epi-7aBn and isolation of the pure α-fluoro- β-amino acid ester epi-7aBn was straightforward.

Finally, the methyl Boc- and Cbz-(S, S)-3-amino-2-fluorobutanoates, 1abb and 1acb, are accessible by direct fluorination [16] of the corresponding doubly lithiated [17] $\beta^{3} \mathrm{hAla}$ derivatives with $\left(\mathrm{PhSO}_{2}\right)_{2} \mathrm{NF}$ (Scheme 2,b).

Having established the preparation of the 3-amino- N, N-dibenzyl-2-fluoro- and -2,2-difluoro-alkanoates $\mathbf{7}$ and $\mathbf{8}$, only simple functional-group manipulations were needed to arrive at the desired building blocks $\mathbf{1}-\mathbf{3}$ for peptide synthesis. The reagents and solvents used are collected in the Table, together with the starting materials and products of the various conversions. The absolute configurations of compounds 1-3 follow from the use of (S) - or $\mathrm{L}-\alpha$-amino acid starting materials, the relative configurations are deduced from an X-ray crystal structure (bottom part of the Table), from NMR data and by analogy ${ }^{9}$).
${ }^{7}$) Since these amino acids are all available in both enantiomeric forms, the enantiomers of the compounds reported herein will be accessible by exactly the same methodology.
${ }^{8}$) Purification of the keto esters by chromatography turned out to lead to partial racemization. The in situ procedure led to the N-Boc-amino-difluoro carboxylic acids 3aba, 3bba, and 3cba with er $>$ $97: 3,>99: 1$, and $>98: 2$, respectively, as derived from HPLC on chiral column material of precursor esters. For previous preparations of α, α-difluoro- β-amino acid derivatives, see [14a,b]. For a comprehensive review on the methods of synthesis of geminal difluoro methylene compounds, see [14c].
${ }^{9}$) The NMR-structural analyses [1][5][6] of β-hepta- and β-tridecapeptides of type \mathbf{D}-F and $\mathbf{D}-\mathrm{F}_{2}$ with central F - or $\mathrm{F}_{2}-\beta$-amino acid residues $\mathbf{1}, \mathbf{2}$, and $\mathbf{3}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}, \mathrm{Y}=(\beta \mathrm{hXaa})_{n}\right)$ provide further support for the correctness of the relative and absolute configurational assignment of these building blocks.
Scheme 1. Conversion of the Ala-, Val-, Leu-Derived (S)-Dibenzylamino Aldehydes $\mathbf{4}$ to the Mono-and Difluoro-Substituted β-Amino Acid Esters $\mathbf{7}$ and $\mathbf{8}$ The OH / F replacement with DAST $(6 \rightarrow \mathbf{7})$ occurs with retention of configuration. The migratory fluorination, in which the F -atom winds up at $\mathrm{C}(3)$ (replacing NBn_{2}) and the amino group at $\mathrm{C}(2)$ (replacing OH), takes place with inversion of configuration on both centers $(6 \rightarrow$ iso-7).

$\mathbf{a} R=\mathrm{Me}, \boldsymbol{b} \mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, \mathbf{c} \mathrm{R}={ }^{\mathrm{i}} \mathrm{Bu}$

Table. Reagents Used for the Functional-Group Manipulations to Convert the Primary Products $\mathbf{7}$ and $\mathbf{8}$ of Fluorination to the Starting Materials 1-3. Interconversions of compounds of type $\mathbf{1}$ and $\mathbf{2}$ are also included in this Table. For the specification with the letters a, b, c, d, see the Formulae in the Introduction. The X-ray data for compounds 1aba, 1abb, and 3cbb have been deposited with the Cambridge Crystallographic Data Centre.

Before describing the use of the fluorinated β-amino acids for tetrahydropyrimidinone and peptide synthesis, some comments about the mechanistic course of the DAST reaction are appropriate.
3. Stereo- and Regiochemical Course of the DAST Reactions $6 \rightarrow$ 7. - As we can see from Schemes 1 and 2,a, the desired β-amino- α-fluoro-acid esters 7 are formed with

Scheme 2. Alternative Routes to α-Fluoro- β-amino Acid Derivatives. a) Treatment of an $N, N-$ dibenzylthreonine ester with DAST, and b) direct electrophilic fluorination of an N-carbamoyl- β-amino acid ester through a doubly lithiated species.

retention of configuration ${ }^{10}$), when we start from the β-amino- α-hydroxy-acid esters $\mathbf{6}$, and with inversion on both stereogenic centers, when we start from the α-amino- β hydroxy ester 9 . The isomeric α-amino- β-fluoro carboxylic acid esters iso-7 and iso-epi-7 are formed with inversion on both centers and with retention on the F -substituted C -atom, respectively. This, at first sight, somewhat confusing stereochemical outcome is caused by the intermediacy of N, N-dibenzylaziridinium ions [15a, b], as outlined in Fig. 1,b-f. Both, the ring closure to, and the ring opening of the three-membered ring occur with an $S_{\mathrm{N}} 2-$ type inversion of configuration, and the regiochemical course is determined by the relative rates of $\mathrm{C}-\mathrm{N}$ bond cleavage next to the ester group and next to the substituent R on the three-membered ring. As can be seen from the table in Fig. 1, the carbonyl-assisted opening of the aziridinium ring is preferred in the trans-substituted series, while there is a delicate dependence on the type of substituent in the cis-series of aziridinium intermediates. Concomitantly, the yields of the desired β-amino- α-fluoro-acid derivatives of $(2 R, 3 S)$-configuration (epi-7) are lower than those of the (S, S)-isomers 7.

4. Tetrahydropyrimidin-4(1H)ones and Cyclo- β-peptides Containing the F-Substi-

 tuded Amino Acid Residues of 1a, 2a, and 3a. - As mentioned in the Introduction, there is lack of structural and NMR data for F-substituted carbonyl compounds. To correlate X-ray-crystal solid-state structures with NMR-solution structures, the compounds should have rigid skeletons. Thus, we turned to previous work on non-fluorinated β-amino acid derivatives, which had been shown to have a high degree of crystallinity, and which had structures that are likely not to be subject to dynamic conformational equilibrations on[^0]
a)

b)

c)

d)

e)

f)

Fig. 1. Steric and regiochemical course of the DAST reactions with dibenzylamino hydroxy esters $\mathbf{6}$ and $\mathbf{9}$. a) Reaction with DAST converts the OH group to a leaving group, which is not replaced intermolecularly by F^{-}but intramolecularly by $\mathrm{Bn}_{2} \mathrm{~N} . b$) The resulting aziridinium ion can react with F^{-}in the α-carbonyl (α) or in the β-carbonyl position (β). c) In the trans-substituted aziridinium ring, an $S_{\mathrm{N}} 2$-assisting conformation of the ester group is possible (high regioselectivity of α attack). d) In the cissubstituted aziridinium ring, there are three substituents on the same face of the three-membered ring, which causes steric hinderence of the $S_{\mathrm{N}} 2$-assisting ester-group conformation, allowing for competing ring-opening (β) next to the R group (poor regioselectivity (epi-7/iso-epi-7)). e) and f) trans- and cis-aziridinium-ion intermediates, relative rates of ring opening, and yields of purified products $\mathbf{7}$ and epi-7. The high selectivity of formation of epi-7b through as cis-aziridinium ion might be due to a kind of neopentyl effect: a Me group of the ${ }^{\mathrm{i}} \mathrm{Pr}$-substituent blocks the $S_{\mathrm{N}} 2$ trajectory of the attacking F^{-} nucleophile, thus favoring the ring opening next to the ester group.
the NMR time-scale. These were hexahydropyrimidin-4-ones \mathbf{G} [18] , and cyclo- β-triand -tetrapeptides \mathbf{H} [19] and \mathbf{I}, respectively [20] ${ }^{11}$) (Fig. 2).

Tetrahydropyrimidin-4(1H)-ones $\mathbf{1 1}-\mathbf{1 3}$. Thus, we treated the amino acid amides 1aad, 2aad, and 3aad with pivalaldehyde in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (with azeotropic removal

[^1]

G

H

I

11

12

13a

13b

Cbz-11

Cbz-12

Cbz-13

J

$(S, S)-14$
(R, S)-14

15

Fig. 2. Cyclic derivatives \mathbf{G}, \mathbf{H}, and \mathbf{I} of β-amino acids and F-substituted tetrahydro-pyrimidinones 11-13. The numbers in the formulae of $\mathbf{1 1} \mathbf{- 1 3}$ are bond distances in \AA, determined by X-ray crystal-structure analysis ${ }^{13}$). For $\mathbf{1 2}$, two sets of bond lengths are given, since there are two different conformations in the crystal unit cell of this compound. Presentation \mathbf{J} indicates the $\mathrm{n}_{\mathrm{N}} \rightarrow \sigma^{*}(\mathrm{C}-\mathrm{N})$ interaction facilitating ring opening to the imino amides 14 and 15.
of $\mathrm{H}_{2} \mathrm{O}$), which led to the tetrahydropyrimidin- $4(1 \mathrm{H})$-ones $\mathbf{1 1}, \mathbf{1 2}$, and $\mathbf{1 3}$, respectively (Fig. 2). The yields of purified, crystalline products were moderate or low (52, 43, and 16%, resp.), which was, at least partially, due to their lability: when dissolved in a protic solvent such as MeOH , they underwent ring opening to yield imino amides $\mathbf{1 4}$ and $\mathbf{1 5}$ (NMR-tube experiment). Especially the F_{2}-substituted compounds of type $\mathbf{1 3}$ are prone to undergo this isomerization. The cis- and trans-isomers 13a and 13b cocrystallized in a $1: 1$ ratio and could not be separated. The crystals of $\mathbf{1 2}$ contain two conformers in the unit cell. Benzyloxycarbonylation of the tetrahydropyrimidin-4(1 H$)$ -
ones 11-13 gave more stable ${ }^{12}$) derivatives Cbz-11, Cbz-12, and Cbz-13, respectively. X-Ray crystal structures ${ }^{13}$) of compounds $\mathbf{1 1 - 1 3}$ exhibit pronounced pyramidalization of the amino $N(5)(\Delta$ between 0.30 and $0.44 \AA)$, such that the virtual lone-pair lobe is antiperiplanar to the $\mathrm{C}(6)-\mathrm{N}(1)$ bond, with concomitant bond-length shortening and lengthening. In the Cbz derivatives, the $\mathrm{N}(5)$-atom is, of course, sp^{2}-hybridized, and the bond lengths (in Cbz-12) are more or less normal ${ }^{14}$). The instability of tetrahydropyr-imidin-4(1H)-ones is clearly caused by a stereoelectronic effect $\left(\mathrm{n}_{\mathrm{N}} \rightarrow \sigma^{*}(\mathrm{C}-\mathrm{N})\right)$, as indicated by the presentation \mathbf{J} in Fig. 2.

Cyclo- β-tripeptides $17-19$. The synthesis was accomplished according to traditional protocols (Scheme 3). Coupling of the N-Boc-fluoro-amino acids with the dipeptide ester H- β Gly- $\beta \mathrm{Gly}$-OMe using HBTU/NMM ${ }^{15}$) furnished the N-Boc- β-tripeptides 16a-16c in high yields. There are numerous approaches for the cyclization of peptides, many with miserable yields. The route via pentafluorophenyl esters, as developed by U. Schmidt et al. [24], was the method of choice, as it had been successfully employed for β-peptides before [19b,d]: transesterification of 16a-16c to the active esters, Bocdeprotection, and slow addition (via syringe pump) of solutions of the resulting TFA salts of the tripeptide pentafluorophenyl esters to a dilute (3.3 mm) solution of Hünig base (DIPEA in MeCN, 70°) gave the cyclo- β-tripeptides $17-19$ in good overall yields (Scheme 3, left). Like the non-fluorinated analogs [19b,c], the cyclization products are insoluble in essentially all common solvents and precipitated from the hot, dilute reaction mixture, to be isolated by simple filtration. NMR Spectra were recorded in a mixture of CDCl_{3} and TFA.

Cyclo- β-tetrapeptides 21-23. In an attempt to prepare cyclo- β-dipeptides consisting of one F -substituted residue and one β-Gly moiety, we prepared the N-Boc-protected peptide methyl esters $20 \mathbf{a}-20 \mathrm{c}$. By the same procedure as for the tripeptides, the dipeptide pentafluoro-phenyl esters were prepared, and their solutions were added to the Hünig-base solution ($\mathrm{MeCN}, 70^{\circ}$). To our surprise ${ }^{16}$), the cyclo- β-tetrapeptides
${ }^{12)}$ The F_{2}-substituted Cbz- $\mathbf{1 3}$ was still quite unstable and could be isolated in only 6% yield as an oil (see Exper. Part). We had noticed the instability of such hydro-pyrimidinones with non-Fsubstituted derivatives before [18f].
${ }^{13}$) The crystal structures of the heterocycles $\mathbf{1 1}$ - $\mathbf{1 3}$ of type \mathbf{G} and of the cyclo- β-tri- and -tetrapeptides \mathbf{H} and \mathbf{I} will be published separately, together with detailed NMR analyses and ab initio calculations [22].
${ }^{14}$) The dihydrobenzopyrimidin-1 $(1 H)$-ones of type \mathbf{i} are also somewhat unstable. In crystal structures, their $\mathrm{N}(1)$-atom is, however, only slightly or not at all pyramidalized (π-conjugation is stronger than $\mathrm{n} \rightarrow \sigma^{*}$ interaction) [23].

${ }^{15)}$ For abbreviations not specified in the Schemes, Table, and Figures, see introduction of the Exper. Part.
${ }^{16}$) A 'reverse' case was reported by Vilarrasa and co-workers, who tried to prepare a cyclo- β tetrapeptide under the same conditions and were disappointed to obtain the eight-membered ring of a cyclo- β-dipeptide [20b].
Scheme 3. Synthesis of F-Substituted Cyclo- β-tripeptides $\mathbf{1 7 - 1 9}$ and Cyclo- β-tetrapeptides 21-23, and X-Ray Crystal Structures of the Linear Precursors 20a-

20c
$\operatorname{CCDC} 840444$

21-23 were isolated in acceptable yields ($30-40 \%$; Scheme 3, right). Again, these cyclic peptides have high melting points and poor solubilities in common organic solvents, like the non-fluorinated counterparts [19d][20c], and as with those, we were not able to prepare suitable single crystals for conventional X-ray analyses.

There are ongoing attempts to determine the structures of some of the F-substituted cyclo- β-peptides 17-19 and 21-23 by powder-diffraction techniques ${ }^{13}$), a method that had been successful with the simple ($\left.\beta^{3} \mathrm{hAla}\right)_{4}$ derivatives [20c].
5. Synthesis and Spectroscopic Characterization of $\boldsymbol{\beta}$-Hexapeptides 24 - 26 with \mathbf{F} Substitution in Each Residue. - From the NMR analyses of β-peptides containing a single, central fluoro- or difluoro- β-amino acid residue 1, 2, or $\mathbf{3}$ [1][5][6], we would expect that a β-hexapeptide 24b, built of (S, S)-2-fluoro- $\beta \mathrm{hVal},-\beta \mathrm{hAla}$, and $-\beta \mathrm{hLeu}$ residues does not fold to an (M) - 3_{14}-helix [25]. The isomeric hexapeptide $\mathbf{2 5 b}$ with the corresponding ($2 R, 3 S$)-fluoro-amino acid building blocks, on the other hand, could fold to an (M)-helix, with axial disposition [25] of an F-atom in each residue. For the hexapeptide 26b, with two geminal F-atoms in each amino acid moiety of the ($\beta \mathrm{hVal}$ β hAla- $\beta \mathrm{hLeu})_{2}$ chain, a weaker tendency for folding to the 3_{14}-helix must be envisaged [6].

Synthesis. The assembly of the three F-substituted β-hexapeptides $\mathbf{2 4 b}$ - $\mathbf{2 6 b}$ was performed as outlined in Scheme 4, by using a classical solution-phase Boc strategy for the coupling (with NMM/HOBt/EDC or NMM/HATU ${ }^{15}$), and a C-terminal benzyl ester group. After attaching the $\beta \mathrm{hAla}$ and $\beta \mathrm{hVal}$ units to the $\beta \mathrm{hLeu}$-benzyl esters (i.e., 1cac, 2cac, 3cac), the tripeptide derivatives 25abb-26abb were divided into two portions, one to be Boc-deprotected (TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), the other one to be debenzylated $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}\right.$ in MeOH$)$.

Fragment coupling of the two trimers gave the terminally protected hexapeptides 24bbb - 26bbb, which were investigated as such or after deprotection to 24baa-26baa, respectively. Most intermediates and final products of these syntheses were characterized by melting points, $[\alpha]_{\mathrm{D}}$ values, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-,{ }^{19} \mathrm{~F}-\mathrm{NMR}, \mathrm{MS}, \mathrm{IR}, \mathrm{CD}$ spectroscopy, and elemental analyses (see Exper. Part).
$C D$ and NMR Spectra. In our work on β-peptides, we have preferentially used MeOH as solvent for CD and NMR recordings; it turned out that some of the fluorohexapeptide derivatives are poorly soluble in this solvent. For the high dilution (0.2 nm) of solutions for recording CD spectra, the solubility in MeOH was sufficient, but for NMR recordings, we had to turn to more polar solvents such as $\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$ (H-bond destroying) or $\mathrm{CF}_{3} \mathrm{CD}_{2} \mathrm{OD}$ (TFE, favoring secondary-structure formation).

The $C D$ spectra of the hexapeptide $\mathbf{2 4 b b b}$, consisting of like-fluoro- β-amino acid residues in hexafluoro-isopropanol $\left(\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH} ; \mathrm{HF} \mathrm{PrOH}\right)$, of the unlike-isomer 25bbb and its deprotected form 25baa (in MeOH, TFE, and HFiPrOH), and of the hexapeptide 26bbb with geminal difluoro groups and its unprotected form 26baa (in the same solvents) are shown in Fig. 3, a, b, and c, respectively. The peptide consisting of (S, S)-building blocks exhibits two strong Cotton effects (θ ca. 80,000) at 213 (positive) and 195 nm (negative) in HFiPrOH; due to lack of comparison, it is impossible to interpret this spectrum. If we compare the CD spectra of the hexapeptide derivatives with one F -atom per amino acid unit and ($2 R, 3 S$)-configuration (Fig. 3,b) and with two F-atoms per amino acid unit (Fig. 3,c) in the standard solvent MeOH, we would

Scheme 4. Synthesis of the β-Tri- and β-Hexapeptide Derivatives 24a-26a and 24b-26b, Respectively, with One or Two F-Sustituents in Each Amino Acid Residue. The syntheses were carried out by coupling in solution using the Boc strategy. For details, see the Exper. Part.

$n=1$ (a),$n=2(b) ; \mathrm{R}^{1}=\mathrm{H}(\mathbf{a}), \mathrm{R}^{1}=\mathrm{Boc}(\mathrm{b}) ; \mathrm{X}=\mathrm{OH}(\mathrm{a}), \mathrm{X}=\mathrm{OBn}(\mathrm{b})$

conclude that there is no secondary structure in the first case (weak extrema) and an unknown structure in the second case (strong maxima of θ up to 100,000 near 220 and $215 \mathrm{~nm})^{17}$). There are two surprises in the CD spectra.
$i)$ In the fluorinated alcohols as solvents, the unprotected β-hexapeptide 25baa with (R, S)-building blocks exhibits a CD pattern, which 'the experts in the area' would associate with a left-handed 3_{14}-helix (minimum, albeit weak, near 215, and intensive maximum near 195 nm ; Fig. 3, b); such a helix would have all F-atoms in the thermodynamically more stable axial disposition (with antiperiplanar arrangement of F - and carbonyl $\mathrm{O}-$ atom, i.e., $\mathrm{F}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ dihedral angle of 180° [6]). The terminally protected form 25bbb has a more or less flat CD pattern near zero in all three solvents (Fig.3,b).

[^2]

b)

C)

Fig. 3. CD Spectra of the β-hexapeptide derivatives with one or two F substituents in each residue
ii) The β-hexapeptides with geminal difluoro substitution in each residue give rise to CD spectra, which are almost superimposable with those for the protected form 26bbb (Fig. 3, c), and quite similar to those for the unprotected form 26baa in all three solvents (Fig. 3, c), meaning that - in first approximation - the secondary-structureinducing fluorinated solvents do not change the backbone conformation, as compared to MeOH .

Caveat: Suggestions, made in this section, about possible structures of the fluorinated hexapeptides must be taken with due care: we have reiterated that the CD spectra of β-peptides can be deceiving, to say the least [25][26].

NMR Spectra of the hexafluoro- and dodecafluoro- β-hexapeptides with and without terminal protection (N-Boc, OBn) were recorded with solutions in $\mathrm{CF}_{3} \mathrm{CD}_{2} \mathrm{OD} / \mathrm{TFA}, \mathrm{CD}_{3} \mathrm{OH}$, or $\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$ (see Fig. 4); they are described in the Exper. Part; an interpretation will have to wait for our detailed NMR-structural analyses with the parameters determined from the cyclic compounds.
6. Conclusions and Outlook. - Configurationally uniform mono- and difluoro- β amino acid derivatives and peptides with and without N - and/or C -terminal protections have been successfully prepared by known methods. The intermediacy of N, N-dibenzylaziridinium ions in the DAST reaction of vicinal amino-hydroxy-substituted C-chains has been confirmed. The regioselectivity of $S_{\mathrm{N}} 2$-type ring opening of these threemembered rings has been shown to be subject to intriguing, subtle substitution effects. The expected crystallinity of cyclic derivatives of the fluorinated β-amino acids has come true. The tetrahydropyrimidin- $4(1 H)$-ones readily form suitable single crystals, for X-ray structure determination. The cyclic β-tri- and β-tetrapeptides could be purified to give correct elemental analyses, but are poorly soluble, so that we have to resort to - ongoing - powder X-ray diffraction measurements in a synchroton beam. The results of the X-ray-structural investigations will be reported separately, together with full NMR-structural analyses and computational results. The multiply Fsubstituted β-peptides have, so far, resisted all attempts of structure determination, due to poor solubility in common solvents and to lack of reliable Karplus parameters. With the data collected from the cyclic derivatives, we are now in the process of making another attempt. The CD spectra of these linear β-hexapeptides, as reported herein, can be merely considered as 'fingerprints', and the discussed similarities of CD patterns with those of β-peptides of known structure may be accidental.

[^3]
Experimental Part

1. General. Abbreviations: β-hAa: β-Homoamino acid, Bn: benzyl, Boc: (tert-butoxy)carbonyl, $\mathrm{Boc}_{2} \mathrm{O}: ~ d i(t e r t-b u t y l)$ dicarbonate, DAST: (diethylamino)sulfur trifluoride, $\mathrm{EtNi}^{\mathrm{i}} \mathrm{Pr}_{2}$ (Hünig base): ethyl(diisopropyl)amine, EDC: 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride, FC: flash chromatography, HATU: O-(7-azabenzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium hexafluorophosphate, HFiPrOH: 1,1,1,3,3,3-hexafluoropropan-2-ol, HBTU: O-(benzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$-tetra-

Fig. 4. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the hexapeptide derivatives 25bbb, 25baa, and 26baa. For ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{2 4 b b b}$ and for the ${ }^{19} \mathrm{~F}$-NMR spectra of $\mathbf{2} \mathbf{6 b b b}$, see the Exper. Part. For $\mathbf{2 5 b b b b},{ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and ${ }^{19} \mathrm{~F}$-NMR spectra are described in the Exper. Part.
methyluronium hexafluorophosphate, HOBt: 1-hydroxy-1H-benzotriazole, h.v.: high vacuum (0.010.1 Torr), NMM: 4-methylmorpholine, NFSI: N-fluorobenzene-sulfonimide, TFA: trifluoroacetic acid, TFE: 2,2,2-trifluoroethanol.

