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Students willing to learn without visiting the course are advised to follow one of the books 
mentioned above, or the online course by Prof. Manfred Morari published on YouTube: 
http://tinyurl.com/jshqba8 
 

 

http://tinyurl.com/jshqba8
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1 Introduction 
 

 Engineer’s View of the World 

 

Changes of state can be described by differential equations that transform the current steady 
state, that depends on certain input variables and some additional external variables into another 
steady state. 

 

 What is Control? 

 

In short terms: Do as I say! 
But how can you be sure that it is really done? 

1) Do R! 
2) Did you get R? No: Change something  

Yes: Keep everything as it is 
Telling and checking make up control as you know it from teaching kids or pets.  

Figure 1-1. Different state transformations showing the important 
variables. 

Figure 1-2. Influence factors on body 
temperature. 

EXAMPLE 1.2-1: Maintaining Body Temperature 

 

Our body temperature is controlled by  
different factors, which you can see in Figure 1-2. 37°

C

Sweat

Movemen
t

Blood
Circulation

Clothin
g
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 Basic Elements of Process Control 

 

 
Process (in general) = machine/system equipment + actuators (servomotors) + measuring device 
(sensors) 
 
 
 
 
 

EXAMPLE 1.2-2: Oven 

 

The simplest idea of a temperature control system 
for an oven can be seen in Figure 1-3. 
 
Do T=170°C! 
 
If T < 170°C → heat 
If T > 170°C → do nothing 

Figure 1-4. Oven. 

EXAMPLE 1.2-3: Production plant  

 
A very general flowchart of a chemical production 
plant plant is depicted in Figure 1-4. In order that 
the plant can produce the outputs properly all 
inputs need to be controlled. 

Output 

Figure 1-3. Plant 
flowdiagram. 

Plant

Material

Work

Energy

Process y(t) 
output 

controlled variable 

u(t) 
input 

manipulated variable 

Figure 1-5. Basic elements of Process Control 
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 History of Process Control 
 

 

 

  
 
 
 
 
 

Figure 1-6. Drebbels incubator (Brutkasten) 

Figure 1-7. James Watts governor for steam machines. 
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 Process Control in Chemical Industry 

 
Goals of the Industry:  Maximize: output 
    Minimize: energy, work, raw materials 
 
    → This is Chemical Engineering 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

The ideal case:  
Design plant (steady state) → Turn 
plant on → Walk away → DOESN’T 
WORK! 
 

Why not ?: 
Nature (external variables) not taken 
into account (temperature at 
day/night/seasons, unreliable 
products) 
 

Dynamic Design 

Machine 

Chemical Engineering Chaos 

Nature 

Process Control 

EXAMPLE 1.5-1: Coca Cola Plant 

 

The mixing process has to run at steady state 
to guarantee for the same quality of the 
product at any time, but there are some 
problems: 

• Sugar from sugar beets has different 
concentrations depending on the 
season etc. 

• Vanilla concentration changes, too. 
• Phosphoric acid from stone → natural 

Figure 1-8. Simplified Coca Cola mixing process. 
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2 Representation of Systems 
 
Systems in process control are represented by block representation: 
 

 

Mathematically described by: 
 

𝑦(𝑡) = 𝑔(𝑢(𝑡)) 
 

where g is a transfer function.  
 
  Variable with time dependence (vector of variables) 
  Functions transfer one variable into another 
  Mathematical operations 
 
 
 
SISO  Single input single output (most of this course) 
MIMO  Multiple input multiple output. In this case u(t) and y(t) are vectors (see last 
chapter). 
 

 

 Feedforward Control  

 
Feedforward control is also called open loop control (deutsch: Steuerung). The controller 
produces a signal u(t), which is independent of the current value of y(t). 
 

r(t)  reference point 

+ 
+ 

Mathematical function 
g(f) 

Output y(t) Input u(t) 

System 

Figure 2-1. Simplified representation of a system that 
transfers an input into an output.  

r(t)  Open loop 
controller 

u(t)
 Process 

y(t)

Figure 2-2. Block representation Feedforward Control. 
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u(t)  input  
y(t)  output 
Controller mathematical construct/function 
 
Goal  y(t) = r(t) 

 Feedback Control 

 
Feedback control is also called closed loop control (deutsch: Regelung). 
 
The controller produces u(t) based on feedback of the real value of the controlled variable y(t) 
and comparison with the desired value r(t). 
 
 
 
 
 
 
 
 
e(t)  error = r(t) – ym(t) 
r(t)  reference point 
u(t)  input 
y(t)  output 
Controller mathematical construct/function 
Sensor  measures y(t) 
ym(t)  measured output 

Just telling, no checking 
→ “stupid” system because it 

can’t react to changes and 

works only “by design” 

e(t)  
Controller 

u(t)
 Process 

y(t)+ 
- 

r(t)

Sensor 
ym(t)

Figure 2-3. Block representation of feedback control. 

→ “intelligent” system, which 

can react to changes but has a 

disadvantage because of the 

measurement that has to be done. 
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EXAMPLE 2.2-1: An Easy Static Model 

 

It is given that: 
10 𝑚𝑝ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

1° 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒
 

And: 
0.5 𝑚𝑝ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

1 % 𝑟𝑜𝑎𝑑 𝑔𝑟𝑎𝑑𝑒 𝑐ℎ𝑎𝑛𝑔𝑒
 

 
Therefore, part of the control system will be given by:  

u(t)Controller  
r(t)

Figure 3-5. Control cycle of a car speed system. 
Green arrows stand for feedback control. 