DMSO and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled over CaH_{2} and stored over 4- \AA molecular sieves. Solvents for FC and workup procedures were distilled over Sikkon (anh. $\mathrm{CaSO}_{4} ;$ Fluka). α-Amino acids were purchased from

Bachem, Senn, or Degussa. Dry THF was distilled from sodium and benzophenone; dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2}. All moisture-sensitive reactions were carried out under a positive pressure of N_{2} or Ar in oven-dried glassware $\left(140^{\circ}\right)$. All other reagents and solvents were used as received from Fluka or Aldrich. Sat. $\mathrm{HCl} / \mathrm{MeOH}$ soln. was prepared by bubbling anh. HCl gas into MeOH at 0° (ice bath). Aldehydes $\mathbf{4 b}$ and $\mathbf{4 c}$ [11], cyanohydrins 5b and 5c [12], alanine derivatives 1aba, 2aba, 3aba, $\mathbf{6 a}$, epi-6a, and 7a [4] were synthesized according to published procedures.

TLC: Merck silica gel $60 F_{254}$ plates; detection with UV light or by dipping into a soln. of ninhydrin $(0.6 \mathrm{~g}), \mathrm{AcOH}(2 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(13 \mathrm{ml})$, and $\mathrm{BuOH}(285 \mathrm{ml})$, or a soln. of phosphomolybdic acid $(25 \mathrm{~g})$, $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(940 \mathrm{ml})$, followed by heating. FC: Fluka silica gel $60(40-63 \mu \mathrm{~m})$; at $c a .0 .3$ bar. Anal. RP-HPLC: Knauer HPLC system K 1000, pump type 64, EuroChrom 2000 integration package, degaser, UV detector K 2000 (variable-wavelength monitor), Macherey-Nagel C_{8} column (Nucleosil 100-5 $C_{8}(250 \times 4 \mathrm{~mm})$); at 220 nm . Prep. RP-HPLC: Knauer HPLC system, pump type 64 , programmer 50, UV detector (variable-wavelength monitor), MachereyNagel C_{8} column (Nucleosil 100-7 $\left.C_{8}(250 \times 21 \mathrm{~mm})\right)$; at 220 nm . M.p.: Büchi 510 apparatus; uncorrected. Optical rotations ($\left.[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}\right)$: Perkin-Elmer 241 polarimeter $(10 \mathrm{~cm}, 1-\mathrm{ml}$ cell) at r.t.; the solvent and the concentration $(\mathrm{g} / 100 \mathrm{ml})$ are given in the procedures. CD Spectra: Jasco J-710 spectrophotometer, recording from 190 to 250 nm at 20°; 1-mm rectangular cell; average of five scans, corrected for the baseline; peptide concentration, 0.2 mm ; band width, 1.0 nm ; resolution, 0.2 nm ; sensitivity, 100 mdeg ; response, 0.5 s ; speed, $20 \mathrm{~nm} / \mathrm{min}$.; molar ellipticity [θ] in deg $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$ ($\lambda \mathrm{in} \mathrm{nm}$); smoothing by Jasco softwares). IR Spectra: Perkin-Elmer 782 spectrophotometer. NMR spectra: Bruker AMX $600\left({ }^{1} \mathrm{H}: 600\right.$ and $\left.{ }^{13} \mathrm{C}: 150.9 \mathrm{MHz}\right), A M X 500\left({ }^{1} \mathrm{H}: 500\right.$ and $\left.{ }^{13} \mathrm{C}: 125 \mathrm{MHz}\right), A M X 400\left({ }^{1} \mathrm{H}: 400\right.$ and $\left.{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$, or $A V-400\left({ }^{1} \mathrm{H}: 400,{ }^{13} \mathrm{C}: 100\right.$, and ${ }^{19} \mathrm{~F}$: at 376 MHz$)$, or Varian Gemini $300\left({ }^{1} \mathrm{H}: 300,{ }^{13} \mathrm{C}: 75\right.$, and ${ }^{19} \mathrm{~F}$: 282 MHz); chemical shifts δ in ppm and coupling constants J in Hz. HR-MS: IonSpec Ultima 4.7 (HR-ESI-MS and HR-MALDI-MS) or Bruker Reflex (MALDI-TOF-MS) spectrometer; in m / z (\% of basis peak). Elemental analyses: performed in the Microanalytical Laboratory of the Laboratorium für Organische Chemie, ETH Zürich.
2. General Procedures 1-14 (GP 1-14). Fluorination of β-Homoalanine Methyl Esters: GP 1. A soln. of $\operatorname{BuLi}\left(1.6 \mathrm{~m}\right.$ hexane, 2.2 equiv.) was added to a soln. of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$ (2.2 equiv.) in THF (0.5 m) at -78° under Ar. The mixture was stirred for 1 h at -78°, then a soln. of the N-Boc- or N-Cbz-amino acid ester (1 equiv.) in THF (0.5 m) was added. The mixture was stirred for 1 h at -78° and then a soln. of NFSI (2.5 equiv.) in THF (1m) was added dropwise via syringe. The resulting yellow mixture was stirred for 2.5 h at -78° and for 2 h at 0°. Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo. The crude product was purified by FC.

Fluorination Reactions with DAST: GP 2. All reactions were performed in PET flasks under N_{2}. To a soln. of the appropriate starting material (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{ml} / \mathrm{mmol}$), DAST ($1.5-3$ equiv.) was slowly added at 0° (ice bath) or r.t. The mixture was stirred at 0° or r.t. for $3-6 \mathrm{~h}$, poured into $\mathrm{H}_{2} \mathrm{O}$, cautiously neutralized by the addition of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$. The combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude product was purified by FC.

Methyl Ester Hydrolysis: GP 3. A mixture of the methyl ester (1 equiv.) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (3 equiv.) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 2: 1(4 \mathrm{ml} / \mathrm{mmol})$ was well stirred for 1 h at r.t., cooled to 0° (ice bath), and neutralized by the addition of 1 m HCl . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude product was used without further purification.

Benzyl Hydrogenolysis: GP 4. To a soln. of the Bn-protected compound in $\mathrm{MeOH}(10 \mathrm{ml} / \mathrm{mmol})$, a cat. amount of $\mathrm{Pd} / \mathrm{C}(10 \%, 30 \mathrm{mg}$ per equiv. of Bn group) was added. The apparatus was evacuated and flushed three times with H_{2}, and the mixture was vigourously stirred for $12-24 \mathrm{~h}$. The catalyst was filtered off through Celite, washed several times with MeOH , and the combined org. layers were evaporated. The crude product was used without further purification.

Boc Protection: GP 5. To a soln. of the amine or the TFA salt (1 equiv.) in MeOH ($3 \mathrm{ml} / \mathrm{mmol}$), $\mathrm{Boc}_{2} \mathrm{O}$ (1.5 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (3-5 equiv.) were added. The mixture was stirred at r.t. for 12 h , concentrated under reduced pressure, dissolved in AcOEt and washed successively with 0.5 m HCl , sat.
$\mathrm{K}_{2} \mathrm{CO}_{3}$, and brine. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated, and the crude product was purified by FC.

Benzyl Ester Formation: GP 6. According to the procedure described in [27], a mixture of the carboxylic acid (1 equiv.) and dry $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1 equiv.) in DMF ($3 \mathrm{ml} / \mathrm{mmol}$) was stirred for 10 min at r.t., and treated with BnBr (1.2 equiv.). After stirring for 12 h at r.t., the mixture was diluted with AcOEt and washed successively with $1 \mathrm{~m} \mathrm{HCl}(2 \times)$, sat. $\mathrm{K}_{2} \mathrm{CO}_{3}$, and brine. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude product was purified by FC.

Non-Stereoselective Preparation of Cyanohydrins: GP 7. In analogy to the procedure described in [13], a vigorously stirred, biphasic soln. of the dibenzylamino aldehyde (1 equiv.) in hexane/ $\mathrm{H}_{2} \mathrm{O} 3: 1$ $(1.5 \mathrm{ml} / \mathrm{mmol})$ was treated with acetone cyanohydrin (=2-hydroxy-2-methylpropanenitrile; 1.5 equiv.) at r.t. After stirring for 5 min , cat. amounts of $\mathrm{KCN}\left(0.03\right.$ equiv.) and $\mathrm{Bu}_{4} \mathrm{NI}$ (0.01 equiv.) were added. The mixture was stirred at r.t. for 2 h , poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined org. phases were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude epimeric mixture of cyanohydrins was used without further purification.

Methanolysis of Cyanohydrins: GP 8. A soln. of the cyanohydrin (1 equiv.) in sat. $\mathrm{HCl} / \mathrm{MeOH}(5-$ $10 \mathrm{ml} / \mathrm{mmol}$) was stirred at r.t. for 12 h , concentrated under reduced pressure, poured into $\mathrm{H}_{2} \mathrm{O}$, cautiously neutralized by the addition of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$, and extracted with $\mathrm{AcOEt}(3 \times)$. The combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude product was purified by FC.

Oxidation of α-Hydroxy Esters to α-Keto Esters: GP 9. A dry three-necked round-bottom flask, equipped with a magnetic stirrer and a dropping funnel, was charged with anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{ml} / \mathrm{mmol})$ under N_{2}. After cooling to -78° (dry ice/acetone bath), oxalyl chloride (1.2 equiv.) and anh. DMSO (2 equiv.) were added dropwise, so that the temp. did not exceed -65°. The mixture was stirred at -78° for 10 min , treated with a soln. of the appropriate methyl ester (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml} / \mathrm{mmol})$, and stirred for additional 1.5 h at -78°. After addition of dry $\mathrm{Et}_{3} \mathrm{~N}$ (4 equiv.), the mixture was allowed to warm to r.t. over 0.5 h , whereupon $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml} / \mathrm{mmol})$ was added. The phases were separated, and the aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined org. phases were washed with $1 \% \mathrm{HCl}, 5 \% \mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude keto esters are immedially used for the DAST reactions without prior purification.

Preparation of 6-Alkyl-2-(tert-butyl)tetrahydropyrimidin-4(1H)-ones: GP 10. At -20°, 1 equiv. of the N-Cbz-protected β-amino acid was dissolved in THF, and 1.2 equiv. of $\mathrm{Et}_{3} \mathrm{~N}$ and ethyl chloroformate were added. The resulting colorless suspension was cooled below -50°, and via a needle NH_{3} gas was bubbled in for 1 h . After another 3 h , the solvent was removed by rotary evaporation. To the colorless solid, $\mathrm{H}_{2} \mathrm{O}$ was added, and the resulting suspension was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The isolated powder was dried for 12 h under h.v., then suspended in MeOH , and $10 \% \mathrm{Pd} / \mathrm{C}$ was added. After 12 h under H_{2} (balloon), the Pd / C was filtered off (Celite), MeOH was evaporated, and the obtained β amino acid amide was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2$ equiv. of pivalaldehyde was added, and the mixture was heated under reflux in an inverse Dean-Stark trap for 12 h . The solvent was removed, and the isolated crude product was purified by FC and/or recrystallization.

Cbz Protection of Tetrahydropyrimidin-4(1H)-ones: GP 11. N,O-Bis(trimethylsilyl)acetamide (1.5 equiv.) was added to a soln. of the corresponding tetrahydropyrimidin- $4(1 H)$-one, $\mathbf{1 1}-\mathbf{1 3}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. After 1 h , the mixture was cooled to 0° and Cbz chloride (1.3 equiv.) was added. After 20 h at 0°, sat. NaHCO_{3} was added, and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude products were purified by FC.

Peptide Coupling: GP 12. GP 12a. With HBTU. A soln. of the ammonium salt of the amino acid ester or peptide ester (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to 0°, treated successively with the appropriate carboxylic acid (1 equiv.), NMM (3 equiv.), and HBTU (1.2 equiv.), and stirred for 12 h at r.t. The mixture was diluted with AcOH , and washed with aq. $\mathrm{HCl}(1 \mathrm{~m})$, sat. $\mathrm{K}_{2} \mathrm{CO}_{3}$, and brine. The org. phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, evaporated, and the obtained crude product was purified by FC.

GP 12b. With EDC/HOBt. A soln. of the amino acid or peptide ester, or its TFA salt (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml} / \mathrm{mmol})$ was cooled to -10°, treated successively with a soln. of the appropriate acid (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or THF ($3 \mathrm{ml} / \mathrm{mmol}$), NMM ($3-5$ equiv.), HOBt (1.2 equiv.) and $\mathrm{EDC} \cdot \mathrm{HCl}(1.2$ equiv.), and stirred at -10° for 12 h . The mixture was diluted with AcOEt , washed with $1 \mathrm{~m} \mathrm{HCl}(3 \times)$,
sat. $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \times)$, and brine. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated, and the crude product was purified by FC.

GP 12c. With HATU. A soln. of the amino acid or peptide ester, or its TFA salt (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or DMF ($6 \mathrm{ml} / \mathrm{mmol}$) was cooled to 0°, treated successively with the appropriate acid (1 equiv.), NMM (3-5 equiv.), and HATU (1.2 equiv.), and stirred at r.t. for 12 h . The mixture was diluted with AcOEt, washed with $1 \mathrm{~m} \mathrm{HCl}(3 \times)$, sat. $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \times)$, and brine. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated, and the crude product was purified by FC.

GP 12d. With HATU, Forming an Insoluble Peptide. The peptide-coupling reaction was performed according to $G P 12 c$, but during the reaction the formed peptide precipitated. The mixture was evaporated, and the residue was stirred in AcOEt for 10 min . The resulting suspension was centrifuged, and the solid was stirred successively in $\mathrm{AcOEt}(2 \times)$ and $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 1: 1(3 \times)$ for 10 min each. After the final centrifugation, the product was dried under h.v. for 12 h .

Cyclization of Oligopeptides: GP 13. A soln. of the unprotected peptide in DMF (0.4 m) was treated at r.t. with pentafluorophenol (1 equiv.) and EDCI (1 equiv.). After 16 h , the mixture was evaporated, and the residue was dissolved in CHCl_{3}. The resulting soln. was washed successively with 1 m aq. HCl and brine. The org. phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~m})$ and an equal volume of TFA was added at 0°. The mixture was stirred for 1 h at 0° and for 1 h at r.t. The solvent was evaporated, and the residue was dissolved in toluene and evaporated twice. The obtained residue was dissolved in $\mathrm{MeCN}(0.025 \mathrm{M})$ and slowly added (over 4 h$)$ to a soln. of Hünig's base ($\mathrm{EtN}^{\mathrm{i}} \mathrm{Pr}_{2}$) in MeCN (3.3 mm) at 70° (bath temp.) with a syringe pump. The resulting precipitate was filtered, washed, and dried under h.v.

Boc Deprotection: GP 14. GP 14a. A soln. of the N-Boc-protected compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml} /$ mmol) was cooled to 0° (ice bath), treated with TFA ($3 \mathrm{ml} / \mathrm{mmol}$), and stirred at 0° for 1.5 h . After concentration under reduced pressure, the TFA salt was dried under h.v. for 2 h and used without further purification.

GP 14b. After Boc deprotection according to GP 14a, the TFA salt was dissolved in AcOEt, washed with sat. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \times)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The resulting amine was used without further purification.
3. Preparation of the Fluorinated β-Amino Acid Derivatives 1-3, 7, and 8. 3.1. By Enolate Fluorination (Scheme 2, b). Methyl (2S,3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2-fluorobutanoate (1abb). Fluorination of Boc-hAla-methyl ester ($1.87 \mathrm{~g}, 8.63 \mathrm{mmol}$; prepared from Boc-Ala [28]) was performed according to $G P 1$. Purification by $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 98: 2\right)$ afforded 1abb $(1.38 \mathrm{~g}, 68 \%)$. Pale yellow oil, which crystallized by scratching. Recrystallization gave colorless needles. M.p. 66-68 (hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{28}=-1.9(c=1.0, \mathrm{MeOH})$. IR: $3369 m, 3252 w, 2983 w, 2944 w, 1758 s, 1686 s, 1510 s$, $1440 m, 1388 m, 1366 m, 1338 m, 1275 m, 1247 m, 1225 s, 1164 s, 1135 m, 1112 s, 1061 s, 1008 s, 980 m, 938 w, 921 w$, $877 m, 849 m, 783 m, 750 m, 696 w, 675 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.16(d d, J=7.0,0.7, \mathrm{Me}) ; 1.46(s, 3$ Me); 3.82 (s, Me) ; 4.12-4.40 (m, NCH) ; 4.79 (br. s, NH); 5.05 ($d d, J=49.4,2.2, \mathrm{CFH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.2(d, J=5.2, \mathrm{Me}) ; 22.3(3 \mathrm{Me}) ; 47.8(d, J=19.7, \mathrm{NCH}) ; 52.5(\mathrm{Me}) ; 80.0\left(\mathrm{CMe}_{3}\right)$; $90.2(d, J=188.2, \mathrm{FCH}) ; 154.9(\mathrm{CO}) ; 168.2(d, J=24.0, \mathrm{FCCO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 40.6(d d$, $J=49.0,26.9,1 \mathrm{~F}$). Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{FNO}_{4}$ (235.25): C 51.06, H 7.71, N 5.95 ; found: C 51.04, H 7.54, N 6.15.

1abb

Methyl (2S,3S)-3-\{[(Benzyloxy)carbonyl]amino\}-2-fluorobutanoate (1acb). Fluorination of CbzhAla methyl ester ($5.03 \mathrm{~g}, 20.0 \mathrm{mmol}$, prepared from Cbz-Ala [28]) was performed according to GP 1 . Purification by $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 98: 2\right)$ afforded 1acb ($3.83 \mathrm{~g}, 71 \%$). Pale yellow oil, which crystallized by scratching. Recrystallization gave colorless needles. M.p. $52-53^{\circ}$ (hexane/ $\mathrm{Et}_{2} \mathrm{O}$). $[\alpha]_{\mathrm{D}}^{28}=+3.7(c=$ $1.0, \mathrm{MeOH})$. IR: $3330 m, 3068 w, 3038 w, 2992 w, 2961 w, 2896 w, 2852 w, 1759 s, 1682 s, 1652 m, 1527 s$,
$1466 m, 1454 m, 1437 m, 1390 w, 1381 w, 1334 m, 1276 s, 1258 m, 1228 s, 1140 m, 1113 s, 1068 m, 1013 s, 983 m$, $941 m, 912 m, 860 w, 840 m, 785 m, 751 s, 730 m, 696 s, 671 m, 655 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.17(d, J=$ 6.9, Me) ; $3.81(s, \mathrm{Me}) ; 4.12-4.40(m, \mathrm{NCH}) ; 4.92-5.17\left(m, \mathrm{NH}, \mathrm{FCH}, \mathrm{PhCH}_{2}\right) ; 7.27-7.38(m, 5$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.3(d, J=5.3, \mathrm{Me}) ; 48.3(d, J=20.4, \mathrm{NCH}) ; 52.6(\mathrm{Me}) ; 67.1$ $\left(\mathrm{PhCH}_{2}\right) ; 90.0(d, J=188.5, \mathrm{FCH}) ; 128.2(\mathrm{CH}) ; 128.3(\mathrm{CH}) ; 128.6(\mathrm{CH}) ; 136.2(\mathrm{CH}) ; 155.4(\mathrm{CO}) ; 168.0$ $(d, J=23.7, \mathrm{FCCO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 41.0(d d, J=49.0,26.7,1 \mathrm{~F})$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNO}_{4}$ (269.27): C 66.84, H 8.56, N 4.10; found: C 66.57, H 8.46, N 4.11.
3.2. By the Cyanohydrin Route (Scheme 1). 3.2.1. Monofluorinated Ala-Derived Compounds. Methyl (2R,3S)-3-(Dibenzylamino)-2-fluorobutanoate (epi-7a) and Methyl (2R,3R)-2-(Dibenzylamino)-3-fluorobutanoate (iso-epi-7a). The methyl ester epi-6a [4] ($2.04 \mathrm{~g}, 6.51 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{ml})$ and fluorinated with DAST $(1.3 \mathrm{ml}, 8.70 \mathrm{mmol})$ at 0° for 3 h according to $G P 2$. FC (pentane $/ \mathrm{Et}_{2} \mathrm{O} 9: 1$) yielded epi-7a ($753 \mathrm{mg}, 37 \%$) and iso-epi-7a ($690 \mathrm{mg}, 34 \%$).

6b

Data of epi-7a. Light yellow oil. R_{f} (pentane/ $\mathrm{Et}_{2} \mathrm{O} 5: 1$) 0.41 . $[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=+27.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3570 w, 3064 w, 3032 m, 2954 w, 2841 w, 2810 w, 1762 s, 1602 w, 1495 m, 1453 m, 1439 m, 1382 m, 1358 m$, $1298 m, 1171 s, 1137 w, 1106 m, 1074 w, 1025 s, 948 w, 911 w, 832 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.27(d d, J=0.6$, $7.0, \mathrm{Me}) ; 3.29(d d q, J=3.8,7.0,31.8, \mathrm{NCH}) ; 3.33\left(d, J=13.4,2 \mathrm{PhCHH}^{\prime}\right) ; 3.63(s, \mathrm{MeO}) ; 3.90(d, J=13.4$, $\left.2 \mathrm{PhCH} H^{\prime}\right) ; 4.84(d d, J=3.8,49.1, \mathrm{CHF}) ; 7.19-7.32\left(m, 10\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.0(d$, $J=4.4), 51.9(\mathrm{Me}) ; 53.9(d, J=18.4, \mathrm{CH}) ; 55.0\left(\mathrm{CH}_{2}\right) ; 94.2(d, J=189.2), 127.0,128.1,129.1(\mathrm{CH}) ; 139.6$, $169.0(d, J=25.6)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-200.4(d d, J=32.0,49.1, \mathrm{CHF})$. HR-MALDI-MS: $338.2\left(11,[M+\mathrm{Na}]^{+}\right), 316.2\left(100,[M+\mathrm{H}]^{+}\right), 314.2$ (5), 296.2 (4), 268.2 (5), 224.1 (9), 158.1 (8). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO}_{2}$ (315.39): C 72.36, H 7.03, N 4.44; found: C 72.51, H 7.08, N 4.35.