- 

∑ 10 
y(t)

 

0.5 

+ 

w 

+ 

- 

∑ 
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Goal of Feedback Control 

• Compensation of ‘uncertainties’ (disturbances) 
• Uncertainties can be compensated with bigger gains (factor that multiplies with the 

difference) 
 
Problems 

• Feedback gain cannot be randomly chosen (stability problems) 
• Steady state error remains 

 
  

In the case of open loop control only the black part is relevant (Controller = 1/10). For the 
velocity you get: 
 

𝑦𝑜𝑙 = 10(𝑢 − 0.5 𝑤) 

       = 10(
𝑟

10
− 0.5 𝑤) 

       = 𝑟 − 5𝑤 
 
This means that on a road with no grade (w = 0):  𝑦𝑜𝑙 = 55 𝑚𝑝ℎ = 𝑟. But on a road where w = 1: 
𝑦𝑜𝑙 = 50 𝑚𝑝ℎ ≠ 𝑟 this are already 10 % error. 
 
In the case of closed loop control also the green arrows have to be considered (assume 
controller gain= 100). For the velocity you get: 

𝑦𝑐𝑙 = 10𝑢 − 5𝑤 

𝑢 = 100(𝑟 − 𝑦𝑐𝑙) 

And combined:  
𝑦𝑐𝑙 = 1000𝑟 − 1000𝑦𝑐𝑙 − 5𝑤 

1001 𝑦𝑐𝑙 = 1000𝑟 − 5𝑤 

𝑦𝑐𝑙 = 0.999𝑟 − 0.005𝑤 
 
For a grade where w = 1 and r = 55 mph 𝑦𝑜𝑙 = 54.94 𝑚𝑝ℎ (0.1% error). For w = 0,  
𝑦𝑜𝑙 = 54.945 𝑚𝑝ℎ → there will be also an error for flat roads = remaining steady state error. 
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3 System Modelling 
 
Why should the systems be modelled?  → understanding of the problem/system 

     → enable manipulation and control of the system 

 

Purpose of Modelling Dynamic Systems 

• Understanding through analysis of model properties and simulation 
• Control unit design and testing 
• Model as explicit integral part of control units (model predictive control) 

  

Two different types of modelling methods 

• Establish fundamental physical laws and constitutive relationships = fundamental model 
• Adjusting of mathematical (not based on physics) descriptions based on experimental 

data = black box model 
→ in practice mostly a combination of both models is used. 
 

 
 

EXAMPLE 3.0-1: Car with Cruise Control 

 

Goal: car should drive with constant speed 
 
Assumptions:  Ignore impacts that do not contribute a lot to the problem 

e.g. loss of mass due to burning fuel 

FfrictionFmotor Mass 
m

Figure 3-1. Simplified model of problem. 

Mathematical description: 
𝑚𝑥ሷ = 𝐹𝑚𝑜𝑡𝑜𝑟 − 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

 
For air resistance it holds that the friction force is proportional to the velocities and you 
have two different regimes: 
 

If v small 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑏1𝑥ሶ  
If v high: 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑏2𝑥

2ሶ  

Therefore, we can write for small v: 

𝑥ሷ +
𝑏1
𝑚
𝑥ሶ =

𝐹𝑚𝑜𝑡𝑜𝑟
𝑚
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The control cycle is represented in Figure 3-3. 
 

Figure 3-3. Control cycle of the acceleration system in a car with cruise control. 

Sensor 

Throttle Actual 
speed 

Road 
grade 

Desired 
speed 

Controller 

Manipulate
d variable Engine 

Actuator 

Auto body 

Process 

Speedometer 
Measured 

speed 

EXAMPLE 3.0-2: Car Damping 

 

If mass is distributed uniformly then:     
𝑚2  =  0.25 𝑀𝑐𝑎𝑟  

Physical modelling of springs: 
Hook’s Law:   𝐹 = 𝑘 ∆𝑙 

Damper:   𝐹 = 𝑑 𝑣 
Where d is the damping constant. 
 
Therefore, the forces are: 

𝐹𝑤ℎ𝑒𝑒𝑙 = 𝑘1(𝑥 − 𝑟) 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘2(𝑦 − 𝑥) 

𝐹𝑑𝑎𝑚𝑝𝑒𝑟 =  𝑑2(𝑦ሶ −  𝑥ሶ ) 
 
Newton: 
𝑚1𝑥ሷ = −(𝑥 − 𝑟)𝑘1 + (𝑦ሶ − 𝑥ሶ)𝑑2 + (𝑦 − 𝑥)𝑘2 

 

Figure 3-4. Problem description. 

How does accelerating work: 

 

The throttle valve is what should be controlled with the controlling system. 
 

Air

Fuel
Cylinder

Throttle valve

Figure 3-2. Acceleration system. 
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The process follows: 

y(t)G 
(transfer 

r(t)

Figure 3-5. Block description for car damping. 

EXAMPLE 3.0-3: Pendulum 

 
If an external torque 𝑇𝑐 is exerted on the pendulum the 
following equations hold: 
 
Newton: 

angular 
movement 

 
𝐼 𝜃ሷ = ∑ 𝑇 =  𝑇𝑐 −  𝑚𝑔𝑙 sin 𝜃 

inertia  𝐼 = 𝑚𝑙2 
harmonic 
oscillator 
(if  𝑇𝑐 =0) 

 
𝑔

𝑙
=  𝜔2 

 
 𝑚𝑥ሷ  = ∑𝐹 

 
And from force equilibrium: 
 

𝑚 𝑙2 𝜃ሷ = 𝑇𝑐 −𝑚𝑔𝑙 sin𝜃 

𝜃ሷ +  
𝑔

𝑙
sin𝜃 =  

 𝑇𝑐
𝑚𝑙2

 

 
For 𝜃 ≪ 1 it holds that sin𝜃 =  𝜃, therefore the 
solution is: 

m

mg

𝑇𝑐

ϴ

l

Figure 3-6. Problem description. 

𝑇𝑐  ϴ G 
(transfer 

function) (t) 
Figure 3-7. Block description of a pendulum with 

external torque. 
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Figure 3-9. Problem description (side view). 