Data of iso-epi-7a. Light yellow oil. $R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 5: 1\right) 0.52$. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-104.1\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3063 w, 3008 m, 2953 m, 2845 w, 1729 s, 1602 w, 1495 m, 1454 m, 1435 w, 1383 w, 1359 w, 1277 w, 1162 s$, $1115 w, 1074 m, 1024 m, 990 w, 939 w, 877 w, 843 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.35$ ($d d, J=6.3,24.0, \mathrm{Me}$); $3.37(d d, J=5.7,23.7, \mathrm{NCH}) ; 3.77\left(d, J=14.0,2 \mathrm{PhCHH}^{\prime}\right) ; 3.78(s, \mathrm{MeO}) ; 4.06\left(d, J=14.0,2 \mathrm{PhCH} H^{\prime}\right)$; $5.12(d d q, J=5.8,6.3,47.9, \mathrm{CHF}) ; 7.21-7.40\left(m, 10\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 18.3(d, J=$ $22.4), 51.4(\mathrm{Me}) ; 55.6\left(\mathrm{CH}_{2}\right) ; 64.9(d, J=19.6), 89.7(d, J=173.2), 127.1,128.3,128.8(\mathrm{CH}) ; 139.5,171.0$ $(d, J=6.7)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-181.8$ (dquint., $J=23.5,48.0$, CHF). HR-MALDI-MS: $338.2\left(13,[M+\mathrm{Na}]^{+}\right), 316.2\left(100,[M+\mathrm{H}]^{+}\right), 314.2(15), 296.2(7), 238.2$ (14), 224.1 (28), 158.1 (8). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO}_{2}$ (315.39): C 72.36, H 7.03, N 4.44; found: C 72.43, H 7.12, N 4.45
3.2.2. Monofluorinated Val-Derived Compounds. Methyl (2S,3S)-3-(Dibenzylamino)-2-hydroxy-4methylpentanoate $(\mathbf{6 b})$. The cyanohydrin $\mathbf{5 b}$ [12] $(12.74 \mathrm{~g}, 41.3 \mathrm{mmol})$ was treated with a sat. $\mathrm{HCl} / \mathrm{MeOH}$ soln. $(210 \mathrm{ml})$ according to $G P$ 8. FC (AcOEt/hexane $1: 9 \rightarrow 3: 7)$ yielded $\mathbf{6 b}(8.61 \mathrm{~g}, 61 \%)$. Light yellow oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.19 .[\alpha]_{\mathrm{D}}^{\mathrm{rt}}=-0.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3532 w, 3064 w, 2955 m, 2873 w, 2802 w$, 1728s, $1602 w, 1494 m, 1453 m, 1366 w, 1272 m, 1137 m, 1089 m, 1028 w, 990 w, 967 w, 913 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.71(d, J=6.6, \mathrm{Me}) ; 1.02(d, J=6.7, \mathrm{Me}) ; 2.18-2.31\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 2.74(d d, J=1.5$, $10.2, \mathrm{NCH}) ; 2.99(d, J=4.6, \mathrm{OH}) ; 3.40\left(d, J=13.9,2 \mathrm{PhCHH}^{\prime}\right) ; 3.72(s, \mathrm{MeO}) ; 3.95(d, J=13.9$, $\left.2 \mathrm{PhCHH} H^{\prime}\right) ; 4.59(d d, J=1.5,4.6, \mathrm{CHOH}) ; 7.20-7.38$ ($m, 10$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 19.8, $21.5(\mathrm{Me}) ; 26.3(\mathrm{CH}) ; 52.5(\mathrm{Me}) ; 54.8\left(\mathrm{CH}_{2}\right) ; 66.5,67.4,126.9,128.1,129.2(\mathrm{CH}) ; 139.9,176.7(\mathrm{C})$. HR-MALDI-MS: $364.2\left(9,[M+\mathrm{Na}]^{+}\right), 342.2\left(100,[M+\mathrm{H}]^{+}\right), 252.2(23)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}$ (341.44): C 73.87, H 7.97, N 4.10; found: C 74.08, H 7.81, N 4.30.

Methyl (2S,3S)-3-(Dibenzylamino)-2-fluoro-4-methylpentanoate (7b). Compound 6b (3.84 g, 11.25 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{ml})$ and fluorinated with DAST $(2.2 \mathrm{ml}, 16.9 \mathrm{mmol})$ at 0° for 3 h , according to $G P 2$. FC (pentane $/ \mathrm{Et}_{2} \mathrm{O} 10: 1$) yielded $7 \mathbf{b}\left(2.78 \mathrm{~g}, 72 \%\right.$). Yellow oil. R_{f} (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ $10: 1) 0.35 .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-15.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3066 w, 3032 m, 2956 m, 2803 w, 1758 s, 1602 w$,

7b

1bba
$1494 m, 1476 w, 1453 m, 1438 m, 1366 w, 1287 s, 1136 m, 1116 m, 1084 s, 1016 m, 992 w, 968 w, 912 w, 867 w$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.80(d, J=6.6, \mathrm{Me}) ; 1.00(d, J=6.7, \mathrm{Me}) ; 2.13-2.26\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 2.89$ $(d d d, J=1.0,9.9,29.2, \mathrm{NCH}) ; 3.34\left(d, J=13.8,2 \mathrm{PhCHH}^{\prime}\right) ; 3.75(s, \mathrm{MeO}) ; 3.96\left(d, J=13.8,2 \mathrm{PhCH} H^{\prime}\right)$; $5.37(d, J=48.3, \mathrm{CHF}) ; 7.22-7.38\left(m, 10\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.3,21.3$ (Me); 26.3 $(d, J=5.0, \mathrm{CH}) ; 52.3(\mathrm{Me}) ; 54.6\left(\mathrm{CH}_{2}\right) ; 66.0(d, J=18.9), 86.3(d, J=195.3), 127.1,128.2,129.2(\mathrm{CH})$; 139.2, $171.3(d, J=23.1)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-201.9$ ($d d, J=28.8,48.0$, CHF). HR-MALDI-MS: $366.2\left(1,[M+\mathrm{Na}]^{+}\right), 344.2\left(18,[M+\mathrm{H}]^{+}\right), 300.1(6), 252.2$ (27). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FNO}_{2}$ (343.44): C 73.44, H 7.63, N 4.08; found: C 73.30, H 7.47, N 4.01.
(2S,3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2-fluoro-4-methylpentanoic Acid (1bba). Compound 7b $(2.77 \mathrm{~g}, 8.06 \mathrm{mmol})$ was hydrolyzed with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.02 \mathrm{~g}, 24.2 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml}, 2: 1)$ according to GP 3, the carboxylic acid was dissolved in $\mathrm{MeOH}(80 \mathrm{ml})$ and hydrogenolyzed according to $G P 4$, and Boc-protected with $\mathrm{Boc}_{2} \mathrm{O}(2.0 \mathrm{~g}, 9.17 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.2 \mathrm{ml}, 22.9 \mathrm{mmol})$ in $\mathrm{MeOH}(28 \mathrm{ml})$ according to $G P 5$. $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 100: 3: 0.1 \rightarrow 100: 5: 0.2\right)$ yielded the carboxylic acid 1bba $(1.62 \mathrm{~g}, 80 \%$ over 3 steps $)$. Colorless solid. M.p. $133-134^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 100: 5: 1\right) 0.25$. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-5.8\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3447 m, 3011 w, 2980 m, 2933 w, 1749 m, 1712 s, 1503 s, 1456 w$, $1393 w, 1369 m, 1161 s, 1128 w, 1098 w, 1041 w, 999 w, 868 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 0.94(d, J=6.8$, $\mathrm{Me}) ; 0.96(d, J=6.8, \mathrm{Me}) ; 1.44(s, t-\mathrm{Bu}) ; 1.93-2.02\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.91(t d, J=5.5,21.5, \mathrm{NCH}) ; 4.89(d d$, $J=5.1,48.7, \mathrm{CHF}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 18.2,20.5,28.8(\mathrm{Me}) ; 30.0(d, J=2.6), 57.9(d, J=$ 21.2) (CH); $80.4(\mathrm{C}) ; 91.2(d, J=186.9)(\mathrm{CH}) ; 158.3,172.1(d, J=23.1)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}(282 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right):-199.7(d d, J=21.3,49.1, \mathrm{CHF})$. HR-ESI-MS: $565.2(23), 543.2\left(90,[2 M+2 \mathrm{Na}]^{+}\right), 521.3$ $\left(59,[2 M+\mathrm{Na}]^{+}\right), 294.1(23), 272.1\left(100,[M+\mathrm{Na}]^{+}\right), 216.1(14)$. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{FNO}_{4}(249.28): \mathrm{C}$ 53.00, H 8.09, N 5.62; found: C 53.04, H 7.86, N 5.44.

Methyl (2S/R,3S)-3-(Dibenzylamino)-2-hydroxy-4-methylpentanoate ($\mathbf{6 b} /$ epi- $\mathbf{6 b}$). A soln. of freshly prepared $\mathbf{4 b}$ [11] $(16.2 \mathrm{~g}, 57.5 \mathrm{mmol})$ in hexane $/ \mathrm{H}_{2} \mathrm{O}(115 \mathrm{ml}, 3: 1)$ was treated with acetone cyanohydrin $(7.85 \mathrm{ml}, 86.3 \mathrm{mmol}), \mathrm{KCN}(112.2 \mathrm{mg}, 1.7 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NI}(148.7 \mathrm{mg}, 0.4 \mathrm{mmol})$ according to $G P 7$. The crude epimeric mixture of cyanohydrins was treated with a sat. $\mathrm{HCl} / \mathrm{MeOH}$ soln. $(290 \mathrm{ml})$ according to GP 8. FC (hexane/AcOEt 98:2 $\rightarrow 7: 3$) yielded $\mathbf{6 b} /$ epi- $\mathbf{6 b}$ ($15.5 \mathrm{~g}, 79 \%$ over 2 steps). Yellow oil. R_{f} (hexane/AcOEt 7:3) 0.46. The mixture could be separated by a further FC (hexane/AcOEt $95: 5$) to yielding pure $\mathbf{6 b}$ and epi- $\mathbf{6 b}$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data for $\mathbf{6 b}((2 R, 3 S))$ were in accordance with those described above.

Data of epi-6b $((2 S, 3 S))$. Light yellow oil. $R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 3: 2\right) 0.42 .[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-15.6(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3600 w, 3527 w, 3067 w, 3008 m, 2961 m, 2872 w, 1949 w, 1887 w, 1815 w, 1731 s, 1494 w$, $1453 m, 1389 w, 1269 s, 1146 m, 1076 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.06(d, J=6.5, \mathrm{Me}) ; 1.16(d, J=6.5$, Me) ; 2.35-2.47 ($\left.m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 2.82(d d, J=3.3,8.6, \mathrm{NCH}) ; 3.22($ br. $s, \mathrm{OH}) ; 3.44(s, \mathrm{MeO}) ; 3.75(d, J=$ 13.4, $\left.2 \mathrm{PhCHH}^{\prime}\right) ; 3.99\left(d, J=13.7,2 \mathrm{PhCHH}^{\prime}\right) ; 4.33(d, J=3.1, \mathrm{CHOH}) ; 7.20-7.38(m, 10$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 21.5,22.9(\mathrm{Me}) ; 28.1(\mathrm{CH}) ; 52.3(\mathrm{Me}) ; 56.4\left(\mathrm{CH}_{2}\right) ; 65.4,72.6,126.7,128.0$, $129.1(\mathrm{CH}) ; 140.1,175.4(\mathrm{C})$. HR-MALDI-MS: $364.2\left(16,[M+\mathrm{Na}]^{+}\right), 342.2\left(100,[M+\mathrm{H}]^{+}\right), 328.2(11)$,
321.2 (26), 291.2 (19), 266.2 (70), 252.2 (49). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}$ (341.44): C 73.87, H 7.97, N 4.10; found: C 73.85, H 7.84, N 4.20.

Methyl (2R,3S)-3-(Dibenzylamino)-2-fluoro-4-methylpentanoate (epi-7b). Compound epi-6b ($911 \mathrm{mg}, 2.67 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml})$ and fluorinated with DAST ($525 \mu \mathrm{l}, 4.00 \mathrm{mmol}$) at 0° for 3 h , according to $G P 2$. FC (pentane/Et $\mathrm{O}_{2} 99: 1 \rightarrow 97: 3$) yielded epi-7b $(551 \mathrm{mg}, 60 \%)$. Yellow oil. $R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 10: 1\right) 0.21 .[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-22.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3065 w, 3032 m, 2955 s$, $2851 w, 1760 s, 1602 w, 1494 m, 1476 w, 1453 s, 1390 w, 1359 m, 1294 m, 1144 s, 1116 m, 1073 s, 1016 m, 979 w, 949 w$, $911 w, 835 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.02(d, J=6.6$, Me); $1.12(d, J=6.8$, Me); 2.29-2.37 (m, $\left.\mathrm{Me}_{2} \mathrm{CH}\right) ; 2.88(d d d, J=2.6,9.0,34.0, \mathrm{NCH}) ; 3.63(s, \mathrm{MeO}) ; 3.81\left(d, J=13.6,2 \mathrm{PhCHH}^{\prime}\right) ; 3.85(d, J=$ 13.6, $2 \mathrm{PhCH} H^{\prime}$); 5.15 ($d d, J=2.6,47.9$, CHF); $7.19-7.30$ ($m, 10$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 21.2,22.1(\mathrm{Me}) ; 27.8(d, J=1.8, \mathrm{CH}) ; 52.0(\mathrm{Me}) ; 55.6\left(\mathrm{CH}_{2}\right) ; 64.5(d, J=18.0)$, $91.1(d, J=$ 189.6), $126.9,128.1,129.4(\mathrm{CH}) ; 140.0,170.2(d, J=25.3)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-202.1$ $(d d, J=34.2,48.0, \mathrm{CHF})$. HR-MALDI-MS: $366.2\left(5,[M+\mathrm{Na}]^{+}\right), 344.2\left(71,[M+\mathrm{H}]^{+}\right), 324.2(12), 252.2$ (100), 126.1 (7). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FNO}_{2}$ (343.44): C 73.44, H 7.63, N 4.08; found: C 73.49, H 7.59, N 4.20 .

epi-7b

2bba
(2R,3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2-fluoro-4-methylpentanoic Acid (2bba). Compound epi-7b ($472 \mathrm{mg}, 1.37 \mathrm{mmol}$) was hydrolyzed with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(173 \mathrm{mg}, 4.12 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ $(7.5 \mathrm{ml}, 2: 1)$ according to $G P 3$, the carboxylic acid was dissolved in $\mathrm{MeOH}(15 \mathrm{ml})$, hydrogenolyzed according to GP 4, and Boc-protected with $\mathrm{Boc}_{2} \mathrm{O}(354 \mathrm{mg}, 1.64 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(570 \mu \mathrm{l}, 4.1 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ according to $G P 5$. FC (hexane/AcOEt $2: 1+2 \% \mathrm{AcOH}$) yielded 2bba ($293 \mathrm{mg}, 85 \%$ over 3 steps $)$. Light yellow solid. M.p. $70-73^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 100: 5: 1\right) 0.27$. $[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-35.8(c=$ $1.1, \mathrm{CHCl}_{3}$). IR $\left(\mathrm{CHCl}_{3}\right): 3440 m, 3026 w, 2979 m, 2923 w, 1754 w, 1713 s, 1505 s, 1456 w, 1393 w, 1369 m$, $1310 w, 1161 s, 1077 w, 1045 w, 904 w, 861 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 0.97(d, J=6.8$, Me) ; $1.03(d, J=$ $6.5, \mathrm{Me}) ; 1.42(s, t-\mathrm{Bu}) ; 1.83-1.95\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.80(d d d, J=1.9,8.7,30.2, \mathrm{NCH}) ; 5.13(d d, J=1.9,48.2$, CHF). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 18.4,18.8,27.5(\mathrm{Me}) ; 30.1,57.8(d, J=18.9)(\mathrm{CH}) ; 79.0(\mathrm{C}) ; 88.5(d$, $J=185.6, \mathrm{CH}) ; 156.9,177.9$ (C). ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right):-203.2(d d, J=29.9,48.0$, CHF). HR-ESI-MS: $565.2(27), 543.2\left(14,[2 M+2 \mathrm{Na}]^{+}\right)$, $294.1(100), 272.1\left(33,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{FNO}_{4}$ (249.28): C 53.00, H 8.09, N 5.62; found: C 52.96, H 7.96, N 5.43.
3.2.3. Monofluorinated Leu-Derived Compounds. Methyl (2S,3S)-3-(Dibenzylamino)-2-hydroxy-5methylhexanoate ($\mathbf{6 c}$). The cyanohydrin $\mathbf{5 c}[12](4.43 \mathrm{~g}, 13.8 \mathrm{mmol})$ was treated with a sat. $\mathrm{HCl} / \mathrm{MeOH}$ soln. $(70 \mathrm{ml})$ according to GP 8. FC (AcOEt/hexane $1: 9 \rightarrow 3: 7)$ yielded $\mathbf{6 c}(4.20 \mathrm{~g}, 86 \%)$. Light yellow oil. $R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 4: 1\right) 0.23$. $[\alpha]_{\mathrm{D}}^{\text {rit }}=+10.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3528 w, 3032 w, 2956 m$, $2869 w, 2810 w, 1729 s, 1602 w, 1494 m, 1453 m, 1366 w, 1268 m, 1137 w, 1089 m, 1071 m, 966 w, 905 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.52(d, J=6.5, \mathrm{Me}) ; 0.84(d, J=6.7, \mathrm{Me}) ; 0.92\left(d d d, J=4.9,8.4,13.7,1 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2}\right)$; $1.67\left(d d d, J=5.0,8.8,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.74-1.80\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.04-3.08(m, \mathrm{NCH}) ; 3.05(d, J=6.8$, $\mathrm{OH}) ; 3.50\left(d, J=13.8,2 \mathrm{PhCHH}^{\prime}\right) ; 3.71(s, \mathrm{MeO}) ; 3.86\left(d, J=13.8,2 \mathrm{PhCHH}^{\prime}\right) ; 4.61(d d, J=2.4,6.7$,

6c
$\mathrm{CHOH}) ; 7.20-7.35$ ($m, 10$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 21.7, 23.4 (Me); 24.2 (CH); 35.0 $\left(\mathrm{CH}_{2}\right) ; 52.4(\mathrm{Me}) ; 54.5\left(\mathrm{CH}_{2}\right) ; 57.9,69.3,127.0,128.2,129.1(\mathrm{CH}) ; 140.0,175.6(\mathrm{C})$. HR-MALDI-MS: $378.2\left(6,[M+N a]^{+}\right), 356.2\left(100,[M+\mathrm{H}]^{+}\right)$, $266.2(50)$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3}$ (355.48): C 74.33, H 8.22, N 3.94; found: C 74.15, H 8.08, N 4.02 .

Methyl (2S,3S)-3-(Dibenzylamino)-2-fluoro-5-methylhexanoate (7c). Compound 6c (325 mg, 0.91 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and fluorinated with DAST $(180 \mu \mathrm{l}, 1.37 \mathrm{mmol})$ at 0° for 3 h , according to $G P 2$. FC (pentane/ $\mathrm{Et}_{2} \mathrm{O} 99: 1 \rightarrow 97: 3$) yielded $7 \mathrm{c}(277 \mathrm{mg}, 85 \%)$. Light yellow oil. R_{f} (pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 10: 1\right) 0.24 .[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-6.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3065 w, 3032 w, 2956 m, 2869 w$, $2806 w, 1756 s, 1603 w, 1495 m, 1454 m, 1439 m, 1367 m, 1285 s, 1162 w, 1138 w, 1086 w, 1070 m, 1017 w, 967 w$, $907 w, 868 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.44(d, J=6.4, \mathrm{Me}) ; 0.84(d, J=6.6, \mathrm{Me}) ; 0.96-1.03(m, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right) ; 1.74-1.84\left(m, \mathrm{Me}_{2} \mathrm{CH}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{CH}\right) ; 3.16$ (dddd, $\left.J=1.8,3.8,9.7,31.3, \mathrm{NCH}\right) ; 3.44(d$, $\left.J=13.8,2 \mathrm{PhCHH} H^{\prime}\right), 3.74(s, \mathrm{MeO}) ; 3.94(d, J=13.8,2 \mathrm{PhCHH}) ; 5.42(d d, J=1.8,50.3, \mathrm{CHF}) ; 7.21-7.35$ ($m, 10$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 21.1, 23.6 (Me); 24.0, 35.2 ($d, J=4.0$) (CH); 52.3 (Me); $54.2,54.3\left(\mathrm{CH}_{2}\right) ; 57.3(d, J=19.1), 88.0(d, J=191.7), 127.1,128.2,129.1(\mathrm{CH}) ; 139.5,170.2(d, J=24.0)$ (C). ${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-201.6(d d, J=30.9,50.2, \mathrm{CHF})$. HR-MALDI-MS: $397.0(7,[M+$ $\left.\mathrm{K}]^{+}\right), 380.2\left(12,[M+\mathrm{Na}]^{+}\right), 358.2\left(100,\left[M+\mathrm{H}^{+}\right), 354.1(26), 338.2\right.$ (17), 280.2 (45), 266.2 (60). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FNO}_{2}$ (357.47): C 73.92, H 7.89, N 3.92; found: C 73.80, H 7.73, N 3.96 .

7c

1 cbc

Benzyl (2S,3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2-fluoro-5-methylhexanoate (1cbc). Compound $7 \mathbf{c}(4.13 \mathrm{~g}, 11.55 \mathrm{mmol})$ was hydrolyzed with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.45 \mathrm{~g}, 34.65 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(45 \mathrm{ml}, 2: 1)$ according to GP 3; the obtained carboxylic acid was dissolved in $\mathrm{MeOH}(115 \mathrm{ml})$ and hydrogenolyzed according to GP 4, and Boc-protected with $\mathrm{Boc}_{2} \mathrm{O}(3.02 \mathrm{~g}, 13.86 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.87 \mathrm{ml}, 34.65 \mathrm{mmol})$ in $\mathrm{MeOH}(35 \mathrm{ml})$ according to GP 5. The resulting acid 1cba was dissolved in DMF $(35 \mathrm{ml})$ and treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.78 \mathrm{~g}, 11.6 \mathrm{mmol})$ and $\mathrm{BnBr}(1.66 \mathrm{ml}, 13.9 \mathrm{mmol})$ according to $G P 6 . \mathrm{FC}$ (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ $7: 1$) yielded 1cbc ($3.43 \mathrm{~g}, 84 \%$ over 4 steps). Colorless oil. R_{f} (pentane/AcOEt 9:1) 0.44. [$\left.\alpha\right]_{\mathrm{D}}^{\mathrm{rt.}}=-18.2$ $\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3446 w, 3036 w, 2964 m, 2872 w, 1759 m, 1708 s, 1503 s, 1456 w, 1390 w, 1369 m$, $1164 s, 1128 w, 1103 w, 1046 w, 908 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.75(d, J=6.5, \mathrm{Me}) ; 0.83(d, J=6.7$, $\mathrm{Me}) ; 0.96\left(d d d, J=3.1,10.0,13.3,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.39-1.46\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.44(s, t-\mathrm{Bu}) ; 1.54-1.59$ $\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 4.09-4.22(m, \mathrm{NCH}) ; 4.59(d, J=9.1, \operatorname{BocN} H) ; 5.06(d d, J=2.6,49.2, \mathrm{CHF}) ; 5.15(d, J=$ $\left.11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 5.32\left(d, J=11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 7.33-7.39\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$: 21.1, $23.4(\mathrm{Me}) ; 24.4(\mathrm{CH}) ; 28.3(\mathrm{Me}) ; 37.4\left(d, J=3.3, \mathrm{CH}_{2}\right) ; 50.3(d, J=19.7, \mathrm{CH}) ; 67.3\left(\mathrm{CH}_{2}\right)$; $79.9(\mathrm{C}) ; 90.6(d, J=187.5), 128.7,128.8,128.9(\mathrm{CH}) ; 134.9,155.2,167.6(d, J=24.2)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-199.0(d d, J=26.7,48.0, \mathrm{CHF})$. HR-MALDI-MS: $392.2\left(7,[M+\mathrm{K}]^{+}\right), 376.2(100$, $\left.[M+\mathrm{Na}]^{+}\right), 344.2(12), 320.1(60), 300.1(18), 254.2(48)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{FNO}_{4}$ (353.43): C 64.57, H 7.98, N 3.96; found: C 64.51, H 7.82, N 3.91.