EXAMPLE 3.0-5: Thermocouple 

 

Problem parameters: 
 
𝐴 
𝐶𝑝 
ℎ 
𝛾 
𝑦 
𝑇 
𝑇′ 
𝑀 

Surface area thermocouple 
Heat capacity thermocouple 
Heat transfer coefficient 
Thermo element constant 
Measured voltage 𝑦 = 𝛾𝑇′ 
Temperature of fluid 
Temperature of thermocouple 
Mass of thermometer 

 
There will be a temperature gradient between 
the thermocouple and the surrounding water, 
that can be described by Fig 3.10: 

Figure 3-10. Problem description (top view). 

T 

Thermocouple 

T‘ 

T 

heat transfer 

EXAMPLE 3.0-4: Water Tank 

 
Mass balances: 

𝑑𝑀

𝑑𝑡
=  𝑤𝑖𝑛 − 𝑤𝑜𝑢𝑡 

𝑑 (ℎ 𝐴𝑔 𝜌)

𝑑𝑡
=   𝑤𝑖𝑛 − 𝑤𝑜𝑢𝑡  

Where 𝜌 and 𝐴𝑔 are independent of t, therefore: 
 𝐴𝑔 𝜌 𝑑ℎ

𝑑𝑡
=   𝑤𝑖𝑛 − 𝑤𝑜𝑢𝑡 

wout can be found using the Bernoulli equation: 

𝑔 𝜌 ℎ + 
1

2
 𝜌𝑣2 + 𝑝 = 𝑐𝑜𝑛𝑠𝑡. 

Figure 3-8. Problem description. 

By writing the Bernoulli equation for the top (v = 0) and bottom (h = 0) of the tank we can get 
the following expression for the bottom velocity: 

𝑣𝑏𝑜𝑡𝑡𝑜𝑚 =  ඥ2 𝑔 ℎ  
And finally: 

𝑤𝑜𝑢𝑡 =  𝐴0ඥ2 𝑔 ℎ  𝜌 
By plugging this into the mass balance and rearranging for 𝑑ℎ/𝑑𝑡: 

ℎሶ =  
1

𝜌 𝐴𝑔
 (𝑤𝑖𝑛 − 𝑤𝑜𝑢𝑡)  =  

1

𝜌 𝐴𝑔 
(𝑤𝑖𝑛 − 𝜌 𝐴0ඥ2𝑔ℎ) 

Where 𝑤𝑖𝑛has units: kg s-1 

win 

h 

Ag 

A0 
wout 
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Energy balance: 
𝑑𝐸

𝑑𝑡
= 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 

𝑑(𝑀𝐶𝑝 𝑇
′)

𝑑𝑡
= ℎ𝐴(𝑇 − 𝑇′) 

𝑑 (𝑀𝐶𝑝
𝑦
𝛾)

𝑑𝑡
= ℎ𝐴 ൬𝑇 −

𝑦

𝛾
൰ 

𝐶𝑝𝑀

ℎ𝐴

𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝛾𝑇 

 

Where 
𝐶𝑝𝑀

ℎ𝐴
 is the time constant 𝜏 of the Thermocouple, i.e. high A and low M desired. 

The measured temperature is time dependent no matter how good the sensor. It will 
approach the true temperature only asymptotically but with a speed proportional to 

y 

𝑦 = 𝛾𝑇′ 

EXAMPLE 3.0-6: Heating 

Water is heated in a radiator with hot air. We assume 𝑇𝐿 = 𝑇𝐿0 and 𝑇𝑊 = 𝑇𝑊0  (instantaneous 
heat transfer and ideal mixing) like in a CSTR. The temperatures inside the radiator are 
independent of space but will change with time. The energy balance reads as follows: 
 

𝑑𝐸

𝑑𝑡
= 𝑚𝐿𝑐𝐿

𝑑𝑇𝐿
𝑑𝑡

= 𝑤𝐿𝑐𝐿𝑇𝐿
′ −𝑤𝐿𝑐𝐿𝑇𝐿 −

𝑇𝐿 − 𝑇𝑊
𝑅

 

𝑑𝐸

𝑑𝑡
= 𝑚𝑊𝑐𝑊

𝑑𝑇𝑊
𝑑𝑡

= 𝑤𝑊𝑐𝑊𝑇𝑊
′ −𝑤𝑊𝑐𝑊𝑇𝑊 +

𝑇𝐿 − 𝑇𝑊
𝑅

 

 
Where 𝑐 is the heat capacity and 𝑇 the temperature of the liquid and water, 𝑤 is the 
mass flux and 𝑅 the resistance to heat transfer. This is a MIMO system and already 
quite complicated. It can be simplified when we look only at one in- and outlet and 
keep the other two constant so we can treat it like a SISO. 
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Figure 3-11. Problem description Radiator. 
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4 Differential Equations 
 
General scheme of how you can deal with differential equations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Nomenclature 

 

PDE Partial differential equations 
More than 2 variables differentiated 
 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
 

ODE Ordinary differential equations 
Order: highest differential 
 

𝑑𝑢

𝑑𝑡
= 𝑢                        first order 

𝑑2𝑢

𝑑𝑡2
+ 4

𝑑𝑢

𝑑𝑡
= 2                          second 

order 
 

 Linear: only linear terms in u 
 𝑢(𝑛)(𝑥) =  ∑ 𝑎𝑘(𝑥)𝑢

(𝑘)(𝑥) + 𝑔(𝑥)

𝑛−1

𝑘=0

 

Nonlinear differential 
equations 

Linear differential 
equations 

 

Solve numerically 

Solve analytically Understand 
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Example: 𝑑2𝑢

𝑑𝑡
+𝜔0𝑢 = 0              linear second order 

𝑑𝑢

𝑑𝑡
= 𝑢2  non-linear system 

 

 Numerical Solution 
 

 

 

𝑥ሶ = 𝑓(𝑥) =
𝑑𝑥

𝑑𝑡
≈
Δ𝑥

Δ𝑡
≈ 𝑓(𝑥) 

 
𝑥𝑖+1 − 𝑥𝑖
Δ𝑡

≈ 𝑓(𝑥) 

 
Forward Euler Equation:  
𝑥𝑖+1 = 𝑥𝑖 + Δ𝑡 𝑓(𝑥𝑖) 
 
If Δ𝑡 → 𝑑𝑡   →   No error 
 

 

 

 

 

 Analytical Solution 

 

General form of an ODE  𝑥ሶ = 𝐴𝑥 + 𝐵𝑢 
 
 
Homogeneous    𝑥ሶ = 𝐴𝑥 

 𝑥(𝑡) = 𝐶𝑒𝐴𝑡                 𝐶 = 𝑐𝑜𝑛𝑠𝑡. 
 
 
Inhomogeneous    𝑥ሶ = 𝐴𝑥 + 𝐵𝑢 
 

Guess solution (variation of parameters) 
 𝑥(𝑡) = 𝑒𝐴𝑡 ⋅ 𝐶(𝑡) 

Differential of guess 
 𝑥ሶ (𝑡) = 𝐴𝐶(𝑡)𝑒𝐴𝑡 + 𝑒𝐴𝑡 ⋅ 𝐶ሶ(𝑡) 

Figure 4-1. Euler method. 
ti ti+1 

tangent in 

ti 

slope = 

f(xi) ∆t 
 

t 

x 

𝑥𝑖 

𝑥𝑖+1 
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Compose with original equation 
 𝑥ሶ (𝑡) = 𝐴𝑥 + 𝐵𝑢 

 𝐵𝑢 = 𝑒𝐴𝑡 ⋅ 𝐶ሶ(𝑡) 

 𝐶ሶ(𝑡) = 𝐵𝑢 𝑒−𝐴𝑡 

x(t) = eAt ⋅ (𝐶(𝑡0) + ∫𝐵𝑢(𝜏)𝑒
−𝐴𝜏𝑑𝜏)

𝑡

𝑡0

 with C(t0) = x0 

             → 𝑥(𝑡) = 𝑒𝐴𝑡 (𝑥0 + ∫ 𝑒
−𝐴𝜏𝐵𝑢(𝜏)𝑑𝜏

𝑡

0
) 

 

 Linearization 

 

Assume for small Δx: f(x) is linear, this is only valid in the near neighborhood of x. 

𝑓(𝑥)  ≈ 𝑓(𝑥̅) + 
d𝑓 

d𝑥
|
𝑥̅
(𝑥 − 𝑥̅) 

In vector format: 

𝑓 =  (

𝑓1
𝑓2
…
𝑓𝑛

)                 𝑥 =  (

𝑥1
𝑥2
…
𝑥𝑛

) 

 
𝑓(𝑥) ≈ 𝑓(𝑥̅) + J|𝑥̅ (𝑥 − 𝑥̅) 

 

J =  
d𝑓

d𝑥𝑇
= 

(

 
 

d𝑓1
d𝑥1

d𝑓1
d𝑥2

…

d𝑓2
d𝑥1

… 
)

 
 

 

 

For DGL-Systems: 
 

 
 

 

 

 

 

 

 

 

 
Linearization of 𝑥ሶ  gives: 

𝑥ሶ = 𝑓(𝑥, 𝑢) 

𝑢 input 
𝑦 output 
𝑥 state 
𝑥ሶ , 𝑦 transfer 

functions 

𝑦 𝑢  𝑥ሶ = 𝑓(𝑥, 𝑢) 

𝑦 = 𝑔(𝑥, 𝑢) 

∆𝑥ሶ = 𝐴 Δ𝑥 + 𝐵 Δ𝑢  

Δ𝑦 = 𝐶 Δ𝑥 + 𝐷 Δ𝑢 

 

∆𝑦 ∆𝑢 

Linearization 

Figure 4-2. Linearization of DGL Systems. 
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𝑥ሶ  ≈ 𝑓(𝑥̅, 𝑢̅) + 
d𝑓 

d𝑥
|
𝑥̅
(𝑥 − 𝑥̅) + 

d𝑓 

d𝑢
|
𝑢̅
(𝑢 − 𝑢̅) 

     ≈ 0 +  𝐴(𝑥 − 𝑥̅) +  𝐵(𝑢 − 𝑢̅) 

                                               → 𝑥ሶ =  𝐴 Δ𝑥 + 𝐵 Δ𝑢 =  Δ𝑥ሶ   

Same with y gives: 
𝑦 = 𝑔(𝑥, 𝑢) 

𝑦 ≈ 𝑔(𝑥̅, 𝑢̅) + 
d𝑔 

d𝑥
|
𝑥̅
(𝑥 − 𝑥̅) + 

d𝑔 

d𝑢
|
𝑢̅
(𝑢 − 𝑢̅) 

    ≈ 𝑦̅ +  𝐶(𝑥 − 𝑥̅) +  𝐷(𝑢 − 𝑢̅) 

                                               → Δy =  𝐶 Δ𝑥 + 𝐷 Δ𝑢 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 4.4-1: Water Tank 

 
Remember from Example 3.0-4: 

𝑑ℎ

𝑑𝑡
=
1

𝐴𝜌
(𝑤𝑖𝑛 − 𝐴0𝜌ඥ2𝑔ℎ) 

 
Constant A0, ρ, A, 𝑔  

Variables h, win 
 
Nonlinear in h 

𝑑ℎ

𝑑𝑡
= 𝑓 

𝑓 ≈ 𝑓𝑠𝑠 +
𝜕𝑓

𝜕ℎ
|
𝑠𝑠
Δℎ +

𝜕𝑓

𝜕𝑤𝑖𝑛
|
𝑠𝑠

Δ𝑤𝑖𝑛 

 

Figure 4-3. Problem description. 