Methyl (2S/R,3S)-3-(Dibenzylamino)-2-hydroxy-5-methylhexanoate ($\mathbf{6 c} /$ epi- $\mathbf{6 c}$). A soln. of freshly prepared $\mathbf{4 c}$ [11] $(5.6 \mathrm{~g}, 19.1 \mathrm{mmol})$ in hexane $/ \mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml}, 3: 1)$ was treated with acetone cyanohydrin $(2.6 \mathrm{ml}, 28.7 \mathrm{mmol}), \mathrm{KCN}(40.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NI}(47.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to $G P 7$. The crude epimeric mixture of cyanohydrins was treated with a sat. $\mathrm{HCl} / \mathrm{MeOH}$ soln. $(100 \mathrm{ml})$ according to GP 8. FC (pentane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1$) yielded $\mathbf{6 c} /$ epi- $\mathbf{6 c}\left(7.12 \mathrm{~g}, 78 \%\right.$ over 2 steps). Yellow oil. R_{f} (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ $4: 1) 0.23$. Both epimers could be separated by a further FC (hexane/AcOEt $95: 5$) yielding pure $\mathbf{6 c}$ and epi- $\mathbf{6 c}$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data for $\mathbf{6 c}((2 R, 3 S))$ were in accordance with those described above.

Data of epi-6c $((2 S, 3 S))$. Light yellow oil. $R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 3: 2\right) 0.43 .[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=+43.7(c=1.0$, $\left.\mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3520 w, 3008 w, 2957 s, 1731 s, 1495 m, 1454 m, 1366 w, 1269 m, 1155 m, 1092 m, 1028 w$, $973 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.94(d, J=6.5, \mathrm{Me}) ; 1.00(d, J=6.2, \mathrm{Me}) ; 1.48-1.58(m, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right) ; 1.60-1.69\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.77-1.86\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.00-3.08(m, \mathrm{NCH}) ; 3.36(d, J=13.7$, $\left.2 \mathrm{PhCHH} H^{\prime}\right) ; 3.48(s, \mathrm{MeO}) ; 3.95(d, J=13.4,2 \mathrm{PhCHH}) ; 4.18(d, J=4.1, \mathrm{CHOH}) ; 7.19-7.39(m, 10$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 22.1,24.1(\mathrm{Me}) ; 25.5(\mathrm{CH}) ; 32.8\left(\mathrm{CH}_{2}\right) ; 52.4(\mathrm{Me}) ; 55.6\left(\mathrm{CH}_{2}\right) ; 57.2$, 73.2, 126.8, 128.1, 129.1 (CH); 139.9, 174.9 (C). HR-MALDI-MS: $378.2\left(9,[M+\mathrm{Na}]^{+}\right), 356.2(100,[M+$ $\mathrm{H}]^{+}$), 266.2 (60), 178.1 (9), 176.1 (8).

Methyl (2R,3S)-3-(Dibenzylamino)-2-fluoro-5-methylhexanoate (epi-7c). Compound epi-6c (2.42 g , $6.80 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{ml})$ and fluorinated with DAST $(1.34 \mathrm{ml}, 10.21 \mathrm{mmol})$ at 0° for 3 h , according to $G P 2$. FC (pentane $/ \mathrm{Et}_{2} \mathrm{O} 99: 1 \rightarrow 96: 4$) yielded epi-7c $(1.09 \mathrm{~g}, 45 \%)$. Light yellow solid. M.p. $62-63^{\circ} . R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 10: 1\right) 0.31 .[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=+31.7\left(c=1.1, \mathrm{CHCl}_{3}\right) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 3064 w, 3032 w$, $2957 s, 2870 w, 2810 w, 1762 s, 1603 w, 1495 m, 1454 m, 1439 w, 1361 w, 1304 m, 1158 m, 1076 m, 1029 w, 1001 w$, $972 w, 938 w, 911 w, 887 w, 831 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89(d, J=6.4, \mathrm{Me}) ; 0.92(d, J=6.4, \mathrm{Me})$; $1.50-1.76\left(m, \mathrm{Me}_{2} \mathrm{CH}_{2} \mathrm{CH}\right) ; 3.15(t d d, J=4.0,10.2,31.4, \mathrm{NCH}) ; 3.40\left(d, J=13.4,2 \mathrm{PhCHH}^{\prime}\right) ; 3.61(s$, $\mathrm{MeO}) ; 3.87\left(d, J=10.3,2 \mathrm{PhCH} H^{\prime}\right) ; 4.97(d d, J=3.6,49.0, \mathrm{CHF}) ; 7.19-7.31\left(m, 10\right.$ arom. H) ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.0, $23.7(\mathrm{Me}) ; 25.0(\mathrm{CH}) ; 31.9\left(d, J=3.3, \mathrm{CH}_{2}\right) ; 51.9(\mathrm{Me}) ; 55.0,55.1\left(\mathrm{CH}_{2}\right) ; 56.5$ ($d, J=18.1$), $91.9(d, J=188.8), 126.9,128.1,129.3(\mathrm{CH}) ; 139.7,169.4(d, J=25.6)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-202.6(d d, J=31.0,48.0, \mathrm{CHF})$. HR-MALDI-MS: $358.2\left(22,[M+\mathrm{H}]^{+}\right), 338.2$ (62), 278.2 (19), 266.2 (100). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FNO}_{2}$ (357.47): C 73.92, H 7.89, N 3.92; found: C 73.87, H 8.13, N 4.08.

Benzyl (2R,3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2-fluoro-5-methylhexanoate (2cbc). Compound epi-7c ($940 \mathrm{mg}, 2.63 \mathrm{mmol}$) was hydrolyzed with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(331 \mathrm{mg}, 7.89 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 2: 1$ $(10 \mathrm{ml})$ according to $G P 3$, the carboxylic acid was dissolved in $\mathrm{MeOH}(26 \mathrm{ml})$ and hydrogenolyzed according to GP 4, and Boc-protected with $\mathrm{Boc}_{2} \mathrm{O}(707 \mathrm{mg}, 3.24 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.13 \mathrm{ml}, 8.10 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{ml})$ according to $G P 5$. The resulting acid 2cba was dissolved in DMF (8 ml), and treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(968 \mathrm{mg}, 3.0 \mathrm{mmol})$ and $\mathrm{BnBr}(385 \mu \mathrm{l}, 3.24 \mathrm{mmol})$ according to $G P 6$. FC (pentane $/ \mathrm{Et}_{2} \mathrm{O} 9: 1$) yielded 2cbc ($861 \mathrm{mg}, 92 \%$ over 4 steps). Colorless solid. M.p. $80-82^{\circ} . R_{\mathrm{f}}$ (pentane/AcOEt $9: 1$) 0.42 . $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-37.1\left(c=1.0, \mathrm{CHCl}_{3}\right) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 3439 m, 3009 w, 2962 m, 2923 w, 2872 w, 1759 s, 1709 s, 1503 s$, $1456 w, 1392 w, 1368 m, 1331 w, 1164 s, 1135 w, 1083 m, 1052 w, 949 w, 913 w, 867 w, 850 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.94(d, J=6.5,2 \mathrm{Me}) ; 1.36-1.50\left(m, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.42(s, t-\mathrm{Bu}) ; 1.62-1.72\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 4.20-4.33$ $(m, \mathrm{NCH}) ; 4.66(d, J=10.0, \operatorname{BocN} H) ; 4.89(d d, J=1.9,47.9, \mathrm{CHF}) ; 5.11(d, J=12.0,1 \mathrm{H}, \mathrm{PhCH} 2) ; 5.27$ $\left(d, J=12.0,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 7.32-7.42\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 22.0,22.9(\mathrm{Me}) ; 24.7$ $(\mathrm{CH}) ; 28.3(\mathrm{Me}) ; 40.3\left(\mathrm{CH}_{2}\right) ; 50.3(d, J=20.4, \mathrm{CH}) ; 67.5\left(\mathrm{CH}_{2}\right) ; 79.7(\mathrm{C}) ; 89.7(d, J=187.4), 128.6,128.7$, $128.7(\mathrm{CH}) ; 135.0,155.2,168.1(d, J=25.2)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-204.1(d d, J=26.7,48.0$,

CHF). HR-MALDI-MS: $376.2\left(51,[M+\mathrm{Na}]^{+}\right), 320.1$ (34). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{FNO}_{4}$ (353.43): C 64.57, H 7.98, N 3.96, F 5.38; found: C 64.77, H 7.81, N 3.90, F 5.37.
3.2.4. Difluoro-Substituted Val- and Leu-Derived Compounds. Methyl (3S)-3-(Dibenzylamino)-2,2-difluoro-4-methylpentanoate ($\mathbf{8 b}$). The mixture $\mathbf{6 b} /$ epi- $\mathbf{6 b}(5.1 \mathrm{~g}, 14.9 \mathrm{mmol})$ was oxidized with oxalyl chloride $(1.5 \mathrm{ml}, 17.9 \mathrm{mmol})$ and DMSO $(2.1 \mathrm{ml}, 29.8 \mathrm{mmol})$ according to $G P 9$. The resulting crude keto ester was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{ml})$ and fluorinated with DAST $(5.5 \mathrm{ml}, 44.7 \mathrm{mmol})$ at r.t. for 6 h , according to GP 2. FC (pentane/ $\left.\mathrm{Et}_{2} \mathrm{O} 95: 5\right)$ yielded $\mathbf{8 b}\left(3.4 \mathrm{~g}, 64 \%\right.$ over 2 steps). Light yellow oil. R_{f} (pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 95: 5\right) 0.31 .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-2.1\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3005 m, 2954 m, 2841 w, 1959 w$, $1769 s, 1708 s, 1600 w, 1492 w, 1451 m, 1440 w, 1415 w, 1359 s, 1303 m, 1281 w, 1164 w, 1118 s, 1087 m, 1067 s$, $1041 m, 979 w, 913 w, 841 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.96(d, J=6.7, \mathrm{Me}) ; 1.06(d, J=6.9, \mathrm{Me}) ; 2.13$ $2.19\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.17-3.25(d d d, J=7.0,14.6,16.9, \mathrm{NCH}) ; 3.69(s, \mathrm{MeO}) ; 3.81(d, J=13.4$, $\left.2 \mathrm{PhCHH}^{\prime}\right) ; 3.89\left(d, J=13.4,2 \mathrm{PhCHH} H^{\prime}\right) ; 7.21-7.31\left(m, 10\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $19.9,22.5(\mathrm{Me}) ; 26.7(d, J=2.0, \mathrm{CH}) ; 53.1(\mathrm{Me}) ; 55.2\left(\mathrm{CH}_{2}\right) ; 63.6(d d, J=18.4,22.8, \mathrm{CH}) ; 119.4(d d, J=$ 256.7, 262.1, C); 127.1, 128.2, $129.5(\mathrm{CH}) ; 139.3,165.1(t, J=32.8)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $-105.3\left(d d, J=17.1,265.7,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-108.9\left(d d, J=14.9,264.6,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$. HR-MALDI-MS: 397.0 (15), $375.0\left(21,[M+\mathrm{Na}]^{+}\right), 362.2\left(69,[M+\mathrm{H}]^{+}\right), 360.2(34), 266.2(70), 252.2$ (38). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{NO}_{2}$ (361.43): C 69.79, H 6.97, N 3.88, F 10.51; found: C 69.81, H 7.01, N 3.84, F 10.39.

8b

3bba

3bbb
(3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2,2-difluoro-4-methylpentanoic Acid (3bba). Compound 8b $(847 \mathrm{mg}, 3.0 \mathrm{mmol})$ was hydrolyzed with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(379 \mathrm{mg}, 9.0 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 2: 1(12 \mathrm{ml})$ according to $G P 3$. The resulting acid 3bba ($790 \mathrm{mg}, 98 \%$) was used without further purification. Colorless solid. M.p. $115-116^{\circ} .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-49.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3446 m, 3026 w, 2982 m$, $2933 w, 1760 m, 1717 s, 1506 s, 1394 w, 1369 m, 1310 w, 1160 s, 1092 w, 1041 w, 1005 w, 873 m .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $0.94(d, J=6.8, \mathrm{Me}) ; 0.98(d, J=6.8, \mathrm{Me}) ; 1.44(s, t-\mathrm{Bu}) ; 2.01-2.09\left(m, \mathrm{Me}_{2} \mathrm{CH}\right)$; $4.11(d d d, J=5.0,13.1,17.4$, BocNHCH $) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 17.6,20.6,28.4$ (Me); 28.7, $57.8(t$, $J=22.0)(\mathrm{CH}) ; 80.2,116.5(t, J=253.9), 157.8,166.0(t, J=31.7)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $-111.1\left(d d, J=12.8,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-112.6\left(d d, J=17.1,255.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$. HR-ESI-MS: 613.3 (7, $\left.[2 M+2 \mathrm{~K}]^{+}\right), 579.2\left(12,[2 M+2 \mathrm{Na}]^{+}\right), 557.2\left(100,[2 M+\mathrm{Na}]^{+}\right), 370.1(15), 290.1\left(64,[M+\mathrm{Na}]^{+}\right)$, 234.1 (7), 212.1 (13).

Methyl (3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2,2-difluoro-4-methylpentanoate (3bbb). The hydrogenolysis of $\mathbf{8 b}(2.0 \mathrm{~g}, 5.5 \mathrm{mmol})$ was performed in presence of $\mathrm{Boc}_{2} \mathrm{O}(1.8 \mathrm{~g}, 8.2 \mathrm{mmol})$ in $\mathrm{MeOH}(90 \mathrm{ml})$ according to $G P 4$. FC (pentane $/ \mathrm{Et}_{2} \mathrm{O} 95: 5$) yielded $\mathbf{3} \mathbf{b b b}(1.3 \mathrm{~g}, 83 \%)$. Colorless solid. R_{f} (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ $95: 5) 0.16$. M.p. $48-49^{\circ} .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-19.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3446 m, 2974 m, 2882 w, 1769 s, 1713 s$, $1497 s, 1446 w, 1395 w, 1369 s, 1308 m, 1159 s, 1092 w, 1056 m, 1005 w, 979 w, 867 w, 836 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.95(d, J=6.8, \mathrm{Me}) ; 1.01(d, J=6.8, \mathrm{Me}) ; 1.44(s, t-\mathrm{Bu}) ; 2.09-2.16\left(m, \mathrm{Me}_{2} \mathrm{C} H\right) ; 3.86(s, \mathrm{MeO})$; $4.14-4.23(m, N C H) ; 4.68(d, J=10.5, \operatorname{BocN} H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.1,20.5(\mathrm{Me}) ; 27.1$ $(\mathrm{CH}) ; 28.2,53.4(\mathrm{Me}) ; 56.5(d d, J=21.7,26.4, \mathrm{CH}) ; 80.2,115.2(t, J=257.1), 155.4,164.1(t, J=31.2)(\mathrm{C})$. ${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-111.8\left(d d, J=8.5,257.2,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-116.8\left(d d, J=21.3,257.2,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$. HR-ESI-MS: $585.3\left(39,[2 M+\mathrm{Na}]^{+}\right), 320.1\left(9,[M+\mathrm{K}]^{+}\right), 304.1\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{4}$ (281.30): C 51.24, H 7.52, N 4.98, F 13.51; found: C 51.41, H 7.46, N 5.14, F 13.51.

Methyl (3S)-3-(Dibenzylamino)-2,2-difluoro-5-methylhexanoate (8c). Mixture 6c/epi-6c (5.3 g, 15.0 mmol) was oxidized with oxalyl chloride ($1.6 \mathrm{ml}, 18.0 \mathrm{mmol}$) and DMSO ($2.1 \mathrm{ml}, 30.0 \mathrm{mmol}$) according to GP9. The resulting crude keto ester was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and fluorinated with DAST ($5.5 \mathrm{ml}, 45.0 \mathrm{mmol}$) at r.t. for 6 h , according to $G P 2$. FC (pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 95: 5$) yielded $\mathbf{8 c}(3.7 \mathrm{~g}$, 65% over 2 steps $)$. Colorless solid. $R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 95: 5\right) 0.16$. M.p. $60^{\circ} .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=+14.1(c=1.0$, CHCl_{3}). IR $\left(\mathrm{CHCl}_{3}\right): 3087 w, 3032 w, 2958 m, 2869 m, 1767 s, 1603 w, 1496 w, 1454 m, 1440 w, 1380 w, 1313 m$, $1117 s, 1062 s, 1028 w, 966 w, 917 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.75(d, J=6.5, \mathrm{Me}) ; 0.93(d, J=6.6$,

Me); 1.45-1.63 ($m, \mathrm{CH}_{2} \mathrm{CH}$); 1.79-1.88 ($m, \mathrm{Me}_{2} \mathrm{CH}$); 3.31-3.42 (m, NCH); 3.56 ($d, J=13.4$, $\left.2 \mathrm{PhCHH}^{\prime}\right) ; 3.68(s, \mathrm{MeO}) ; 3.82\left(d, J=13.4,2 \mathrm{PhCH} H^{\prime}\right) ; 7.20-7.32\left(m, 10\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.6, $22.8(\mathrm{Me}) ; 24.9(\mathrm{CH}) ; 32.6\left(d, J=2.5, \mathrm{CH}_{2}\right) ; 52.9(\mathrm{Me}) ; 54.6\left(\mathrm{CH}_{2}\right) ; 57.0(d d$, $J=20.4,25.0, \mathrm{CH}) ; 118.7(t, J=258.0, \mathrm{C}) ; 127.1,128.2,129.4(\mathrm{CH}) ; 139.2,164.8(d d, J=30.9,34.0)(\mathrm{C})$. ${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-103.7\left(d d, J=11.7,255.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-114.2(d d, J=23.5,254.0,1 \mathrm{~F}$, $\left.\mathrm{CF}_{2}\right)$. HR-MALDI-MS: $413.3\left(10,[M+\mathrm{K}]^{+}\right), 398.2\left(22,[M+\mathrm{Na}]^{+}\right), 376.2\left(100,[M+\mathrm{H}]^{+}\right), 284.2(11)$, 266.2 (15), 181.1 (17). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{NO}_{2}$ (375.46): C 70.38, H7.25, N 3.73; found: C 70.43, H 7.40, N 3.72.

8c

3 cbb

3cbc

Methyl (3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2,2-difluoro-5-methylhexanoate (3cbb). The hydrogenolysis of $\mathbf{8 c}(1.6 \mathrm{~g}, 4.2 \mathrm{mmol})$ was performed in presence of $\mathrm{Boc}_{2} \mathrm{O}(1.3 \mathrm{~g}, 6.2 \mathrm{mmol})$ in $\mathrm{MeOH}(70 \mathrm{ml})$ according to GP 4. FC (pentane/ $\mathrm{Et}_{2} \mathrm{O} 19: 1$) yielded $\mathbf{3 c b b}(1.3 \mathrm{~g}, 95 \%)$. Colorless solid. R_{f} (pentane/Et O $19: 1) 0.17$. M.p. $77^{\circ} .[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-39.6\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3436 w, 2964 m, 2872 w, 1769 s, 1713 s$, 1503s, 1441w, 1390w, 1369m, 1308w, 1159s, 1072m, 1046w, 1021w, 959w, 877w, 846w, $826 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.93(d, J=6.5, \mathrm{Me}) ; 0.96(d, J=6.7, \mathrm{Me}) ; 1.42(s, t-\mathrm{Bu}) ; 1.36-1.46\left(m, \mathrm{CH}_{2} \mathrm{CH}\right)$; 1.67-1.74 ($m, \mathrm{Me}_{2} \mathrm{CH}$) ; 3.86 (s, MeO); 4.25-4.35 (m, NCH); $4.51\left(d, J=10.0\right.$, BocNH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.2, $23.5(\mathrm{Me}) ; 24.3(\mathrm{CH}) ; 28.2(\mathrm{Me}) ; 36.3\left(\mathrm{CH}_{2}\right) ; 51.2(d d, J=23.4,27.4, \mathrm{CH}) ; 53.4$ (Me); 80.2, $114.7(t, J=254.3), 155.1,163.9(d d, J=31.3,33.5)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-103.7$ $\left(d d, J=11.7,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-114.2\left(d d, J=18.1,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$. HR-ESI-MS: 660.9 (4), 613.3 (100, $\left.[2 M+\mathrm{Na}]^{+}\right), 318.1\left(53,[M+\mathrm{Na}]^{+}\right), 306.6$ (5), 214.8 (3), 209.5 (4), 156.2 (4). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{4}$ (295.33): C 52.87, H 7.85, N 4.74; found: C 52.86, H 7.65, N 4.79.