win 

h 

Ag 

A0 

 
Steady state: 

0 =
𝑑ℎ

𝑑𝑡
=
1

𝐴𝜌
(𝑤𝑖𝑛

𝑠𝑠 − 𝐴0𝜌ඥ2𝑔ℎ
𝑠𝑠) 

 

ℎ𝑠𝑠 =
1

2𝑔
ቆ
𝑤𝑖𝑛
𝑠𝑠

𝜌𝐴0
ቇ

2

 

Linearization: 

𝑓 ≈ 0 −
𝐴0
𝐴

ඥ2𝑔ℎ𝑠𝑠

2ℎ𝑠𝑠
Δℎ +

1

𝐴𝜌
Δ𝑤𝑖𝑛 

 

𝑑Δℎ

𝑑𝑡
=
𝑑(ℎ − ℎ𝑠𝑠)

𝑑𝑡
=
𝑑ℎ

𝑑𝑡
−
𝑑ℎ𝑠𝑠

𝑑𝑡
=
𝑑ℎ

𝑑𝑡
 

 

𝑓 =
𝑑ℎ

𝑑𝑡
= 𝐴′Δℎ + 𝐵′Δ𝑤𝑖𝑛 =

𝑑Δℎ

𝑑𝑡
 

 
Therefore, we get the following linear equation: 

𝐴′ = −
𝜌𝐴0

2𝑔

𝐴𝑤𝑖𝑛
𝑠𝑠 ;   𝐵′ =

1

𝐴𝜌
 

Valid only close to steady state. 
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 Superposition 
 

If an input signal is complex, you could split the complex input into multiple additive simpler 
inputs. If the system is linear, the output of the complex input can be calculated by summing up 
the outputs of the simpler inputs. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear Transfer 
Function 

 

y1 u1 

y2 u2 

u3 = au1 + bu2 y3 = ay1 + by2 

Figure 4.4. Superposition of multiple input signals. 

EXAMPLE 4.5-1: Superposition 

 
𝑦ሶ + 𝑘𝑦 = 𝑢 

 

1)    𝑦1ሶ + 𝑘𝑦1 = 𝑢1 
 

2)    𝑦2ሶ + 𝑘𝑦2 = 𝑢2 
 

3) 𝑢3 = 𝑎𝑢1 + 𝑏𝑢2 
 

   𝑦3ሶ + 𝑘𝑦3 = 𝑢3 
 

Demonstrate that 𝑦 = 𝑦1 + 𝑦2 
 

Which means: 𝑦ሶ =  𝑦ሶ1 + 𝑦ሶ2 
 

and 𝑢 = 𝑢1 + 𝑢2  
 
 

(𝑎𝑦1ሶ + 𝑏𝑦2ሶ ) + 𝑘(𝑎𝑦1 + 𝑏𝑦2) = 𝑎𝑢1 + 𝑏𝑢2 
 

𝑎(𝑦1ሶ + 𝑘𝑦1 − 𝑢1) + 𝑏(𝑦2ሶ + 𝑘𝑦2 − 𝑢2) = 0 
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 Convolution 

 
Simple inputs → g(t) → outputs 
 
 

 Input Output 
 𝑢(𝑡) 𝑦(𝑡) 
 
Pulse 
 

 
𝛿(𝑡) 

 
𝑔(𝑡) 

pulse response 
 

Pulse with time delay 𝛿 (𝑡 − 𝜏) 𝑔(𝑡 −  𝜏) 
 

Weighted pulse 𝑢(𝜏) 𝛿 (𝑡 − 𝜏) 𝑢(𝜏) 𝑔 (𝑡 − 𝜏) 
 

Generic Input 𝑢(𝑡) 
𝑢(𝑡) =  ∫ 𝑢(𝜏)𝛿(𝑡 − 𝜏)𝑑𝜏

+ ∞

−∞

 𝑦(𝑡) =  ∫ 𝑢(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
+∞

−∞

 

   
 
 
 

𝑦(𝑡) =  ∫ 𝑢(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
+∞

−∞

 

𝑦 = 𝑢 ∗ 𝑔 
 
 

If 𝑢(𝑡) = 0              for 𝑡 < 0 
 

then 
𝑦(𝑡) =  ∫ 𝑢(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

+∞

0
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And if 
additionally  
 

𝑔(𝑡) = 0              for  𝑡 < 0 
 

then 
𝑦(𝑡) =  ∫ 𝑢(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

𝑡

0
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5 Laplace Transformation 
 

 Laplace Transformation 

 

The Laplace transformation of a function 𝑓(𝑡)  (𝑓(𝑡) = 0, 𝑡 < 0) is defined as  
 

∫ 𝑓(𝑡)𝑒−𝑠𝑡 𝑑𝑡 = 𝐹(𝑠)
∞

0

=  ℒ{𝑓(𝑡)} 

 
(Which is equivalent to the “continuous power series” ∫ 𝑓(𝑡)𝑥𝑡𝑑𝑡

∞

0
  with 𝑠 = −ln (𝑥). 

It exists for all functions, which fulfill the condition of Dirichlet: 
 

∫ |𝑓(𝑡)|𝑒−𝜎𝑡 𝑑𝑡 < ∞
∞

0

 

 For a large enough 𝜎 
 

 

 

 

 

 

 

 

 Inverse Laplace Transformation 

 

ℒ−1{𝐹(𝑠)} =  
1

2𝜋𝑖
 ∫ 𝑒𝑠𝑡𝐹(𝑠) 𝑑𝑠
𝜎𝑗+𝑗∞

𝜎𝑗−𝑗∞
= {

𝑓(𝑡)      for 𝑡 ≥ 0
0             for 𝑡 < 0 

  

 
If 𝐹(𝑠) is a fraction, the easiest way to find 𝑓(𝑡) is the partial fraction expansion of 𝐹(𝑠) 
and the use of table (5.3) of simple functions. 
 

ℒ−1  {
𝑝(𝑠)

𝑞(𝑠)
}; p(s), q(s) are polynomials; order of p(s) ≤ order of q(s) (true for all 

physical systems). 
 

𝑝(𝑠)

𝑞(𝑠)
=  ∑

𝐴𝑖
𝑠 − 𝑠𝑖

= 
𝐴1
𝑠 − 𝑠1

+ 
𝐴2
𝑠 − 𝑠2

+⋯+  
𝐴𝑛
𝑠 − 𝑠𝑛

𝑛

𝑖=1

 

EXAMPLE 5.1-1: for f(t) = 1 

 

𝐹(𝑠) =  ∫ 1 𝑒−𝑠𝑡 𝑑𝑡
∞

0

= lim
𝐴→∞

−
𝑒−𝑠𝑡

𝑠
|
𝑡=0

𝑡=𝐴

= lim
𝐴→∞

ቆ
𝑒−𝑠𝐴

𝑠
+ 
1

𝑠
ቇ =  

1

𝑠
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𝑠𝑖  = roots of q(s) = 0,     𝐴1, 𝐴2, … partial fractions 

 Important Laplace Transformations 

 

The following LPT have to be remembered. 
 

 

𝒇(𝒕) 𝑭(𝒔) 

𝛿(𝑡) 

 

1 

 

𝛿(𝑡 − 𝑎) 

 

𝑒−𝑎𝑠 

 

1 
1

𝑠
 

 

𝑡 

 

1

𝑠2
 

 

𝑒−𝑎𝑡 

 

1

𝑠 + 𝑎
 

 

𝑡𝑒−𝑎𝑡 

1

(𝑠 + 𝑎)2
 

 

1

𝑏
𝑒−𝑎𝑡 sin𝑏𝑡 

 

1

(𝑠 + 𝑎)2 + 𝑏2
 

 

1 − 𝑒𝑎𝑡 

 

𝑎

𝑠(𝑎 − 𝑠)
 

 

𝑡𝑛 

 

𝑛!

𝑠𝑛+1
 

 

sin (𝑎𝑡) 

 
𝑎

𝑠2 + 𝑎2
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cos (𝑎𝑡) 

 

𝑠

𝑠2 + 𝑎2
 

 

 Properties of Laplace Transformations 

 

1) Time shift 
𝑓(𝑡 − 𝜏) ↔ 𝐹(𝑠) 𝑒−𝜏𝑠  

 
2) Superposition 

𝑎𝑓1(𝑡) + 𝑏𝑓2(𝑡) ↔   𝑎𝐹1(𝑠) + 𝑏𝐹2(𝑠)  
 

3) Convolution 
𝑓1(𝑡) ∗ 𝑓2(𝑡)  ↔ 𝐹1(𝑠) ⋅ 𝐹2(𝑠)  

∫ 𝑓1 (𝑡) 𝑓2(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 

 
4) Final value theorem 

lim
𝑡→∞

𝑓(𝑡) =  lim
𝑠 →0

𝑠 ⋅ 𝐹(𝑠)         (not applicable if 𝑓 diverges e.g. maximum one node in the 

origin and the real part of all other nodes is negative) 
 

5) Initial value theorem 
lim
𝑡→0
𝑓(𝑡) =  lim

𝑠→∞
𝑠 𝐹(𝑠) 

 
6) Differentiation 

 
𝑓′(𝑡); 𝑓(0) ↔   𝑠𝐹(𝑠) − 𝑓(0) 

 
𝑓′′(𝑡); 𝑓(0); 𝑓′(0)   ↔ 𝑠2𝐹(𝑠) − 𝑠 𝑓(0) − 𝑓′(0) 

 
𝑓𝑛(𝑡); 𝑓(0) = 0; 𝑓𝑛−1 (0) = 0 ↔   𝑠𝑛𝐹(𝑠)     All initial conditions are 0. 

 
 

7) Integral: 

∫ 𝑓(𝜏)𝑑𝜏 
𝑡

0

 ↔
𝐹(𝑠)

𝑠
  

 
 

 

 EXAMPLE 5.4-1: Laplace Transformation 

 
d𝑦

d𝑡
+ 𝑎𝑦 = 0 

𝑠 𝑌(𝑠)⏟  
𝑠(𝑌(0)−𝑓(0))

− 1 + 𝑎𝑌(𝑠) =  0  
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In General 
𝑌(𝑠) =  

𝑈(𝑠)

𝑎0𝑠
𝑛 + 𝑎1𝑠

𝑛−1 +⋯+ 𝑎𝑛 
+  

𝐼𝑛−1 
𝑎0𝑠

𝑛 + 𝑎1𝑠
𝑛−1 +⋯𝑎𝑛 

 

EXAMPLE 5.4-2: Linear Dynamic System 

 

𝜏
d 𝑦(𝑡)

d 𝑡
+ 𝑦(𝑡) = 𝛾 𝑇(𝑡) 

𝜏(𝑠 𝑌(𝑠) − 𝑦(0)) +   𝑌(𝑠) = 𝛾𝑡(𝑠) 

𝑌(𝑠) =  
𝛾

𝜏 𝑠 + 1
 𝑇(𝑠) + 

𝜏(𝑦(0))

𝜏𝑠 + 1
 

 

EXAMPLE 5.4-3: Final Value Theorem 

 
→ REMEMBER: the final value theorem can only be used if the finite final value exists. 
 