Benzyl (3S)-3-\{[(tert-Butoxy)carbonyl]amino\}-2,2-difluoro-5-methylhexanoate (3cbc). Compound 3cbb ($1.13 \mathrm{~g}, 4.02 \mathrm{mmol}$) was hydrolyzed with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(506 \mathrm{mg}, 12.6 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 2: 1$ $(15 \mathrm{ml})$ according to $G P 3$. The resulting carboxylic acid 3cba was dissolved in DMF $(12 \mathrm{ml})$ and treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.31 \mathrm{~g}, 4.02 \mathrm{mmol})$ and $\mathrm{BnBr}(570 \mu \mathrm{l}, 4.82 \mathrm{mmol})$ according to $G P 6$. FC (pentane/Et $\mathrm{E}_{2} \mathrm{O}$ $19: 1)$ yielded $3 \mathbf{c b c}(1.40 \mathrm{~g}, 96 \%$ over 2 steps $)$. Colorless solid. M.p. $47^{\circ} . R_{\mathrm{f}}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 19: 1\right) 0.20$. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-18.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3436 m, 3026 w, 2954 m, 2861 w, 1764 s, 1713 s, 1503 s, 1456 m$, $1390 w, 1369 s, 1303 w, 1267 w, 1159 s, 1072 s, 1046 m, 1026 w, 954 w, 908 w, 877 w, 846 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.87(d, J=6.5, \mathrm{Me}) ; 0.91(d, J=6.7, \mathrm{Me}) ; 1.31-1.37\left(m, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.43(s, t-\mathrm{Bu}) ; 1.64-1.72(m$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right) ; 4.23-4.39(m, \mathrm{NCH}) ; 4.51(d, J=10.3, \operatorname{BocN} H) ; 5.19\left(d, J=12.0,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 5.32(d, J=$ $12.0,1 \mathrm{H}, \mathrm{PhCH}_{2}$) ; 7.34-7.47 ($\mathrm{m}, 5$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 21.2, 23.4 (Me); 24.3 $(\mathrm{CH}) ; 28.2(\mathrm{Me}) ; 36.6\left(\mathrm{CH}_{2}\right) ; 51.2(t, J=26.3, \mathrm{CH}) ; 68.5\left(\mathrm{CH}_{2}\right) ; 80.2,114.7(t, J=255.9)(\mathrm{C}) ; 128.7,128.8$ $(\mathrm{CH}) ; 134.2,155.1,163.3(t, J=31.8)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-116.7(d d, J=11.7,254.0,1 \mathrm{~F}$, $\left.\mathrm{CF}_{2}\right) ;-118.8\left(d d, J=14.9,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$. HR-ESI-MS: $765.4\left(18,[2 M+\mathrm{Na}]^{+}\right), 410.2\left(21,[M+\mathrm{K}]^{+}\right)$, $394.2\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{NO}_{4}$ (371.42): C 61.44, H 7.33, N 3.77, F 10.23; found: C 61.36, H 7.16, N 3.69, F 10.26.
4. Preparation of the Fluorinated Tetrahydropyrimidin-4(1H)-ones $\mathbf{1 1}-\mathbf{1 3}$ (Fig. 2). (2S,5S,6S)-2-(tert-Butyl)-5-fluorotetrahydro-6-methylpyrimidin-4(1H)-ones (11). According to GP 10, aminobutanoic acid 1aca $(1.82 \mathrm{~g}, 7.13 \mathrm{mmol})$ was converted to the corresponding Cbz-protected amino acid amide 1acd $(1.11 \mathrm{~g}, 61 \%$ yield $)$, and subsequent hydrogenation $(1.00 \mathrm{~g}, 3.93 \mathrm{mmol})$ gave the β-amino acid amide $\mathbf{1 a a d}$ (470 mg , quant.). Amide $\mathbf{1 a a d}(60.0 \mathrm{mg}, 0.50 \mathrm{mmol}$) was treated with pivalaldehyde to afford crude $\mathbf{1 1}$ as colorless solid. Recrystallization of this crude product from hexane/AcOEt afforded $\mathbf{1 1}(81.1 \mathrm{mg}, 86 \%$ yield). Colorless solid. A second recrystallization gave colorless prisms. M.p. 131-132 (hexane/AcOEt). $[\alpha]_{\mathrm{D}}^{26}=+21.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR: $3318 w, 3243 m, 3107 w, 2967 m, 2954 m, 2914 m, 2871 m, 1681 s, 1660 s$, $1478 s, 1454 m, 1438 m, 1417 m, 1403 m, 1381 w, 1365 m, 1330 m, 1300 m, 1284 m, 1250 m, 1207 w, 1152 m, 1134 m$, $1100 m, 1056 s, 1039 s, 1017 m, 965 m, 937 w, 904 w, 874 w, 805 m, 763 s, 686 s, 635 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): 0.96(s, 3 \mathrm{Me}) ; 1.33(d, J=6.3, \mathrm{Me}) ; 3.07-3.19(m, \mathrm{NCH}) ; 4.08(d, J=7.0, \mathrm{NCHN}) ; 4.26(d d$, $J=48.3,10.0, \mathrm{CFH}) ; 6.17$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 18.6$ (Me); $24.8(3 \mathrm{Me}) ; 34.2(t$-Bu); $51.7(d, J=21.9, \mathrm{NCH}) ; 75.5(\mathrm{NCHN}) ; 88.9(d, J=189.9, \mathrm{FCH}) ; 168.9(d, J=20.5, \mathrm{CFCO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -198.5 (dd, $J=48.4,5.5, \mathrm{~F}$). Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}$ (188.24): C 57.42, H 9.10, N 14.88; found: C 57.40, H 9.28, N 14.87.

Benzyl (2S/R,5S,6S)-2-(tert-Butyl)-5-fluorotetrahydro-6-methyl-4-oxopyrimidine-1 $(2 \mathrm{H})$-carboxylate (Cbz-11). According to GP $11,11(100 \mathrm{mg}, 0.53 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$, and treated with N, O-bis(trimethylsilyl)acetamide $(0.20 \mathrm{ml}, 0.80 \mathrm{mmol})$ and $\mathrm{Cbz}-\mathrm{Cl}(0.10 \mathrm{ml}, 0.69 \mathrm{mmol})$. $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ AcOEt $9: 1 \rightarrow 3: 1$) yielded Cbz-11 $(66.7 \mathrm{mg}, 39 \%)$. Colorless oil. $[\alpha]_{\mathrm{D}}^{24}=+35.6\left(c=0.77, \mathrm{CHCl}_{3}\right)$. IR: $3228 w, 2961 w, 2911 w, 2879 w, 1688 s, 1483 w, 1456 w, 1391 m, 1318 s, 1291 s, 1198 m, 1160 w, 1120 w, 1076 m$, $1038 s, 1019 m, 967 w, 898 w, 774 m, 736 m, 697 s .^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00(s, 3 \mathrm{Me}) ; 1.56(d, J=6.3$, $\mathrm{Me}) ; 4.20-4.36(m, \mathrm{NCH}) ; 4.90(d d, J=48.2,8.6, \mathrm{CFH}) ; 5.18\left(s, \mathrm{PhCH}_{2}\right) ; 5.38-5.40(s, \mathrm{NCHN}) ; 7.10(s$, NH); 7.31-7.41 ($m, 5$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.4$ (Me); $26.5(3 \mathrm{Me}) ; 38.6(t-\mathrm{Bu}) ; 53.6$ $(d, J=29.6, \mathrm{NCH}) ; 68.5\left(\mathrm{PhCH}_{2}\right), 72.9(\mathrm{NCHN}) ; 86.4(d, J=180.1, \mathrm{FCH}) ; 128.2$ (arom. C); 128.4 (arom. C); 128.7 (arom. C); 135.6 (arom. C); 152.0 (CO); 167.2 ($d, J=20.2$, CFCO). ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-195.5(d d, J=47.7,22.6, \mathrm{~F})$. ESI-MS: $323.1758\left([M+\mathrm{H}]^{+}, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{3}^{+}\right.$; calc. 323.1765 (err. 2.3 ppm)). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{3}$: C 63.34, H 7.19, N 8.69 ; found: C 63.08, H 7.28, N 8.40 .
(2S,5R,6S)-2-(tert-Butyl)-5-fluorotetrahydro-6-methylpyrimidin-4(1H)-ones (12). According to GP 10, aminobutanoic acid 2aca ($1.80 \mathrm{~g}, 7.05 \mathrm{mmol}$) was converted to the corresponding Cbz-protected amino acid amide 2acd ($1.16 \mathrm{~g}, 65 \%$ yield) , and subsequent hydrogenation ($1.00 \mathrm{~g}, 3.93 \mathrm{mmol}$) gave the β-amino acid amide 2aad ($467 \mathrm{mg}, 99 \%$ yield). Amide $\mathbf{2 a a d}(240 \mathrm{mg}, 2.00 \mathrm{mmol}$) was treated with pivalaldehyde to give crude $\mathbf{1 2}$ as white solid. Purification by FC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 1: 1\right)$ afforded $\mathbf{1 2}$ $\left(251 \mathrm{mg}, 67 \%\right.$ yield). Colorless solid. Crystallization gave colorless prisms. M.p. $141-142^{\circ}$ (hexane/ $\mathrm{AcOEt}) \cdot[\alpha]_{\mathrm{D}}^{26}=+116.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR: $3321 w, 3294 w, 3252 w, 3193 w, 3069 w, 2982 w, 2950 w, 2910 w$, $2876 w, 1671 s, 1483 m, 1454 m, 1411 w, 1374 m, 1340 m, 1287 w, 1278 w, 1261 w, 1234 w, 1214 w, 1172 w, 1144 m$, $1103 w, 1078 m, 1049 w, 1014 w, 993 m, 982 m, 952 m, 938 m, 904 w, 884 w, 869 w, 834 m, 819 s, 798 m, 711 m, 688 m$, $661 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.99(s, 3 \mathrm{Me}) ; 1.29(d d, J=6.8,1.2$, Me) ; 1.42 (br. $s, \mathrm{NH}) ; 2.94-3.12$ $(m, \mathrm{NCH}) ; 4.01(d, J=7.0, \mathrm{NCHN}) ; 4.52(d d d, J=48.4,1.8,0.7, \mathrm{CFH}) ; 6.63$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $15.9(d, J=7.9, \mathrm{Me}) ; 25.0(3 \mathrm{Me}) ; 34.2\left(\mathrm{Me}_{3} C\right) ; 51.6(d, J=21.0, \mathrm{NCH}) ; 76.2$ $(\mathrm{NCHN}) ; 87.8(d, J=174.5, \mathrm{FCH}) ; 166.9(d, J=19.1, \mathrm{CFCO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 46.7(d d d$, $J=48.5,30.1,4.3,1 \mathrm{~F})$. Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}$ (188.24): C 57.42, H 9.10, N 14.88 ; found: C 57.16, H 9.07, N 14.68 .

Benzyl (2S/R,5R,6S)-2-(tert-Butyl)-5-fluorotetrahydro-6-methyl-4-oxopyrimidine-1(2H)-carboxylate (Cbz-12). According to GP 11, $12(100 \mathrm{mg}, 0.53 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$, and treated with N, O-bis(trimethylsilyl) acetamide $(0.20 \mathrm{ml}, 0.80 \mathrm{mmol})$ and $\mathrm{Cbz}-\mathrm{Cl}(0.10 \mathrm{ml}, 0.69 \mathrm{mmol})$. FC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 3: 1\right)$ yielded Cbz-12 $(58.1 \mathrm{mg}, 34 \%$ yield). Crystallization gave colorless prisms. M.p. $124-125^{\circ}\left(\mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{24}=-62.9\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR: $3197 w, 3121 w, 3086 w, 2989 w, 2961 w, 2900 w, 1704 m$, $1677 s, 1475 w, 1466 w, 1458 w, 1417 m, 1399 m, 1390 m, 1329 m, 1311 s, 1299 s, 1282 s, 1216 w, 1193 w, 1084 s$, $1063 m, 1046 s, 970 w, 942 w, 899 w, 870 w, 814 w, 774 m, 750 s, 700 s, 630 w, 611 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.01(s, 3 \mathrm{Me}) ; 1.35(d d, J=7.2,2.5, \mathrm{Me}) ; 4.72(d d, J=48.1,6.4, \mathrm{CFH}) ; 5.05-5.15(m, \mathrm{NCH}) ; 5.20-5.21$ $\left(m, \mathrm{PhCH}_{2}\right) ; 5.39(s, \mathrm{NCHN}) ; 6.41(s, \mathrm{NH}) ; 7.35-7.42\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 15.9$ $(\mathrm{Me}) ; 26.6(3 \mathrm{Me}) ; 37.3\left(\mathrm{Me}_{3} C\right) ; 51.7(d, J=23.5, \mathrm{NCH}) ; 68.6\left(\mathrm{PhCH}_{2}\right), 72.5(\mathrm{NCHN}) ; 84.0(d, J=$ $192.9, \mathrm{FCH}$) ; 128.3 (arom. C); 128.6 (arom. C); 128.7 (arom. C); 135.5 (arom. C); 156.6 (CO); 166.8 $(d, J=20.8, \mathrm{CFCO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-198.8(d, J=48.5,1 \mathrm{~F})$. ESI-MS: $323.1766([M+$ $\mathrm{H}]^{+}, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{3}^{+}$; calc. 323.1765 (err. -0.2 ppm)) ; $345.1585\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{NaO}_{3}^{+}\right.$; calc. 345.1585 (err., 0.0 ppm$)$). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{3}: \mathrm{C} 63.34$, H 7.19, N 8.69; found: C 63.09, H 7.12, N 8.65.
(2R/S,6S)-2-(tert-Butyl)-5,5-difluorotetrahydro-6-methylpyrimidin-4(1H)-ones (13a/13b). According to $G P 10$ aminobutanoic acid $3 \mathrm{aca}(1.40 \mathrm{~g}, 5.12 \mathrm{mmol})$ was converted to the corresponding Cbzprotected amino acid amide 3acd ($930 \mathrm{mg}, 67 \%$ yield), and subsequent hydrogenation (800 mg , 2.94 mmol) gave the β-amino acid amide 3aad (405 mg , quant.). Amide 3aad ($200 \mathrm{mg}, 1.45 \mathrm{mmol}$) was treated with pivalaldehyde to give crude 13a/13b as white solid. Purification by FC (hexane/AcOEt 7:3,
hexane/acetone $85: 15$) afforded 13a/13b ($73.1 \mathrm{mg}, 24 \%$; dr $3: 1$). Colorless solid. Crystallization gave colorless prisms ($1: 1$ diastereoisomeric co-crystal). M.p. $110-113^{\circ}$ (hexane/AcOEt). $[\alpha]_{\mathrm{D}}^{20}=-3.1(c=1$, CHCl_{3}). IR: $3321 w, 3294 w, 3252 w, 3193 w, 3069 w, 2982 w, 2950 w, 2910 w, 2876 w, 1671 s, 1483 m, 1454 m$, $1411 w, 1374 m, 1340 m, 1287 w, 1278 w, 1261 w, 1234 w, 1214 w, 1172 w, 1144 m, 1103 w, 1078 m, 1049 w, 1014 w$, $993 m, 982 m, 952 m, 938 m, 904 w, 884 w, 869 w, 834 m, 819 s, 798 m, 711 m, 688 m, 661 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}; *: minor isomer): $0.98(s, 3 \mathrm{Me}) ; 0.99\left(s, 3 \mathrm{Me}^{*}\right) ; 1.29\left(d, J=5.4, \mathrm{Me}^{*}\right) ; 1.30(d, J=6.6, \mathrm{Me})$; $1.59-1.65(m, N H) ; 2.16-2.24\left(m, \mathrm{NH}^{*}\right) ; 3.10-3.26(m, \mathrm{NCH}) ; 3.44-3.54\left(m, \mathrm{NCH}^{*}\right) ; 4.08-4.14(m$, NCHN, NCHN*); 6.13 (br. $s, \mathrm{NH}) ; 6.24$ (br. $s, \mathrm{NH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-104.3(d d d, J=$ $\left.277.5,13.9,3.9,1 \mathrm{~F}^{*}\right) ;-120.2(d d, J=280.4,17.9,1 \mathrm{~F}) ;-121.4(d d d, J=280.3,6.6,2.1,1 \mathrm{~F}) ;-123.8$ $\left(d, J=275.9,1 \mathrm{~F}^{*}\right)$.

Benzyl (2S/R,6S)-2-(tert-Butyl)-5,5-difluorotetrahydro-6-methyl-4-oxopyrimidine-1 2 H)-carboxylate (Cbz-13). According to GP 11, $\mathbf{1 3}(150 \mathrm{mg}, 0.73 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{ml})$, and treated with N, O-bis(trimethylsilyl) acetamide $(0.27 \mathrm{ml}, 1.09 \mathrm{mmol})$ and $\mathrm{Cbz-Cl}(0.13 \mathrm{ml}, 0.95 \mathrm{mmol})$. FC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 97: 3\right)$ yielded Cbz-13 (15.1 mg, 6\%). Colorless oil. IR: 3236w, 2960w, 2875w, 1760w, 1693s, $1483 m, 1455 w, 1403 w, 1373 w, 1331 w, 1296 w, 1284 w, 1199 s, 1152 m, 1104 m, 1071 m, 1029 w, 1003 m, 937 w$, $910 w, 805 m, 774 m, 747 m, 697 s, 653 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00(s, 3 \mathrm{Me}) ; 1.32(d, J=6.6, \mathrm{Me})$; $3.21(d d q, J=19.1,12.7,6.4, \mathrm{NCH}) ; 4.13(d d, J=11.9,3.4, \mathrm{NCHN}) ; 5.20\left(s, \mathrm{PhCH}_{2}\right) ; 7.35-7.44(m, 5$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.1(\mathrm{Me}) ; 24.9(3 \mathrm{Me}) ; 34.2\left(\mathrm{Me}_{3} C\right) ; 53.3(t, J=24.5, \mathrm{NCH})$; $67.9\left(\mathrm{PhCH}_{2}\right), 75.7(\mathrm{NCHN}) ; 110.8\left(t, J=247.0, \mathrm{CF}_{2}\right) ; 128.1$ (arom. C); 128.4 (arom. C); 128.7 (arom. C) ; 134.9 (arom. C); 151.8 (CO); $163.6(t, J=29.8, \mathrm{CFCO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-120.5(d d$, $J=282.2,17.8,1 \mathrm{~F}) ;-121.7(d d d, J=282.2,6.9,1.9,1 \mathrm{~F})$. ESI-MS: $341.1684\left([M+\mathrm{H}]^{+}, \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}^{+}\right.$; calc. 341.1671 (err., -3.7 ppm)).
5. Preparation of the Fluorinated Cyclo- β-tripeptides $17-19$ (Scheme 3, left). 5.1. (S,S)-Isomer 17 from 16a. Boc-(2S,3S)- $\beta^{2,3}-h A l a(\alpha-F)$-hGly-hGly-OMe (16a). According to GP $12 a$ amino fluoro acid 1aba ($700 \mathrm{mg}, 3.16 \mathrm{mmol}$) was converted to the corresponding tripeptide. Purification by FC (hexane/ acetone $7: 3 \rightarrow 1: 1$) afforded $\mathbf{1 6 a}(821 \mathrm{mg}, 69 \%)$. Colorless solid. Crystallization gave colorless prisms. M.p. $155-156^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=-22.6(c=1.0, \mathrm{MeOH})$. IR: $3350 m, 3282 m, 3086 w, 2977 w, 2951 w$, $1734 m, 1689 s, 1655 s, 1640 s, 1554 m, 1530 s, 1442 m, 1387 m, 1367 m, 1337 m, 1311 m, 1271 m, 1250 m, 1171 s$, $1111 m, 1062 m, 990 m, 926 w, 883 m, 850 w, 806 w, 781 w, 749 m, 708 m, 643 m, 616 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): 1.11(d d, J=7.0,0.5, \mathrm{Me}) ; 1.46(s, 3 \mathrm{Me}) ; 2.43\left(t d, J=6.7,0.5, \mathrm{CH}_{2}\right) ; 2.55\left(t, J=6.6, \mathrm{CH}_{2}\right) ; 3.45$ $\left(t, J=6.6, \mathrm{NCH}_{2}\right) ; 3.47-3.56\left(m, \mathrm{NCH}_{2}\right) ; 3.70(s, \mathrm{Me}) ; 4.12(d q d, J=27.3,7.0,3.0, \mathrm{NCH}) ; 4.90(d d$, $J=49.7,3.0, \mathrm{FCH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 12.6(d, J=5.7, \mathrm{Me}) ; 27.3(3 \mathrm{Me}) ; 33.3\left(\mathrm{CH}_{2}\right) ; 34.89$ $\left(\mathrm{CH}_{2}\right) ; 34.93\left(\mathrm{CH}_{2}\right) ; 35.3\left(\mathrm{CH}_{2}\right) ; 49.2(d, J=20.5, \mathrm{NCH}) ; 50.8(\mathrm{Me}) ; 79.0\left(\mathrm{Me}_{3} C\right) ; 92.3(d, J=190.6$, FCH) ; $156.0(\mathrm{CO}) ; 168.8(d, J=20.0, \mathrm{CFCO}) ; 172.3(\mathrm{CO}) ; 172.4(\mathrm{CO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $-203.7(d d, J=49.5,27.2,1 \mathrm{~F})$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{6}$ (377.41): C 50.92, H 7.48, N 11.13; found: C 50.96, H 7.44, N 10.99 .

Cyclo[(2S,3S)- $\left.\beta^{2,3}-h A l a(\alpha-F)-h G l y-h G l y\right](17)$. According to GP 3, 16a ($480 \mathrm{mg}, 1.27 \mathrm{mmol}$) was converted to the corresponding carboxylic acid ($443 \mathrm{mg}, 96 \%$ yield). According to GP 13 , the carboxylic acid ($363 \mathrm{mg}, 1.00 \mathrm{mmol}$) was converted to the pentafluorophenyl ester ($471 \mathrm{mg}, 89 \%$ yield), subsequent removal of the Boc group ($400 \mathrm{mg}, 0.756 \mathrm{mmol}$) afforded the TFA salt, which was converted (by treatment with ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}$ in MeCN) to 17 (148 mg, 80\%). Colorless solid. M.p. 299-300 ${ }^{\circ}$ (dec., MeCN). IR: $3388 m, 3102 w, 2973 w, 2949 w, 2876 w, 1662 s, 1646 s, 1565 s, 1544 s, 1454 m, 1446 m, 1377 m, 1351 w, 1312 w$, $1270 m, 1237 m, 1200 m, 1157 w, 1133 m, 1098 m, 1069 s, 1029 s, 1009 m, 988 w, 923 w, 880 w, 864 w, 736 m, 713 m$, $671 \mathrm{~s}, 609 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): 1.49(d, J=7.4, \mathrm{Me}) ; 2.52-2.64(m, 2 \mathrm{CHH}) ; 2.72(d t$, $\left.J=14.0,3.6,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.06\left(d d d, J=14.6,11.8,5.6,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.29-3.44(m, 2 \mathrm{NCHH}) ; 3.76(d d d$, $\left.J=14.1,5.4,2.6,1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.20-4.27\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.58(d q, J=21.6,7.3, \mathrm{NCH}) ; 4.98(d, J=48.6$, FCH). ${ }^{19} \mathrm{~F}$-NMR ($280 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}$): $-179.3(d d, J=48.2,21.2,1 \mathrm{~F})$. ESI-MS: $246.1241([M+$ $\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{NaO}_{3}^{+}$; calc. 246.1248 (err., 3.0 ppm)).
5.2. (R,S)-Isomer 18 from 16b. Boc-(2R,3S)- $\beta^{2,3}-h$ Ala $(\alpha-F)$-hGly-hGly-OMe (16b). According to $G P 12 a$, amino fluoro acid $2 \mathbf{a b a}(1.19 \mathrm{~g}, 5.40 \mathrm{mmol})$ was converted to the corresponding tripeptide. Purification by FC (hexane/acetone $7: 3 \rightarrow 1: 1$) afforded 16b $(1.51 \mathrm{~g}, 74 \%)$ as colorless solid. Recrystallization gave colorless solid. M.p. $117-118^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=+22.2(c=1.0, \mathrm{MeOH})$. IR: $3336 m, 3312 m, 3089 w, 2973 w, 2936 w, 1732 m, 1686 s, 1656 s, 1640 s, 1526 s, 1439 m, 1366 m, 1354 m, 1326 m$,
$1284 m, 1247 m, 1200 m, 1164 s, 1104 m, 1056 m, 1028 m, 993 m, 921 w, 889 w, 851 w, 782 w, 653 m .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 1.24(d, J=7.0, \mathrm{Me}) ; 1.44(s, 3 \mathrm{Me}) ; 2.34-2.48\left(m, \mathrm{CH}_{2}\right) ; 2.56\left(t, J=6.7, \mathrm{CH}_{2}\right)$; $3.42-3.56\left(m, 2 \mathrm{NCH}_{2}\right) ; 3.70(s, \mathrm{Me}) ; 4.08-4.22(m, \mathrm{NCH}) ; 4.80(d d, J=47.7,3.0, \mathrm{FCH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $15.8(\mathrm{Me}) ; 27.3(3 \mathrm{Me}) ; 33.3\left(\mathrm{CH}_{2}\right) ; 35.0\left(\mathrm{CH}_{2}\right) ; 35.1\left(\mathrm{CH}_{2}\right) ; 35.4\left(\mathrm{CH}_{2}\right) ; 47.5(d$, $J=20.4, \mathrm{NCH}) ; 50.8(\mathrm{Me}) ; 79.0\left(\mathrm{Me}_{3} C\right) ; 92.5(d, J=189.4, \mathrm{FCH}) ; 156.0(\mathrm{CO}) ; 169.1(d, J=21.1$, CFCO); 172.3 (CO); 172.5 (CO). ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 46.7(d d, J=47.7,24.9,1 \mathrm{~F})$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{6}$ (377.41): C 50.92, H 7.48, N 11.13; found: C 51.01, H 7.47, N 10.94.