Easy example: 

𝑌(𝑠) =
3(𝑠 + 2)

𝑠(𝑠2 + 2𝑠 +  10)
  

𝑦(𝑡 → ∞) = lim
𝑠→0

𝑠
3(𝑠 + 2)

𝑠(𝑠2 +  2𝑠 +  10)
=
3 ∙ 2

10
= 0.6  

 
But if there is no finite final value, the final value theorem does not work, even though you 
might get a solution: 
 

𝑌(𝑠) =
3

𝑠(𝑠 − 2)
  

→ with the final value theorem you would get: 

𝑦(𝑡 → ∞) = −
3

2
 

But actually: 

𝑦(𝑡) =
3

2
(−1 + 𝑒2𝑡) → lim

𝑡→∞
𝑦(𝑡) = ∞ 
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Output  = Input  + Initial 
condition 
 

 

Characteristic polynomial 𝑎0𝑠
𝑛 + 𝑎1𝑠

𝑛−1 +⋯+ 𝑎𝑛 

Characteristic equation 𝑎0𝑠
𝑛 + 𝑎1𝑠

𝑛−1 +⋯+ 𝑎𝑛=⏞
!

0 
 
→ Solutions of characteristic equations → roots of system 𝑠𝑖 , 𝑠𝑗  

 

 

 Initial Conditions 

 

In process control we are often looking at the system behavior relative to a reference state. We 
start in the steady state (𝑥𝑠𝑠. 𝑦𝑠𝑠, 𝑢𝑠𝑠) and look at the deviation variables (𝛥𝑥, 𝛥𝑦, 𝛥𝑢),  which represent 
the deviation from it. This is useful as we obtain a simple transfer function that expresses changes 
from the steady state. 
 
Looking at the example of the thermocouple (EXAMPLE 3.0-5), where we had   

𝜏
dy

dt
+ 𝑦 = 𝛾𝑇 

 

In the steady state 
𝑇 = 𝑇𝑠𝑠     

dy𝑠𝑠
dt

= 0   

Deviation variables ΔT = T − 𝑇𝑠𝑠     Δy = y − 𝑦𝑠𝑠  

 
𝜏
dΔy

dt
+ Δ𝑦 = 𝛾Δ𝑇 Δ𝑦(0) = 0 

Δ 𝑇(0) = 0 

Laplace transformation 𝜏 𝑠 𝑌(𝑠)̅̅ ̅̅ ̅̅ +  𝑌(𝑠)̅̅ ̅̅ ̅̅  =   𝛾 𝑇(𝑠)̅̅ ̅̅ ̅̅   

 𝑌(𝑠)̅̅ ̅̅ ̅̅ =  
𝛾

𝜏𝑠 + 1
 𝑇(𝑠)̅̅ ̅̅ ̅̅   

In words: „output = transfer function × input“ 
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𝑌1 = 𝐺1 ∙ 𝑈1 

𝑌2 = 𝐺1 ⋅ 𝐺2 ⋅ 𝑈1 
𝑌2(𝑠)

𝑈1(𝑠)
= 𝐺1 ⋅ 𝐺2 

 

𝑌 = 𝑌1 + 𝑌2 

𝑌 = (𝐺1 + 𝐺2) ⋅ 𝑈 

𝑌(𝑠)

𝑈(𝑠)
= 𝐺1 + 𝐺2 

 

6 Block Diagram Algebra 
 
Block diagram algebra can be used for the modeling of systems. When the initial conditions are 
zero (see 5.5)  the transfer function 𝐺(𝑠) relates the inlet 𝑈(𝑠) to the outlet 𝑌(𝑠). 
 

𝑌(𝑠) = 𝐺(𝑠) ∙ 𝑈(𝑠) 
 

 Series of Blocks 

 
Two blocks in series behave multiplicative:  

 
The transfer function is given by: 
 

 

  

 

 

 Parallel Blocks 

 

Parallel blocks behave additive as stated by the superposition principle: 

 
 
The transfer function is given by: 
 

 

 

 

 

Figure 6-1. Blocks in series. 

Figure 6-2. Parallel blocks. 
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𝑌1 = 𝐺1 ⋅ 𝑈1 

𝑈1 = 𝑅 − 𝑌2 

𝑌2 = 𝐺2 ⋅ 𝑌1 

𝑌1 = 𝐺1(𝑅 − 𝐺2𝑌) 

𝑌 =
𝐺1

1 + 𝐺1 ⋅ 𝐺2
⋅ 𝑅 

 

 Feedback Control Loop 

 

 

Transfer function is given by: 
 
 
 
 
 
 
 
 
Or written in a different way: 
 

Y(s)

𝑅(𝑠)
= 𝑻𝑭closed loop =

𝑻𝑭input to output

𝟏 − 𝑻𝑭loop
 

In the example above: 
𝑻𝑭input to output = 𝐺1 
𝑻𝑭loop = −G1 ∙ G2 

 
  

Figure 6-3. Control cycle of Feedback control. 

 

 Y1(s) 
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 Equivalent Diagrams 

 
For the representation of more complex systems, rearranging and the use of the formulas above 
can be used to simplify and obtain the transfer function. Additional rules are listed below. 
 
• Nodes can be moved by introducing blocks with the inverse of the block: 

 
 
• Blocks can be moved in front of a sum by introducing this block to all contributing inputs: 

 
• The feedback loop block diagram can be rearranged in the following way (more suitable for 

certain applications): 
 

 

 

  

Figure 6-5. Moving a block in front of a sum by introducing it to all inputs. 

 

Figure 6-6. Rearranging of the feedback control loop. 

 

Figure 6-4. Moving nodes by introducing the inverse of the block. 
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7 System Response 
 

The following system is considered 
 

 

 

 

 1st Order Systems 

 

Systems described by a first order ODE have a first order response, e.g. a CSTR without reaction. 
The transfer function 𝐺(𝑠) reads: 

𝐺(𝑠) =
𝑘

𝜏𝑠 + 1
 

 
where 𝑘 is the gain (Verstärkungsfaktor) and 𝜏 is the time constant (Zeitkonstante). 
 