Cyclo[(2R,3S)- $\left.\beta^{2,3}-h A l a(\alpha-F)-h G l y-h G l y\right]$ (18). According to $G P 3,16 b(1.00 \mathrm{~g}, 2.65 \mathrm{mmol})$ was converted to the corresponding carboxylic acid ($955 \mathrm{mg}, 99 \%$). According to $G P 13$, the carboxylic acid ($850 \mathrm{mg}, 2.34 \mathrm{mmol}$) was converted to the pentafluorophenyl ester $(1.09 \mathrm{~g}, 88 \%)$, subsequent removal of the Boc group ($250 \mathrm{mg}, 0.472 \mathrm{mmol}$) afforded the TFA salt, which was converted (by treatment with $\mathrm{EtN}^{\mathrm{i} P r} r_{2}$ in MeCN) to $\mathbf{1 8}\left(74.8 \mathrm{mg}, 75 \%\right.$). Colorless solid. M.p. 305° (dec., MeCN). IR: $3329 \mathrm{~m}, 3284 m$, $3098 w, 2971 w, 2929 w, 2871 w, 1670 s, 1663 s, 1648 s, 1550 s, 1452 m, 1435 m, 1371 w, 1347 m, 1303 m, 1275 m$, $1243 m, 1199 m, 1187 m, 1164 w, 1119 m, 1094 m, 1083 m, 1066 w, 1056 w, 1013 m, 991 m, 960 w, 924 w, 886 w$, $866 w, 788 w, 738 m, 686 s, 670 m, 632 m, 616 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): 1.38(d, J=7.0, \mathrm{Me})$; $2.54\left(d d d, J=13.8,5.3,1.8,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.64\left(d t, J=15.2,6.2,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.82(d d d, J=13.8,12.1,6.1$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.06\left(d d d, J=15.2,8.1,5.6,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.30-3.47(m, 2 \mathrm{NCHH}) ; 3.70-3.79\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right)$; $3.89-4.00\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.67-4.89(m, \mathrm{NCH}) ; 5.01(d d, J=47.5,1.6, \mathrm{FCH}) ; 6.81(d, J=9.3, \mathrm{NH})$; 7.35 (br. $s, \mathrm{NH}) ; 7.78$ (br. $s, \mathrm{NH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right):-204.4(d d d, J=47.3,32.2,3.7$, 1 F). ESI-MS: $268.1067\left([M+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{NaO}_{3}^{+}\right.$; calc. 268.1068 (err., 0.5 ppm)).
5.3. Difluoro Derivative 19 from 16c. Boc-(3S)- $\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-h G l y-h G l y-O M e$ (16c). According to GP $12 a$, amino fluoro acid $3 \mathbf{a b a}(1.00 \mathrm{~g}, 4.18 \mathrm{mmol})$ was converted to the corresponding tripeptide. Purification by FC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.8: 2\right)$ afforded $\mathbf{1 6 c}(1.21 \mathrm{~g}, 73 \%)$ as colorless solid. Recrystallization gave colorless prisms. M.p. $151-152^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{28}=+16.3(c=1.0, \mathrm{MeOH})$. IR: $3345 m, 3289 m$, $3092 w, 2975 w, 2951 w, 1735 m, 1693 s, 1677 m, 1641 m, 1533 s, 1442 m, 1388 w, 1367 m, 1341 m, 1314 m, 1269 m$, $1253 m, 1198 m, 1172 s, 1152 m, 1128 w, 1105 m, 1078 m, 1059 m, 1044 m, 1009 m, 997 m, 925 w, 887 w, 870 w$, $851 m, 787 w, 754 w, 709 m, 642 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 1.21(d, J=7.0, \mathrm{Me}) ; 1.45(s, 3 \mathrm{Me}) ; 2.37-$ $2.50\left(m, \mathrm{CH}_{2}\right) ; 2.56\left(t, J=6.7, \mathrm{CH}_{2}\right) ; 3.44-3.58\left(m, 2 \mathrm{NCH}_{2}\right) ; 3.69(s, \mathrm{Me}) ; 4.23-4.35(m, \mathrm{NCH})$. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $12.6(\mathrm{Me}) ; 27.3(3 \mathrm{Me}) ; 33.2\left(\mathrm{CH}_{2}\right) ; 34.7\left(\mathrm{CH}_{2}\right) ; 34.9\left(\mathrm{CH}_{2}\right) ; 35.8\left(\mathrm{CH}_{2}\right)$; $48.3(t, J=26.1, \mathrm{NCH}) ; 50.8(\mathrm{Me}) ; 79.3\left(\mathrm{Me}_{3} C\right) ; 116.0\left(t, J=255.7, \mathrm{CF}_{2}\right) ; 156.0(\mathrm{CO}) ; 164.2(t, J=28.8$, $\mathrm{CFCO}) ; 172.1(\mathrm{CO}) ; 172.4(\mathrm{CO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right):-117.5(d d, J=251.1,11.0,1 \mathrm{~F})$; $-119.9(d d, J=251.1,15.1,1 \mathrm{~F})$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$ (395.40): C 48.60, H 6.88, N 10.63; found: C 48.71, H 6.89, N 10.53 .

Cyclo[(3S)- $\left.\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-h G l y-h G l y\right](19)$. According to GP 3, 16c ($800 \mathrm{mg}, 1.84 \mathrm{mmol}$) was converted to the corresponding carboxylic acid (770 mg , quant.). According to $G P 13$, the carboxylic acid ($700 \mathrm{mg}, 1.84 \mathrm{mmol}$) was converted to the pentafluorophenyl ester ($880 \mathrm{mg}, 87 \%$), subsequent removal of the Boc group ($660 \mathrm{mg}, 1.21 \mathrm{mmol}$) afforded the TFA salt, which was converted (by treatment with $\mathrm{EtN}^{\mathrm{i} P r} r_{2}$ in MeCN) to 19 (194 mg, 61\%). Colorless solid. M.p. $297-299^{\circ}$ (dec., MeCN). IR: 3307m, $3264 m, 3098 w, 2986 w, 2945 w, 1685 w, 1664 s, 1640 s, 1556 s, 1538 s, 1446 m, 1435 m, 1372 m, 1346 w, 1317 w$, $1278 m, 1249 m, 1200 s, 1185 s, 1161 m, 1146 s, 1118 s, 1092 m, 1070 s, 1023 m, 1011 m, 977 m, 976 w, 919 w, 890 w$, $861 w, 834 w, 778 w, 704 m, 678 s, 654 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): 1.36(d, J=6.9, \mathrm{Me}) ; 2.56(d d d$, $\left.J=14.2,5.2,2.0,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.62-2.87(m, 2 \mathrm{CHH}) ; 3.03\left(d d d, J=15.3,7.2,5.4,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.40-3.57$ $(m, 2 \mathrm{NCHH}) ; 3.68-3.77\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 3.90-4.02\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.76-4.96(m, \mathrm{NCH}) ; 6.90(d$, $J=10.2, \mathrm{NH}) ; 7.53$ (br. $s, \mathrm{NH}) ; 7.82$ (br. $s, \mathrm{NH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right):-109.9(d, J=$ $256.2,1 \mathrm{~F}) ;-126.5(d, J=256.2,21.9,1 \mathrm{~F})$. ESI-MS: $264.1153\left([M+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}^{+}\right.$; calc. 264.1154 (err. 0.6 ppm))
6. Preparation of the Di- and Tetrafluoro-cyclo- β-tetrapeptides 21-23 (Scheme 3, right). 6.1. (S,S,S,S)-Isomer 21 from Boc-Dipeptide Ester 20a. Boc-(2S,3S)- $\beta^{2,3}-h A l a(\alpha-F)$-hGly-OMe (20a). According to GP 12a, amino fluoro acid 1aba ($2.21 \mathrm{~g}, 10.0 \mathrm{mmol}$) was converted to the corresponding dipeptide 20a. Purification by FC (hexane/AcOEt $65: 35 \rightarrow 6: 4)$ afforded 20a ($2.36 \mathrm{~g}, 77 \%$). Colorless solid. Recrystallization gave colorless prisms. M.p. $114-115^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=-33.0(c=1.0$, $\mathrm{MeOH})$. IR: $3355 m, 2990 w, 2942 w, 1733 s, 1687 s, 1657 s, 1550 m, 1521 s, 1446 m, 1427 w, 1396 w, 1367 w$, $1333 m, 1299 w, 1268 m, 1250 s, 1203 m, 1182 s, 1162 s, 1110 m, 1084 m, 1061 s, 993 m, 964 w, 934 w, 880 m, 847 w$,
$807 w, 779 m, 748 m, 703 m, 639 m, 611 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.11(d, J=7.0, \mathrm{Me}) ; 1.45(s, 3 \mathrm{Me})$; $2.58\left(t, J=6.1, \mathrm{CH}_{2}\right) ; 3.54-3.65\left(m, \mathrm{NCH}_{2}\right) ; 3.71(s, \mathrm{Me}) ; 4.20-4.40(m, \mathrm{NCH}) ; 4.76$ (br. $\left.s, \mathrm{NH}\right) ; 4.97$ $(d d, J=50.1,2.2, \mathrm{FCH}) ; 6.88$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.2(d, J=5.3, \mathrm{Me}) ; 28.3$ $(3 \mathrm{Me}) ; 33.7\left(\mathrm{CH}_{2}\right) ; 34.4\left(\mathrm{CH}_{2}\right) ; 47.7(d, J=20.4, \mathrm{NCH}) ; 51.9(\mathrm{Me}) ; 79.8\left(\mathrm{Me}_{3} C\right) ; 93.0(d, J=190.6$, FCH); $154.8(\mathrm{CO}) ; 167.4(d, J=19.1, \mathrm{CFCO}) ; 172.6(\mathrm{CO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-196.2(d d$, $J=46.5,18.0,1 \mathrm{~F}$). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{5}$ (306.33): C 50.97, H 7.57, N 9.14; found: C 50.94, H 7.51, N 9.06.

Cyclo[(2S,3S)- $\left.\beta^{2,3}-h A l a(\alpha-F)-h G l y\right]_{2}$ (21). According to $G P 3,20 a(1.60 \mathrm{~g}, 5.22 \mathrm{mmol})$ was converted to the corresponding carboxylic acid $(1.46 \mathrm{~g}, 95 \%)$. According to GP 13 , the carboxylic acid $(1.00 \mathrm{~g}, 3.42 \mathrm{mmol})$ was converted to the pentafluorophenyl ester ($1.43 \mathrm{mg}, 91 \%$ yield), subsequent removal of the Boc group ($458 \mathrm{mg}, 1.00 \mathrm{mmol}$) afforded the TFA salt, which was converted (by treatment with ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ in MeCN) to 21 ($203 \mathrm{mg}, 58 \%$). Colorless solid. M.p. 249° (dec., MeCN). IR: 3299m, 3093w, $3059 w, 2971 w, 2961 w, 2941 w, 1658 s, 1561 m, 1541 s, 1473 w, 1449 w, 1425 m, 1394 w, 1380 m, 1353 w, 1336 m$, $1276 w, 1242 w, 1223 m, 1203 m, 1159 m, 1121 m, 1083 m, 1036 m, 999 w, 963 w, 941 w, 923 w, 887 w, 811 w, 769 w$, $635 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): 1.44(d, J=7.3, \mathrm{Me}) ; 2.30\left(d d d, J=16.7,12.0,3.4,1 \mathrm{H}, \mathrm{CH}_{2}\right)$; $2.63\left(d t, J=17.0,3.1,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.42-3.53\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 3.81-3.90\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.57-4.74(m$, $\mathrm{NCH}) ; 4.89(d d, J=46.8,2.1, \mathrm{FCH}) ; 7.00(d d, J=9.5,0.3, \mathrm{NH}) ; 7.75($ br. $s, \mathrm{NH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz}$, $\mathrm{CDCl}_{3}+$ TFA $):-182.7(d d d, J=46.5,19.5,3.9,1 \mathrm{~F})$. ESI-MS: $349.1687\left([M+\mathrm{H}]^{+}, \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}\right.$; calc. 349.1682 (err. -1.3 ppm)).
6.2. ($\mathrm{R}, \mathrm{S}, \mathrm{R}, \mathrm{S}$)-Isomer 22 from 20b. Boc-(2R,3S)- $\beta^{2,3}-h$ Ala $(\alpha-F)-h G l y-O M e$ (20b). According to $G P 12 a$, amino fluoro acid $2 \mathbf{a b a}(1.00 \mathrm{~g}, 4.52 \mathrm{mmol})$ was converted to $\mathbf{2 0 b}$. Purification by FC (hexane/ AcOEt $65: 35 \rightarrow 6: 4$) afforded 20b $(1.08 \mathrm{~g}, 78 \%)$. Colorless solid. Recrystallization gave colorless needles. M.p. $82-83^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right) \cdot[\alpha]_{\mathrm{D}}^{28}=+13.9(c=1.0, \mathrm{MeOH})$. IR: $3336 m, 3330 m, 2981 w, 2940 w$, $1739 s, 1682 s, 1658 s, 1548 m, 1522 s, 1440 m, 1390 w, 1367 m, 1351 m, 1320 m, 1267 m, 1250 s, 1195 s, 1164 s$, $1121 w, 1096 m, 1073 w, 1055 m, 1033 m, 987 m, 942 w, 887 m, 846 m, 814 m, 781 w, 758 w, 742 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.18(d, J=6.7, \mathrm{Me}) ; 1.44(s, 3 \mathrm{Me}) ; 2.58\left(t d, J=6.1,1.7, \mathrm{CH}_{2}\right) ; 3.59(q, J=6.0$, $\left.\mathrm{NCH}_{2}\right) ; 3.72(s, \mathrm{Me}) ; 4.20-4.33(m, \mathrm{NCH}) ; 4.83(d d, J=47.1,1.8, \mathrm{FCH}) ; 5.17(d, J=8.6, \mathrm{NH}) ; 6.90$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 16.0(\mathrm{Me}) ; 28.3(3 \mathrm{Me}) ; 33.7\left(\mathrm{CH}_{2}\right) ; 34.4\left(\mathrm{CH}_{2}\right) ; 47.0(d, J=22.3$, NCH) ; $51.9(\mathrm{Me}) ; 79.6\left(\mathrm{Me}_{3} C\right) ; 91.6(d, J=190.8, \mathrm{FCH}) ; 154.9(\mathrm{CO}) ; 168.4(d, J=19.9, \mathrm{CFCO}) ; 172.6$ (CO). ${ }^{19} \mathrm{~F}$-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-196.1(d d, J=47.1,18.0,1 \mathrm{~F})$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{5}$ (306.33): C 50.97, H 7.57, N 9.14; found: C 50.89, H 7.49, N 9.05.

Cyclo[(2S,3S) $\left.-\beta^{2,3}-h A l a(\alpha-F)-h G l y\right]_{2}(\mathbf{2 2})$. According to $G P 3,20 b(1.70 \mathrm{~g}, 5.55 \mathrm{mmol})$ was converted to the corresponding carboxylic acid ($1.57 \mathrm{~g}, 97 \%$). According to GP 13, the carboxylic acid $(1.07 \mathrm{~g}, 3.66 \mathrm{mmol})$ was converted to the pentafluorophenyl ester ($1.45 \mathrm{~g}, 86 \%$ yield), subsequent removal of the Boc group ($458 \mathrm{mg}, 1.00 \mathrm{mmol}$) afforded the TFA salt, which was cyclized by treatment with ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ in MeCN to give 22 ($206 \mathrm{mg}, 59 \%$). Colorless solid. M.p. 295-296 (dec., MeCN). IR: $3394 w, 3325 m, 3298 m, 3049 w, 2974 w, 2950 w, 2879 w, 1654 s, 1567 m, 1539 s, 1444 m, 1416 m, 1382 w, 1349 w$, $1316 m, 1299 w, 1283 w, 1254 m, 1211 m, 1166 w, 1112 m, 1091 m, 1079 m, 1052 w, 1037 w, 1024 w, 986 m, 964 m$, $924 w, 868 w, 831 w, 771 w, 750 w, 690 m, 667 m, 632 m, 611 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): 1.31(d$, $J=6.9$, Me $) ; 2.46\left(d d d, J=16.2,8.4,3.2,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.77\left(d d d, J=16.2,8.2,3.1,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.24-3.37$ $\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 3.60-3.74\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.13-4.32(m, \mathrm{NCH}) ; 5.05(d d, J=46.7,1.9, \mathrm{FCH}) ; 7.91$ (br. $s, \mathrm{NH}) ; 8.12(d, J=8.0, \mathrm{NH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): 40.1(d d, J=46.6,31.8,1 \mathrm{~F})$. ESIMS: $349.1672\left([M+\mathrm{H}]^{+}, \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}\right.$; calc. 349.1682 (err. $\left.-1.3 \mathrm{ppm}\right)$).
6.3. Tetrafluoro-cyclo- β-tetrapeptide 23 from 20c. Boc-(3S)- $\beta^{2,2,3}$-hAla $\left(\alpha, \alpha-F_{2}\right)$-hGly-OMe (20c). According to GP $12 a$, amino fluoro acid $\mathbf{3 a b a}(1.00 \mathrm{~g}, 4.18 \mathrm{mmol})$ was converted to 20c. Purification by FC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.8: 2\right)$ afforded $\mathbf{2 0 c}(952 \mathrm{mg}, 71 \%)$. Colorless solid. Recrystallization gave colorless prisms. M.p. $115-116^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right) \cdot[\alpha]_{\mathrm{D}}^{28}=+8.7(c=1.0, \mathrm{MeOH})$. IR: 3354m, 2987m, 2955w, 1732m, $1688 s, 1671 m, 1550 m, 1523 s, 1446 m, 1428 w, 1397 m, 1368 m, 1335 m, 1314 m, 1253 m, 1204 m, 1180 s, 1157 s$, $1092 w, 1076 m, 1056 m, 1026 m, 1010 m, 994 m, 927 w, 892 m, 862 w, 845 m, 782 w, 774 w, 740 w, 710 m, 632 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 1.21(d, J=7.1, \mathrm{Me}) ; 1.45(s, 3 \mathrm{Me}) ; 2.54-2.66\left(m, \mathrm{CH}_{2}\right) ; 3.46-3.58(\mathrm{~m}$, $\left.\mathrm{NCH}_{2}\right) ; 3.70(s, \mathrm{Me}) ; 4.30(d d q, J=14.6,11.5,7.2, \mathrm{FCH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 12.6(\mathrm{Me}) ; 27.3$ $(3 \mathrm{Me}) ; 32.8\left(\mathrm{CH}_{2}\right) ; 35.1\left(\mathrm{CH}_{2}\right) ; 48.2(t, J=25.6, \mathrm{NCH}) ; 50.9(\mathrm{Me}) ; 79.2\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 116.1(t, J=255.5$, FCH) ; $156.0(\mathrm{CO}) ; 164.2(t, J=28.8, \mathrm{CFCO}) ; 172.1(\mathrm{CO}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right):-117.5(d d$,
$J=251.5,11.3,1 \mathrm{~F}) ;-119.9(d d, J=251.5,15.0,1 \mathrm{~F})$. ESI-MS: $349.1672\left([M+\mathrm{H}]^{+}, \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}\right.$; calc. 349.1682 (err. $+0.7 \mathrm{ppm})$). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$ (324.32): C 48.14, H 6.84, N 8.64; found: C 48.18, H 6.63, N 8.44.

Cyclo[(3S)- $\beta^{2,2,3}-h$ Ala $\left.\left(\alpha, \alpha-F_{2}\right)-h G l y\right]_{2}(\mathbf{2 3})$. According to $G P 3,20 c(430 \mathrm{mg}, 1.33 \mathrm{mmol})$ was converted to the corresponding carboxylic acid ($406 \mathrm{mg}, 97 \%$). According to GP 13 , the carboxylic acid $(400 \mathrm{mg}, 1.29 \mathrm{mmol})$ was converted to the pentafluorophenyl ester ($570 \mathrm{mg}, 93 \%$ yield), subsequent removal of the Boc group ($570 \mathrm{mg}, 1.20 \mathrm{mmol}$) afforded the TFA salt, which was cyclized by treatment with $\mathrm{EtN}^{\mathrm{i}} \mathrm{Pr}_{2}$ in MeCN to give 23 ($218 \mathrm{mg}, 47 \%$). Colorless solid. M.p. 300° (dec., MeCN). IR: $3292 m$, $3077 w, 2989 w, 2950 w, 1679 s, 1651 s, 1539 s, 1451 m, 1415 w, 1385 w, 1351 w, 1305 w, 1267 w, 1242 w, 1198 m$, $1169 m, 1145 s, 1112 m, 1074 m, 1006 m, 914 w, 871 w, 840 w, 801 w, 720 m, 705 m, 689 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}+$ TFA $): 1.31(d, J=6.9, \mathrm{Me}) ; 2.46\left(d d d, J=16.2,8.4,3.2,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.77(d d d, J=16.2,8.2,3.1$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.24-3.37\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 3.60-3.74\left(m, 1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.13-4.32(m, \mathrm{NCH}) ; 5.05(d d, J=$ $46.7,1.9, \mathrm{FCH}) ; 7.91$ (br. $s, \mathrm{NH}) ; 8.12(d, J=8.0, \mathrm{NH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(280 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): 40.1(d d$, $J=46.6,31.8,1 \mathrm{~F})$. ESI-MS: $385.1499\left([M+\mathrm{H}]^{+}, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}\right.$; calc. 385.1493 (err., $\left.-1.3 \mathrm{ppm}\right)$).
7. Synthesis of the Hexapeptide Derivatives 24-26 by Coupling in Solution (Scheme 4). 7.1. The BocHexapeptide Benzyl Ester 24bbb, Consisting of (S,S)-Residues 1. Boc-(2S,3S)- $\beta^{2,3}-h A l a(\alpha-F)-(2 S, 3 S)-\beta^{2,3}-$ $h L e u(\alpha-F)-O B n$ (dipeptide derivative from 1cac and 1aba). The benzyl ester 1cbc ($198 \mathrm{mg}, 0.56 \mathrm{mmol}$) was Boc-deprotected according to GP 14a. The resulting TFA salt (1cac•TFA) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{ml})$ and treated with the acid $\mathbf{1 a b a}(124 \mathrm{mg}, 0.56 \mathrm{mmol})$, NMM $(310 \mu \mathrm{l}, 2.8 \mathrm{mmol}), \mathrm{HOBt}(91 \mathrm{mg}$, $0.67 \mathrm{mmol})$, and $\mathrm{EDC} \cdot \mathrm{HCl}(128 \mathrm{mg}, 0.67 \mathrm{mmol})$ according to $G P 12 b . \mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1\right)$ yielded the corresponding dipeptide ($173 \mathrm{mg}, 68 \%$). Colorless solid. M.p. $148-150^{\circ}$. [$\left.\alpha\right]_{\mathrm{D}}^{\text {r.t. }}=-40.2(c=$ $\left.1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3436 m, 2964 m, 2923 w, 2872 w, 1759 m, 1713 s, 1528 w, 1503 s, 1456 m, 1369 m$, $1333 w, 1277 w, 1164 s, 1128 w, 1082 w, 1062 w, 1031 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.73(d, J=6.5, \mathrm{Me}) ; 0.83$ $(d, J=6.6, \mathrm{Me}) ; 1.00\left(d d d, J=3.2,10.2,13.8,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.12(d, J=6.9, \mathrm{Me}) ; 1.45(s, t-\mathrm{Bu}) ; 1.45-1.58$ $\left(m, \mathrm{CH} H^{\prime} \mathrm{CH}\right) ; 4.28-4.36(m, \mathrm{NCH}) ; 4.48-4.60(m, \mathrm{NCH}) ; 4.64(\mathrm{br} . s, \operatorname{BocN} H) ; 4.99(d d, J=2.3,50.0$, CHF) ; $5.02(d d, J=2.9,49.1, \mathrm{CHF}) ; 5.16\left(d, J=11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 5.35\left(d, J=11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 6.36$ (br. s, NH); $7.33-7.41$ ($m, 5$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 14.5, 20.7, 23.4 (Me); 24.4 (CH); $28.3(\mathrm{Me}) ; 36.7\left(d, J=3.3, \mathrm{CH}_{2}\right) ; 47.7(d, J=22.1), 48.3(d, J=19.9)(\mathrm{CH}) ; 67.5\left(\mathrm{CH}_{2}\right) ; 79.9(\mathrm{C}) ; 89.9(d$, $J=188.8), 93.1(d, J=190.7), 128.7,128.9,129.0(\mathrm{CH}) ; 134.7,154.7,167.0(d, J=24.1), 167.3(d, J=19.2)$ (C). ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-202.8(d d, J=28.8,49.1, \mathrm{CHF}) ;-204.6(d d, J=26.7,49.1$, CHF). HR-MALDI-MS: $495.2\left(2,[M+\mathrm{K}]^{+}\right), 479.2\left(61,[M+\mathrm{Na}]^{+}\right), 423.2(8), 403.2(11), 379.2$ (32, $\left.[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right), 357.2\left(100,[M+\mathrm{H}-\mathrm{Boc}]^{+}\right), 339.2$ (6). Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$ (456.53): C 60.51, H 7.51, N 6.14; found: C 60.62, H 7.60, N 6.18 .

Boc-(2S,3S) $-\beta^{2,3}-h \operatorname{Val}(\alpha-F)-(2 \mathrm{~S}, 3 \mathrm{~S})-\beta^{2,3}-h A l a(\alpha-F)-(2 \mathrm{~S}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-O B n(\mathbf{2 4 a b b})$. The dipeptide derivative ($363 \mathrm{mg}, 0.79 \mathrm{mmol}$) described above was Boc-deprotected according to GP 14a. The resulting TFA salt was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ and treated with the acid 1bba ($200 \mathrm{mg}, 0.80 \mathrm{mmol}$), NMM ($440 \mu \mathrm{l}, 4.0 \mathrm{mmol})$, $\mathrm{HOBt}(129 \mathrm{mg}, 0.95 \mathrm{mmol})$, and EDC $\cdot \mathrm{HCl}(183 \mathrm{mg}, 0.95 \mathrm{mmol})$ according to GP 12b. FC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 5\right)$ yielded 24abb $(407 \mathrm{mg}, 84 \%)$. Colorless solid. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $200: 3) 0.36$. M.p. $189-190^{\circ} .[\alpha]_{\mathrm{D}}^{\text {rt. }}=-49.9\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3432 s, 3008 w, 2966 s, 2874 w$, $1760 m, 1694 s, 1522 s, 1497 s, 1456 w, 1392 w, 1368 m, 1292 w, 1161 s, 1127 m, 1082 w, 1030 w, 995 w, 968 w, 903 w$, $868 w, 826 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.73(d, J=6.5, \mathrm{Me}) ; 0.84(d, J=6.6, \mathrm{Me}) ; 0.93(d d, J=0.9,6.8$, $\mathrm{Me}) ; 1.00(d, J=6.7, \mathrm{Me}) ; 0.99-1.06\left(m, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.19(d, J=7.0, \mathrm{Me}) ; 1.44(s, t-\mathrm{Bu}) ; 1.44-1.57(m$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.98-2.01\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.94-4.03(m$, BocNHCH $) ; 4.51-4.71(m, 2 \mathrm{NCH}, \operatorname{BocN} H) ; 4.94$ $(d d, J=4.1,48.9, \mathrm{CHF}) ; 4.99(d d, J=2.5,49.8, \mathrm{CHF}) ; 5.02(d d, J=3.0,49.0, \mathrm{CHF}) ; 5.17(d, J=11.9,1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right) ; 5.34\left(d, J=11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 6.42$ (br. $\left.d, J=5.8, \mathrm{NH}\right) ; 6.47$ (br. $\left.d, J=4.9, \mathrm{NH}\right) ; 7.33-7.41(m, 5$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.1,17.9,20.2,20.8(\mathrm{Me}) ; 23.3(\mathrm{CH}) ; 24.5,28.3(\mathrm{Me}) ; 29.6(d$, $J=3.2, \mathrm{CH}) ; 36.8\left(\mathrm{CH}_{2}\right) ; 46.0(d, J=19.5), 48.5(d, J=20.0), 56.9(d, J=20.9)(\mathrm{CH}) ; 67.5\left(\mathrm{CH}_{2}\right) ; 79.8$ (C); $89.9(d, J=188.8), 92.4(d, J=191.3), 128.8,128.9,129.0(\mathrm{CH}) ; 134.7,155.7,166.9(d, J=19.3), 167.0$ ($d, J=23.8$), $167.3(d, J=19.5)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-193.0(d d, J=25.6,49.1$, CHF); -202.7 ($d d, J=28.8,49.1, \mathrm{CHF}) ;-204.2(d d, J=26.7,49.1$, CHF). HR-MALDI-MS: 626.3 ($3,[M+$ $\left.\mathrm{K}]^{+}\right), 610.3\left(32,[M+\mathrm{Na}]^{+}\right), 554.2(8), 534.2(13), 510.3\left(8,[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right), 488.3(100,[M+\mathrm{H}-$ Boc^{+}), 470.2 (8). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}$ (587.68): C 59.27, H 7.55, N 7.15; found: C 59.17, H 7.34, N 7.16.

Boc-(2S,3S)- $\beta^{2,3}-h V a l(\alpha-F)-(2 S, 3 S)-\beta^{2,3}-h A l a(\alpha-F)-(2 S, 3 S)-\beta^{2,3}-h L e u(\alpha-F)-(2 S, 3 S)-\beta^{2,3}-h V a l(\alpha-F)-$ $(2 \mathrm{~S}, 3 \mathrm{~S})-\beta^{2,3}-h A l a(\alpha-F)-(2 \mathrm{~S}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-O B n(24 b b b)$. Compound 24abb ($120 \mathrm{mg}, 0.20 \mathrm{mmol}$) was hydrogenolyzed according to $G P 4$ to yield the corresponding acid 24aba (103 mg , quant.). Another sample of 24abb ($71 \mathrm{mg}, 0.12 \mu \mathrm{~mol}$) was Boc-deprotected according to GP $14 b$. The resulting TFA salt of 24aab ($60 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in DMF (3 ml) and treated with 24aba ($61 \mathrm{mg}, 0.12 \mathrm{mmol}$), NMM ($40 \mu \mathrm{l}, 0.37 \mathrm{mmol}$), and HATU ($56 \mathrm{mg}, 0.15 \mathrm{mmol}$), and the hexapeptide was isolated according to GP 12d. Drying under h.v. yielded 24bbb ($96 \mathrm{mg}, 80 \%$). Colorless solid. M.p. $>260^{\circ}$ (dec.). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.300 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.65(d, J=6.5, \mathrm{Me}) ; 0.75-0.90(m, 7 \mathrm{Me}) ; 1.01-1.15\left(m, 2 \mathrm{CH} \mathrm{H}^{\prime} \mathrm{CH}\right) ; 1.02(d$, $J=7.2, \mathrm{Me}) ; 1.04(d, J=7.5, \mathrm{Me}) ; 1.43-1.49\left(m, 2 \mathrm{Me}_{2} \mathrm{CH}\right) ; 1.66-1.82\left(m, 2 \mathrm{CH} H^{\prime} \mathrm{CH}\right) ; 1.84-1.94(m$, $\left.2 \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.78-3.85(m$, BocNHCH $) ; 4.12-4.48(m, 5 \mathrm{NCH}) ; 4.79$ ($\left.d d, J=5.9,48.6, \mathrm{CHF}\right) ; 4.83$ ($d d$, $J=2.8,49.8, \mathrm{CHF}) ; 4.86(d d, J=3.1,49.8, \mathrm{CHF}) ; 4.87(d d, J=2.8,49.5, \mathrm{CHF}) ; 4.94(d d, J=5.9,47.6$, CHF) ; $5.06(d d, J=3.7,48.6, \mathrm{CHF}) ; 5.15\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 5.26\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 6.65(d$, $J=9.7, \mathrm{NH}) ; 7.36-7.40(m, 5$ arom. H); $7.97(d, J=8.7, \mathrm{NH}) ; 8.27(d, J=7.8, \mathrm{NH}) ; 8.33(d, J=8.7, \mathrm{NH})$; $8.37(d, J=8.1, \mathrm{NH}) ; 8.45(d, J=8.7, \mathrm{NH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right):-192.4(d d, J=16.0,47.0$, CHF) ; - 193.3 ($d d, J=19.1,48.0, \mathrm{CHF}$) ; -199.4 ($d d, J=26.7,49.1, \mathrm{CHF}$) ; -200.3 ($d d, J=25.6,49.1$, CHF); - 201.0 ($d d, J=26.7,48.0$, CHF) ; -202.1 ($d d, J=27.7,49.1$, CHF). HR-MALDI-MS: 989.5 (100, $\left.[M+\mathrm{Na}]^{+}\right), 969.5(9), 933.5(8), 913.4(16), 889.5\left(35,[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right), 869.5(41), 867.5(74,[M+$ $\left.\mathrm{H}-\mathrm{Boc}]^{+}\right), 847.5$ (30), 827.5 (20), 758.4 (12), 738.4 (5), 586.4 (8).
7.2. The Boc-Hexapeptide Benzyl Ester 25bbb and the Unprotected Hexapeptide 25baa, Consisting of (R,S)-Residues 2. Boc-(2R,3S)- $\beta^{2,3}-h A l a(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-O B n$ (dipeptide derivative from 2cac and 2aba). The benzyl ester 2cbc ($431 \mathrm{mg}, 1.22 \mathrm{mmol}$) was Boc-deprotected according to GP $14 b$. The resulting TFA salt of 2cac was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and treated with 2aba (270 mg , 1.22 mmol), NMM ($400 \mu \mathrm{l}, 3.7 \mathrm{mmol}$), and HATU ($557 \mathrm{mg}, 1.46 \mathrm{mmol}$) according to GP 12c. FC (hexane/AcOEt $3: 1$) yielded the corresponding dipeptide ($460 \mathrm{mg}, 82 \%$). Colorless solid. M.p. $92-93^{\circ}$. $[\alpha]_{\mathrm{D}}^{\mathrm{rt.}}=-31.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3429 m, 3008 w, 2962 m, 2923 w, 2872 w, 1761 m, 1707 s, 1862 w$, $1528 w, 1501 s, 1455 m, 1391 w, 1368 m, 1341 m, 1296 w, 1165 s, 1128 w, 1086 m, 1044 w, 1030 w, 847 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.93(d, J=6.7,2 \mathrm{Me}) ; 1.11(d, J=6.7, \mathrm{Me}) ; 1.42(s, t-\mathrm{Bu}) ; 1.45-1.49\left(m, \mathrm{CH}_{2} \mathrm{CH}\right)$; $1.55-1.63\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 4.15-4.28(m$, BocNHCH $) ; 4.64(q d, J=8.2,24.1, \mathrm{NCH}) ; 4.86(d d, J=3.5,47.0$, CHF) ; 4.91 ($d d, J=2.2,47.2, \mathrm{CHF}) ; 5.12(\mathrm{br} . s, \operatorname{BocN} H) ; 5.15\left(d, J=12.0,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 5.23(d, J=12.0$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 6.41(d d, J=4.2,9.6, \mathrm{NH}) ; 7.34-7.42(m, 5$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 15.5$, $21.9,22.9(\mathrm{Me}) ; 24.7(\mathrm{CH}) ; 28.3(\mathrm{Me}) ; 39.8\left(\mathrm{CH}_{2}\right) ; 46.8(d, J=25.5), 48.3(d, J=21.1)(\mathrm{CH}) ; 67.7\left(\mathrm{CH}_{2}\right)$; 79.7 (C); $89.1(d, J=189.3), 91.3(d, J=192.4), 128.7,128.8,128.9(\mathrm{CH}) ; 134.7,155.0,167.5(d, J=25.1)$, $168.0(d, J=18.6)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-194.4(d d, J=14.9,45.9, \mathrm{CHF}) ;-230.6(d d, J=$ 24.5, 48.0, CHF). HR-MALDI-MS: $479.2\left(46,[M+\mathrm{Na}]^{+}\right), 357.2\left(100,[M+\mathrm{H}-\mathrm{Boc}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$ (456.53): C 60.51, H 7.51, N 6.14; found: C 60.55, H 7.73, N 6.27.

Boc- $(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h \operatorname{Val}(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h A l a(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-O B n \quad$ (25abb). The dipeptide derivative ($402 \mathrm{mg}, 0.88 \mathrm{mmol}$) described above was Boc-deprotected according to GP $14 b$. The resulting TFA salt was dissolved in DMF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,6 \mathrm{ml})$, and treated with the acid $\mathbf{2 b b a}(200 \mathrm{mg}$, $0.80 \mathrm{mmol})$, NMM ($290 \mu \mathrm{l}, 2.64 \mathrm{mmol}$), and HATU ($402 \mathrm{mg}, 1.06 \mathrm{mmol}$) according to GP $12 c$. FC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 95: 5\right)$ yielded 25abb ($467 \mathrm{mg}, 90 \%$). Colorless solid. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 9: 1\right) 0.22$. M.p. $158-159^{\circ} .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-37.1\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3430 m, 3008 w, 2966 m, 2923 w, 2875 w, 1761 m$, $1716 s, 1682 s, 1521 s, 1456 w, 1391 w, 1368 m, 1298 w, 1169 m, 1135 w, 1085 m, 1044 m, 902 w, 863 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 0.89(d, J=6.5, \mathrm{Me}) ; 0.93(d, J=6.6, \mathrm{Me}) ; 0.97(d, J=6.7, \mathrm{Me}) ; 1.04(d, J=6.7, \mathrm{Me})$; $1.19(d, J=6.9, \mathrm{Me}) ; 1.39-1.44\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.40(s, t-\mathrm{Bu}) ; 1.60-1.65\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 1.67-1.72(m$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.85-1.92\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.80(d d d, J=2.0,8.6,32.4$, BocNHCH); 4.39-4.48(m,NCH); $4.53-4.60(m, \mathrm{NCH}) ; 4.79(d d, J=4.8,47.6, \mathrm{CHF}) ; 5.02(d d, J=2.6,48.5, \mathrm{CHF}) ; 5.06(d, J=12.0,1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right) ; 5.18(d d, J=2.1,47.8, \mathrm{CHF}) ; 5.21\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 6.48(d, J=10.2, \mathrm{NH}) ; 7.31-7.44(m$, 5 arom. H). ${ }^{13} \mathrm{C}$-NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 15.8(d, J=2.9), 19.6,20.0,21.9,23.4(\mathrm{Me}) ; 25.8(\mathrm{CH}) ; 28.8$ (Me); $31.5(d, J=2.8, \mathrm{CH}) ; 40.2\left(\mathrm{CH}_{2}\right) ; 47.3(d, J=23.0), 50.1(d, J=20.2), 58.8(d, J=18.5)(\mathrm{CH}) ; 68.6$ $\left(\mathrm{CH}_{2}\right) ; 80.2(\mathrm{C}) ; 90.8(d, J=187.0), 91.9(d, J=186.9), 93.2(d, J=191.3), 129.6,129.6,129.8(\mathrm{CH}) ; 136.7$, 158.1, $169.5(d, J=25.4), 170.1(d, J=21.1), 170.5(d, J=21.5)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $-193.6(d d, J=18.1,48.0, \mathrm{CHF}) ;-202.1(d d, J=25.6,48.0, \mathrm{CHF}) ;-203.3(d d, J=32.0,48.0, \mathrm{CHF})$. HR-MALDI-MS: $626.3\left(3,[M+\mathrm{K}]^{+}\right), 610.3\left(100,[M+\mathrm{Na}]^{+}\right), 554.2(51), 510.3\left(22,[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right)$,
$488.3\left(50,[M+\mathrm{H}-\mathrm{Boc}]^{+}\right), 379.2$ (7). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}$ (587.68): C 59.27, H 7.55, N 7.15; found: C 59.43, H 7.65, N 7.14.

Boc- $(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h \operatorname{Val}(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h \operatorname{Ala}(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h \operatorname{Val}(\alpha-F)-$ (2R,3S) $-\beta^{2,3}-h A l a(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-O B n(25 b b b)$. Compound 25abb ($117.5 \mathrm{mg}, 0.2 \mu \mathrm{~mol}$) was hydrogenolyzed according to GP 4 to yield the corresponding acid 25aba (99.5 mg , quant.). Another sample of $\mathbf{2 5 a b b}(120 \mathrm{mg}, 0.2 \mu \mathrm{~mol})$ was Boc-deprotected according to $G P 14 b$. The resulting amine 25aab ($105 \mathrm{mg}, 0.20 \mathrm{mmol}$) was dissolved in $\mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1(3 \mathrm{ml})$ and treated with 25aba $(99.5 \mathrm{mg}$, 0.20 mmol), NMM ($70 \mu \mathrm{l}, 0.60 \mathrm{mmol}$), and HATU ($93 \mathrm{mg}, 0.25 \mathrm{mmol}$), according to GP 12c. FC $\left(\mathrm{CHCl}_{3} / \mathrm{TFE} 98: 2 \rightarrow 95: 5\right)$ yielded $\mathbf{2 5 b b b}(118 \mathrm{mg}, 60 \%)$. Colorless solid. M.p. $234-236^{\circ} . R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} /\right.$ TFE 9:1) 0.25. For ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, see also Fig. 4. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{3}\right) \mathrm{TFE} / \mathrm{TFA}\right)$: 0.93-1.01 ($m, 6 \mathrm{Me}$); $1.06(t, J=7.2,2 \mathrm{Me}) ; 1.17(d, J=6.7$, Me); $1.27(d, J=6.9, \mathrm{Me}) ; 1.43(s, t$-Bu); 1.44-1.63 ($\left.m, 2 \mathrm{CH}_{2} \mathrm{CH}, 2 \mathrm{Me}_{2} \mathrm{CH}\right)$; 1.89-1.93 ($m, \mathrm{Me}_{2} \mathrm{CH}$); 2.01-2.07 ($m, \mathrm{Me}_{2} \mathrm{CH}$); 3.73-3.82 (m, BocNHCH $) ; 4.30(d d, J=8.2,30.1, \mathrm{NCH}) ; 4.49-4.69(m, 4 \mathrm{NCH}) ; 4.84$ ($d, J=4.2,46.8, \mathrm{CHF}) ; 4.86$ (d, $J=3.5,46.7$, CHF); 4.91 ($d, J=4.0,46.3$, CHF); 4.98 ($d, J=2.8,47.1, \mathrm{CHF}$); 5.19 ($t d, J=2.5,46.4$, 2 CHF $) ; 5.23\left(d, J=12.1, \mathrm{PhCH}_{2}\right) ; 7.37-7.43\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{3}\right) \mathrm{TFE} / \mathrm{TFA}\right): 15.2$, 15.6, 16.0, 19.7, 19.8, 19.9, 20.1, 22.3, 23.3, 23.8 (Me); 26.3, 28.9 (CH); 29.1 (Me); 31.7, 32.2 (CH); 40.3, $41.1\left(\mathrm{CH}_{2}\right) ; 47.7(d, J=25.6), 48.0(d, J=23.5), 50.3(d, J=23.2), 50.9(d, J=20.6), 57.4(d, J=18.9), 59.8$ $(d, J=19.0)(\mathrm{CH}) ; 70.2\left(\mathrm{CH}_{2}\right) ; 82.7(\mathrm{C}) ; 91.4(d, J=187.3), 92.3(d, J=190.2), 92.4(d, J=189.9), 92.6(d$, $J=183.0), 92.7(d, J=183.9), 93.3(d, J=191.8), 128.8,129.3,129.4(\mathrm{CH}) ; 126.5,159.1,170.7(d, J=$ 20.7), $171.1(d, J=20.1), 171.2(d, J=20.9), 171.3(d, J=25.2), 171.6(d, J=21.5)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ (282 MHz, (D_{6})DMSO): -190.9 ($m, 2 \mathrm{CHF}$); -191.5 ($d d, J=18.1,48.0$, CHF); - 197.0 ($d d, J=26.7$, 47.0, CHF) ; 198.3 ($d d, J=27.7,48.0, \mathrm{CHF}) ;-199.8(d d, J=25.6,47.0, \mathrm{CHF})$. HR-MALDI-MS: 1005.5 $\left(4,[M+\mathrm{K}]^{+}\right), 989.5\left(75,[M+\mathrm{Na}]^{+}\right), 889.5\left(35,[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right), 867.5\left(100,[M+\mathrm{H}-\mathrm{Boc}]^{+}\right), 849.5$ (3), 758.4 (5), 488.3 (13).
$T F A \cdot H-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h V a l(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h A l a(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h V a l-$ $(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h A l a(\alpha-F)-(2 \mathrm{R}, 3 \mathrm{~S})-\beta^{2,3}-h L e u(\alpha-F)-O H(\mathbf{2 5 b a a}) . \mathbf{2 5 b b b}(35 \mathrm{mg}, 36 \mu \mathrm{~mol})$ was hydrogenolyzed according to GP 4 and Boc-deprotected according to GP 14a. The crude product was purified by prep. RP-HPLC ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA $5: 95 \rightarrow 60: 40$ (in 25 min) $\rightarrow 90: 10$ (in 5 min) at a flow rate of $18 \mathrm{ml} / \mathrm{min}$) and lyophilized to yield 25baa (TFA salt; $14.4 \mathrm{mg}, 45 \%$). Colorless foam. For ${ }^{1} \mathrm{H}$ - and ${ }^{13}$ C-NMR spectra, see Fig. 4. HR-MALDI-MS: 821 (5), $799\left(15,[M+\mathrm{Na}]^{+}\right), 777\left(100,[M+\mathrm{H}]^{+}\right), 759$ (5), 543 (3).
7.3. The Boc-Hexapeptide Benzyl Ester 26bbb and the Unprotected Hexapeptide 26baa, Consisting of 2,2-Difluoro- β-amino Acid Residues 3. Boc-(3S)- $\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-(3 \mathrm{~S})-\beta^{2,2,3}-h L e u\left(\alpha, \alpha-F_{2}\right)$-OBn (dipeptide derived from 3cac and 3aba). The benzyl ester 3cbc ($500 \mathrm{mg}, 1.4 \mathrm{mmol}$) was Boc-deprotected according to GP 14b. The resulting TFA salt of $\mathbf{3 c a c}(365 \mathrm{mg}, 1.35 \mathrm{mmol})$ was dissolved in DMF $(9 \mathrm{ml})$, and treated with the acid 3aba ($322 \mathrm{mg}, 1.35 \mathrm{mmol}$), NMM ($450 \mu \mathrm{l}, 4.04 \mathrm{mmol}$), and HATU (614 mg , 1.62 mmol) according to $G P 12 c$. FC (hexane/AcOEt $98: 2 \rightarrow 9: 1$) yielded the corresponding dipeptide ($423 \mathrm{mg}, 64 \%$). Colorless solid. M.p. $132^{\circ} . R_{\mathrm{f}}$ (hexane/AcOEt $4: 1$) $0.38 .[\alpha]_{\mathrm{D}}^{\mathrm{rt.}}=+10.7\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR (CHCl_{3}): $3426 m, 3005 w, 2964 m, 2933 w, 2872 w, 1764 m, 1713 s, 1508 s, 1456 m, 1364 m, 1308 w, 1164 s$, $1092 m, 1061 m, 1031 w, 908 w, 861 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.84(d, J=6.5, \mathrm{Me}) ; 0.89(d, J=6.7$, $\mathrm{Me}) ; 1.21(d, J=7.0, \mathrm{Me}) ; 1.31-1.45\left(m, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.44(s, t-\mathrm{Bu}) ; 1.54-1.62\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 4.33-4.41(m$, $\mathrm{NCH}) ; 4.68(p d, J=3.1,11.6, \mathrm{NCH}) ; 4.92($ br. $s, \operatorname{BocN} H) ; 5.24\left(d, J=11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 5.33(d, J=11.9$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 6.40(d, J=10.0, \mathrm{NH}) ; 7.36-7.41\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.8,21.0$, $23.3(\mathrm{Me}) ; 24.2(\mathrm{CH}) ; 28.3(\mathrm{Me}) ; 36.4\left(\mathrm{CH}_{2}\right) ; 48.8(t, J=26.0), 49.8(t, J=24.9)(\mathrm{CH}) ; 68.9\left(\mathrm{CH}_{2}\right) ; 80.2$, $113.9(t, J=256.4), 115.8(t, J=257.6)(\mathrm{C}) ; 128.8,128.9,129.1(\mathrm{CH}) ; 133.8,154.9,162.6(t, J=32.2), 163.5$ $(t, J=30.0)(\mathrm{C}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right):-113.0\left(d d, J=12.8,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-114.7(d d, J=$ $\left.12.8,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-115.3\left(d d, J=12.8,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-116.2\left(d d, J=12.8,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) . \mathrm{HR}-$ MALDI-MS: $531.2\left(8,[M+\mathrm{K}]^{+}\right), 515.2\left(100,[M+\mathrm{Na}]^{+}\right), 459.2\left(76,[M+\mathrm{Na} \text { - isobutylene }]^{+}\right), 415.2$ $\left(47,[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right), 393.2\left(89,[M+\mathrm{H}-\mathrm{Boc}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$ (492.51): C 56.09, H 6.55, N 5.69, F 15.43; found: C 56.17, H 6.68, N 5.61, F 15.42.

Boc-(3S)- $\beta^{2,2,3}-h \operatorname{Val}\left(\alpha, \alpha-F_{2}\right)-(3 \mathrm{~S})-\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-(3 \mathrm{~S})-\beta^{2,2,3}-h L e u\left(\alpha, \alpha-F_{2}\right)-O B n(\mathbf{2 6 a b b})$. The dipeptide derivative described above ($284 \mathrm{mg}, 0.57 \mathrm{mmol}$) was Boc-deprotected according to GP 14b. The resulting TFA salt was dissolved in DMF (4 ml), and treated with the acid 3bba ($152 \mathrm{mg}, 0.57 \mathrm{mmol}$),

NMM ($190 \mu \mathrm{l}, 1.70 \mathrm{mmol}$), and HATU ($259 \mathrm{mg}, 0.68 \mathrm{mmol}$) according to GP $12 c$. FC (hexane/AcOEt $95: 5 \rightarrow 8: 2)$ yielded 26abb (270 mg , 73%). Colorless solid. M.p. $122-124^{\circ} . R_{\mathrm{f}}$ (hexane/AcOEt $4: 1$) 0.38 . $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=+13.1\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3426 m, 3261 w, 3036 w, 2964 m, 2875 w, 1767 s, 1713 s, 1525 s$, $1504 s, 1456 m, 1392 m, 1369 m, 1308 m, 1158 s, 1087 m, 1006 w, 903 w, 872 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $0.79(d, J=6.6, \mathrm{Me}) ; 0.89(d, J=6.7, \mathrm{Me}) ; 0.94(d, J=6.8, \mathrm{Me}) ; 0.98(d, J=6.7, \mathrm{Me}) ; 1.22(d, J=7.0, \mathrm{Me})$; $1.19-1.26\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) ; 1.43(s, t-\mathrm{Bu}) ; 1.52-1.61\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 1.68(d d d, J=3.8,12.1,15.7,1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right) ; 2.03-2.10\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 4.16\left(d d d, J=4.6,11.5,18.7, \mathrm{CHCF}_{2}\right) ; 4.59-4.69\left(m, 2 \mathrm{CHCF}_{2}\right) ; 5.23$ $\left(d, J=11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 5.34\left(d, J=11.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 7.35-7.44\left(m, 5\right.$ arom. H) $.^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): 13.7,17.9,21.0,21.1,23.7(\mathrm{Me}) ; 25.4(\mathrm{CH}) ; 28.7(\mathrm{Me}) ; 28.8(\mathrm{CH}) ; 36.0\left(\mathrm{CH}_{2}\right) ; 51.3(t, J=23.1)$, $58.1(t, J=25.3)(\mathrm{CH}) ; 69.9\left(\mathrm{CH}_{2}\right) ; 80.7,115.7(t, J=255.5), 117.0(t, J=256.1), 118.2(t, J=257.1)(\mathrm{C})$; $129.8,130.0,130.1(\mathrm{CH}) ; 135.9,158.3,164.1(t, J=32.1), 165.6(t, J=28.9), 165.8(t, J=29.0)(\mathrm{C}) .{ }^{19} \mathrm{~F}-$ NMR (282 MHz, CD $\left.{ }_{3} \mathrm{OD}\right):-110.6\left(d d, J=11.7,252.9,1 \mathrm{~F}_{2} \mathrm{CF}_{2}\right) ;-110.8\left(d d, J=9.6,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$; $-113.3\left(d d, J=18.7,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-113.4\left(d d, J=13.4,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-115.2(d d, J=12.8$, $\left.252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-118.1\left(d d, J=16.6,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$. HR-MALDI-MS: $680.3\left(2,[M+\mathrm{K}]^{+}\right), 664.3(52$, $\left.[M+\mathrm{Na}]^{+}\right), 608.2\left(81,[M+\mathrm{Na}-\text { isobutylene }]^{+}\right), 564.2\left(54,[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right), 542.2(100,[M+\mathrm{H}-$ Boc^{+}), 524.2 (6), 466.2 (7), 303.1 (8). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{6}$ (641.65): C 54.28, H 6.44, N 6.55, F 17.77; found: C 54.08, H 6.57, N 6.56, F 17.75.

Boc-(3S)- $\beta^{2,2,3}-h V a l\left(\alpha, \alpha-F_{2}\right)-(3 S)-\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-(3 S)-\beta^{2,2,3}-h L e u\left(\alpha, \alpha-F_{2}\right)-(3 S)-\beta^{2,2,3}-h V a l(\alpha, \alpha-$ $\left.F_{2}\right)-(3 \mathrm{~S})-\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-(3 S)-\beta^{2,2,3}-h L e u\left(\alpha, \alpha-F_{2}\right)-O B n \quad(\mathbf{2 6 b b b})$. Compound 26abb $(145 \mathrm{mg}$, $0.226 \mu \mathrm{~mol}$) was C -terminally deprotected by hydrogenolysis according to $G P 4$ to yield the corresponding acid 26aba ($107 \mathrm{mg}, 86 \%$). Another sample of 26abb ($125 \mathrm{mg}, 0.194 \mu \mathrm{~mol}$) was Bocdeprotected according to GP $14 b$. The resulting TFA salt of $\mathbf{2 6 a b b}(105 \mathrm{mg}, 0.194 \mathrm{mmol})$ was dissolved in DMF (3 ml), and treated with the acid 26aba ($107 \mathrm{mg}, 0.194 \mathrm{mmol}$), NMM ($57 \mu \mathrm{l}, 0.52 \mathrm{mmol}$), and HATU ($88 \mathrm{mg}, 0.23 \mathrm{mmol}$) according to GP $12 c$. The crude product was purified by prep. RP-HPLC $\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\right.$ TFA $10: 90 \rightarrow 55: 45($ in 2 min$) \rightarrow 67: 33($ in 23 min$) \rightarrow 90: 10($ in 2 min$)$ at a flow rate of $18 \mathrm{ml} / \mathrm{min}$) and lyophilized to yield 26bbb ($72 \mathrm{mg}, 38 \%$). Colorless solid. M.p. $208-210^{\circ} .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $-109.1\left(d d, J=13.9,257.2, \mathrm{CFF}^{\prime}\right) ;-109.3\left(d d, J=8.5,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$; $-110.6\left(d d, J=11.7,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-110.7\left(d d, J=13.9,257.2,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-111.2(d d, J=9.6,252.9$, $\left.1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-111.9\left(d d, J=10.7,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-112.4\left(d d, J=14.9,256.1,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-113.3(d d, J=$ $\left.12.8,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-115.3\left(d d, J=12.8,254.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-117.0\left(d d, J=17.1,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-$ $117.1\left(d d, J=16.0,255.0,1 \mathrm{~F}, \mathrm{CF}_{2}\right) ;-117.6\left(d d, J=16.0,252.9,1 \mathrm{~F}, \mathrm{CF}_{2}\right)$. HR-MALDI-MS: 1097 (6, $\left.[M+\mathrm{Na}]^{+}\right), 1041\left(28,[M+\mathrm{Na}-\text { isobutylene }]^{+}\right), 1013(13), 997\left(100,[M+\mathrm{Na}-\mathrm{Boc}]^{+}\right), 975(6,[M+$ $\mathrm{H}-\mathrm{Boc}]^{+}$), 957 (15), 921 (8), 848 (6).
$T F A \cdot H-(3 S)-\beta^{2,2,3}-h V a l\left(\alpha, \alpha-F_{2}\right)-(3 S)-\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-(3 S)-\beta^{2,2,3}-h L e u\left(\alpha, \alpha-F_{2}\right)-(3 S)-\beta^{2,2,3}-h V a l-$ $\left(\alpha, \alpha-F_{2}\right)-(3 \mathrm{~S})-\beta^{2,2,3}-h A l a\left(\alpha, \alpha-F_{2}\right)-(3 \mathrm{~S})-\beta^{2,2,3}-h L e u\left(\alpha, \alpha-F_{2}\right)-O H$ (26baa). Compound 26bbb (14 mg, $13 \mu \mathrm{~mol}$) was hydrogenolyzed according to GP 4 and Boc-deprotected according to GP $14 a$. The crude product was dissolved in hexafluoropropan-2-ol and precipitated by the addition of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 1: 1$. After filtration, the solid was washed $(3 \times)$ with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 1: 1$ and dried under h.v. for 12 h to yield 26baa (TFA salt; $11.9 \mathrm{mg}, 91 \%$). Colorless solid. For ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra, see Fig. 4. HR-MALDIMS: $929(11), 907\left(38,[M+\mathrm{Na}]^{+}\right), 885\left(100,[M+\mathrm{H}]^{+}\right), 410(15)$.

REFERENCES

[1] R. I. Mathad, F. Gessier, D. Seebach, B. Jaun, Helv. Chim. Acta 2005, 88, 266.
[2] G. Deniau, D. Seebach, Helv. Chim. Acta 2009, 92, 1720.
[3] F. Gessier, C. Noti, M. Rueping, D. Seebach, Helv. Chim. Acta 2003, 86, 1852.
[4] D. F. Hook, F. Gessier, C. Noti, P. Kast, D. Seebach, ChemBioChem 2004, 5, 691.
[5] R. I. Mathad, B. Jaun, O. Flögel, J. Gardiner, M. Löweneck, J. D. C. Codée, P. H. Seeberger, D. Seebach, M. K. Edmonds, F. H. M. Graichen, A. D. Abell, Helv. Chim. Acta 2007, 90, 2251.
[6] B. Jaun, D. Seebach, R. I. Mathad, Helv. Chim. Acta 2011, 94, 355.
[7] L. Hunter, K. A. Jolliffe, M. J. T. Jordan, P. Jensen, R. B. Macquart, Chem. - Eur. J. 2011, 17, 2340.
[8] Z. Gattin, W. F. van Gunsteren, J. Phys. Chem. B 2009, 113, 8695.
[9] a) W. J. Middleton, J. Org. Chem. 1975, 40, 574; b) J. A. Wilkinson, Chem. Rev. 1992, 92, 505; c) R. P. Singh, J. M. Shreeve, Synthesis 2002, 2561.
[10] E. Differding, H. Ofner, Synlett 1991, 187; G. S. Lal, G. P. Pez, R. G. Syvret, Chem. Rev. 1996, 96, 1737.
[11] M. T. Reetz, M. W. Drewes, A. Schmitz, Angew. Chem. 1978, 99, 1186; Angew. Chem., Int. Ed. 1987, 26, 1141; M. T. Reetz, M. W. Drewes, R. Schwickardi, Org. Synth. 2004, Coll. Vol. 10, 256.
[12] M. T. Reetz, M. W. Drewes, K. Harms, W. Reif, Tetrahedron Lett. 1988, 29, 3295; M. T. Reetz, Angew. Chem. 1991, 103, 1559; Angew. Chem., Int. Ed. 1991, 30, 1531; M. T. Reetz, Pure Appl. Chem. 1992, 64, 351; M. T. Reetz, Chem. Rev. 1999, 99, 1121.
[13] M. A. Schwindt, D. T. Belmont, M. Carlson, L. C. Franklin, V. S. Hendrickson, G. L. Karrick, R. W. Poe, D. M. Sobieray, J. Van de Vusse, J. Org. Chem. 1996, 61, 9564.
[14] a) M. Braun, A. Vonderhagen, D. Waldmüller, Liebigs Ann. Chem. 1995, 1447; b) S. Marcotte, X. Pannecouke, C. Feasson, J.-C. Quirion, J. Org. Chem. 1999, 64, 8461; c) M. J. Tozer, T. F. Herpin, Tetrahedron 1996, 52, 8619.
[15] a) L. Somekh, A. Shanzer, J. Am. Chem. Soc. 1982, 104, 5836; b) D. Gani, P. B. Hitchcock, D. W. Young, J. Chem. Soc., Perkin Trans. 1 1985, 1363; c) P. E. Floreancig, S. E. Swalley, J. W. Trauger, P. B. Dervan, J. Am. Chem. Soc. 2000, 122, 6342.
[16] P. C. Andrews, V. Bhaskar, K. M. Bromfield, A. M. Dodd, P. J. Duggan, S. A. M. Duggan, T. D. McCarthy, Synlett 2004, 791; V. Peddie, M. Pietsch, K. M. Bromfield, R. N. Pike, P. J. Duggan, A. D. Abell, Synthesis 2010, 1845.
[17] D. Seebach, H. Estermann, Tetrahedron Lett. 1987, 28, 3103; H. Estermann, D. Seebach, Helv. Chim. Acta 1988, 71, 1824.
[18] a) E. Juaristi, D. Quintana, B. Lamatsch, D. Seebach, J. Org. Chem. 1991, 56, 2553; b) D. Seebach, B. Lamatsch, R. Amstutz, A. K. Beck, M. Dobler, M. Egli, R. Fitzi, M. Gautschi, B. Herradón, P. C. Hidber, J. J. Irwin, R. Locher, M. Maestro, T. Maetzke, A. Mouriño, E. Pfammatter, D. A. Plattner, C. Schickli, W. B. Schweizer, P. Seiler, G. Stucky, W. Petter, J. Escalante, E. Juaristi, D. Quintana, C. Miravitlles, E. Molins, Helv. Chim. Acta 1992, 75, 913; c) E. Juaristi, J. Escalante, B. Lamatsch, D. Seebach, J. Org. Chem. 1992, 57, 2396; d) P. Murer, B. Rheiner, E. Juaristi, D. Seebach, Heterocycles 1994, 39, 319; e) E. Juaristi, D. Seebach, 'Enantioselective Synthesis of α-Substituted and α, β Disubstituted β-Amino Acids via Chiral Derivatives of 3-Aminopropionic Acid', in 'Enantioselective Synthesis of β-Amino Acids', Ed. E. Juaristi, John Wiley \& Sons, New York, 1997, Chapter 13, pp. 261 -277; f) D. Seebach, A. Boog, W. B. Schweizer, Eur. J. Org. Chem. 1999, 335.
$[19]$ a) D. N. J. White, C. Morrow, P. J. Cox, C. N. C. Drey, J. Lowbridge, J. Chem. Soc., Perkin Trans. 2 1982, 239; J. Lowbridge, E. Mtetwa, R. J. Ridge, C. N. C. Drey, J. Chem. Soc., Perkin Trans. 1 1986, 155; b) D. Seebach, M. Overhand, F. N. M. Kühnle, B. Martinoni, L. Oberer, U. Hommel, H. Widmer, Helv. Chim. Acta 1996, 79, 913; J. L. Matthews, K. Gademann, B. Jaun, D. Seebach, J. Chem. Soc., Perkin Trans. 1 1998, 3331; c) K. Gademann, D. Seebach, Helv. Chim. Acta 1999, 82, 957; K. Gademann, D. Seebach, Helv. Chim. Acta 2001, 84, 2924; d) J. L. Matthews, M. Overhand, F. N. M. Kühnle, P. E. Ciceri, D. Seebach, Liebigs Ann. Recl. 1997, 1371; e) F. Büttner, M. Erdélyi, P. I. Arvidsson, Helv. Chim. Acta 2004, 87, 2735; f) F. Fujimura, M. Fukuda, J. Sugiyama, T. Morita, S. Kimura, Org. Biomol. Chem. 2006, 4, 1896; g) S. Fournel, S. Wieckowski, W. Sun, N. Trouche, H. Dumortier, A. Bianco, O. Chaloin, M. Habib, J.-C. Peter, P. Schneider, B. Vray, R. E. Toes, R. Offringa, C. J. M. Melief, J. Hoebeke, G. Guichard, Nat. Chem. Biol. 2005, 1, 377; M. Habib, M. N. Rivas, M. Chamekh, S. Wieckowski, W. Sun, A. Bianco, N. Trouche, O. Chaloin, H. Dumortier, M. Goldman, G. Guichard, S. Fournel, B. Vray, J. Immunol. 2007, 178, 6700.
[20] a) K. Gademann, M. Ernst, D. Hoyer, D. Seebach, Angew. Chem. 1999, 111, 1302; Angew. Chem., Int. Ed. 1999, 38, 1223; K. Gademann, M. Ernst, D. Seebach, D. Hoyer, Helv. Chim. Acta 2000, 83, 16; b) P. W. Sutton, A. Bradley, J. Farràs, P. Romea, F. Urpì, J. Vilarrasa, Tetrahedron 2000, 56, 7947; c) D. Seebach, J. L. Matthews, A. Meden, T. Wessels, C. Baerlocher, L. B. McCusker, Helv. Chim. Acta 1997, 80, 173; H. C. Le, T. Hintermann, T. Wessels, Z. Gan, D. Seebach, R. R. Ernst, Helv. Chim. Acta 2001, 84, 208; d) T. D. Clark, L. K. Buehler, M. R. Ghadiri, J. Am. Chem. Soc. 1998, 120, 651; e) M. Royo, J. Farrera-Sinfreu, L. Solé, F. Albericio, Tetrahedron Lett. 2002, 43, 2029; F. Büttner, A. S. Norgren, S. Zhang, S. Prabpai, P. Kongsaeree, P. I. Arvidsson, Chem. - Eur. J. 2005, 11, 6145; f) D. Seebach, E. Dubost, R. I. Mathad, B. Jaun, M. Limbach, M. Löweneck, O. Flögel, J. Gardiner,
S. Capone, A. K. Beck, H. Widmer, D. Langenegger, D. Monna, D. Hoyer, Helv. Chim. Acta 2008, 91, 1736.
[21] N. Trouche, S. Wieckowski, W. Sun, O. Chaloin, J. Hoebeke, S. Fournel, G. Guichard, J. Am. Chem. Soc. 2007, 129, 13480.
[22] M.-O. Ebert, B. Jaun, T. Yoshinari, W. B. Schweizer, L. McCusker, D. Sisak, D. Seebach, in preparation.
[23] Prof. Dr. J. Escalante, personal communication; J. Escalante, P. Flores, J. M. Priego, Heterocycles 2004, 63, 2019; J. Escalante, C. Ortíz-Nava, P. Flores, J. M. Priego, C. García-Martínez, Molecules 2007, 12, 173.
[24] U. Schmidt, H. Griesser, A. Lieberknecht, J. Talbiersky, Angew. Chem. 1981, 93, 271; Angew. Chem., Int. Ed. 1981, 20, 280 ; U. Schmidt, A. Lieberknecht, H. Griesser, J. Talbiersky, J. Org. Chem. 1982, 47, 3261; U. Schmidt, Nachr. Chem. Tech. Lab. 1981, 93, 271.
[25] D. Seebach, A. K. Beck, D. J. Bierbaum, 'Die Welt der β - und γ-Peptide aus homologisierten proteinogenen Aminosäuren und anderen Bausteinen', VHCA, Zürich, 2004; D. Seebach, A. K. Beck, D. J. Bierbaum, Chem. Biodiversity 2004, 1, 1111.
[26] D. Seebach, J. V. Schreiber, S. Abele, X. Daura, W. F. van Gunsteren, Helv. Chim. Acta 2000, 83, 34; D. Seebach, T. Sifferlen, P. A. Mathieu, A. M. Häne, C. M. Krell, D. J. Bierbaum, S. Abele, Helv. Chim. Acta 2000, 83, 2849; A. Glättli, X. Daura, D. Seebach, W. F. van Gunsteren, J. Am. Chem. Soc. 2002, 124, 12972; X. Daura, D. Bakowies, D. Seebach, J. Fleischhauer, W. F. van Gunsteren, P. Krüger, Eur. Biophys. J. 2003, 32, 661.
[27] S.-S. Wang, B. F. Gisin, D. P. Winter, R. Makofske, I. D. Kulesha, C. Tzougraki, J. Meienhofer, J. Org. Chem. 1977, 42, 1286.
[28] J. Podlech, D. Seebach, Liebigs Ann. Chem. 1995, 1217.

[^0]: ${ }^{10}$) Note that the CIP convention may not be useful for assigning retention or inversion of configuration because priority orders may change. A useful test is to assign whether the new substituent is located in the same or in the opposite half-space of the stereogenic center as compared to the replaced substituent:

[^1]: ${ }^{11)}$ These cyclo- β-peptides assemble to stacks in the solid state. A cyclo- β-tripeptide has recently been used to construct a mimic of CD40L with a K_{D} value of 2.4 nM [21].

[^2]: ${ }^{17}$) A typical CD spectrum of a β-peptide folding to a 3_{14}-helix shows a strong negative Cotton effect near 215 nm [25].

[^3]: We thank the NMR (B. Brandenberg, P. Zumbrunnen, Dr. M.-O. Ebert, and Prof. B. Jaun), the MS (Dr. W. Amrein, R. Häfliger, O. Greter, and L. Bertschi), the elementary-analyses (P. Kälin and M. Schneider), and the X-ray (Dr. W. B. Schweizer and M. Solar) services of the Laboratorium für Organische Chemie (ETH Zürich) for their assistance. We also acknowledge the financial support by the Swiss National Foundation (SNF) and Novartis Pharma AG.