As was introduced in the previous chapter, the transfer function can be used to express the 
dependence of the output signal 𝑌(𝑠) on the input signal U(s): 
 

𝑌(𝑠) =
𝑘

𝜏𝑠 + 1
∙  𝑈(𝑠) 

 

Pulse Input 

 

In this case the input signal U(s) is: 
𝑈(𝑠) = 1 

 
Therefore, the Laplace transform of the output signal Y(s) becomes: 

𝑌(𝑠) =
𝑘

𝜏𝑠 + 1
⋅ 1 

 
The back transformation (using the table on p.20) of Y(s) gives the output signal as a function of 
time y(t): 

𝑦(𝑡) =
𝑘

𝜏
∙ 𝑒−

𝑡
𝜏 

And the slope at t = 0: 
𝑑𝑦

𝑑𝑡
|
𝑡=0

= −
𝑘

𝜏2
 

U(s)  Y(s) 
G(s) 

Figure 7-1. First order system. 
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Initial value theorem 𝑦(𝑡 = 0) = lim
𝑠→∞

𝑠 ⋅ 𝑌(𝑠) =  lim
𝑠→∞

𝑠 ⋅
𝑘

𝜏𝑠 + 1
=
𝑘

𝜏
 

Final value theorem 𝑦(𝑡 → ∞) =  lim
𝑠→0
𝑠 ⋅ 𝑌(𝑠) = lim

𝑠→0
 𝑠 ⋅

𝑘

𝜏𝑠 + 1
= 0 

 

 

Step Input 

 

The input signal U(s) of a step function can be written as: 

𝑈(𝑠) =
1

𝑠
 

Therefore, the output signal Y(s) becomes: 

𝑌(𝑠) = 𝐺(𝑠) ⋅ 𝑈(𝑠) =
𝑘

𝜏𝑠 + 1
⋅
1

𝑠
 

 
Back transformation gives the output as a function of time y(t): 

𝑦(𝑡) = 𝑘(1 − 𝑒−
𝑡
𝜏) 

 

Initial value theorem 𝑦(𝑡 = 0) = lim
𝑠→∞

𝑠 ⋅
𝑘

𝜏𝑠 + 1
⋅
1

𝑠
= 0 

Final Value Theorem 𝑦(𝑡 → ∞) =  lim
𝑠→0
𝑠 ⋅

𝑘

𝜏𝑠 + 1
⋅
1

𝑠
= 𝑘 

Initial slope 𝑦ሶ(𝑡 = 0) = lim
𝑠→∞

𝑠 ⋅ 𝑠 ⋅ 𝑌(𝑠) = lim
𝑠→∞

𝑠 ⋅ 𝑠
𝑘

𝜏𝑠 + 1
⋅
1

𝑠
=
𝑘

𝜏
 

 
Remark: This approach also works for any other derivative. 

  

Figure 7-3. Input and output signal of a step input. 

 

Figure 7-2. Input (left) and output (right) signal of a pulse input. 

 

t / τ t / τ 

y(t)  

k/τ 
u(t) 
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The process signal does not respond immediately to the change in input. The response is delayed 
and approaches the new steady state value only asymptotically. After a time equal to the time 
constant 𝜏 it has reached 63.2% of the input value. 
 
How does the signal change by varying the parameters k and τ? Note that the axes are no more 
normalized.  

 
 
 

 
If k increases: 
𝑦(𝑡 ∞) multiplied 

 

 
If τ increases: 
 y(t) increases slower to asymptote 

By changing the gain, the new steady state which the system approaches can be altered. It 
increases with increasing gain. When we vary the time constant, the speed with which the system 
approaches the new steady state changes. The higher the time constant, the slower the system 
evolves. 

  t / τ t / τ 

y(t)  

k 
u(t) 

t 

y(t) 

t 

y(t) 

Figure 7-4. Left: Change of output signals with varying parameter k (gain). 



 
36 |   Chemical Process Control, Dr. Robert N. Grass 

 
 

Ramp Input 

 
The Laplace transformed ramp input signal 𝑈(𝑠) is: 

𝑈(𝑠) =
1

𝑠2
 

Therefore, the output signal 𝑌(𝑠) is given by: 

𝑌(𝑠) =
𝑘

𝜏𝑠 + 1
⋅
1

𝑠2
 

Back transformation gives: 

𝑦(𝑡) = 𝑘(𝑡 − 𝜏 + 𝜏𝑒−
𝑡
𝜏) 

 

Initial value theorem 𝑦(𝑡 = 0) = 0 
Final slope 𝑦ሶ(𝑡 → ∞) = 𝑘 
Initial slope 𝑦ሶ(𝑡 = 0) = 0 

 
Note: If you plot the input and output signal in non-normalized axes, then the difference 
between the two signals would be the time constant τ. 
 
 

 2nd Order Systems 

 

Figure 7-5. Input and output signal in case of a ramp input. 

 

t/τ 

y(t) 

k τ 

1 



 
Chemical Process Control, Prof. Robert N. Grass     | 37 

Most mechanical systems or two coupled systems of 1st order are 2nd order systems. All systems 
with 2nd order derivatives have a second order response, e.g. pendulum and many other 
mechanical systems (𝐹 = 𝑚𝑥ሷ). 
 
The transfer function G(s) reads: 

𝐺(𝑠) =
𝑘

𝜏2𝑠2 + 2𝜏𝜉𝑠 + 1
=

𝑘𝜔𝑛
2

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2 

 
where 𝑘 is the gain, 𝜏 the time constant, 𝜔𝑛 the natural frequency and 𝜉 the damping factor. 
 
The roots of the characteristic polynomial  
 

𝜏2𝑠2 + 2𝜏𝜉𝑠 + 1 
 
i.e. the solutions of the characteristic equation 
 

𝜏2𝑠2 + 2𝜏𝜉𝑠 + 1 = 0 
 

𝑠1,2 = −
1

𝜏
(𝜉 ± ඥ𝜉2 − 1) 

 
We can describe the shape of the solution of these systems by looking at the damping factor 𝜉: 
 
0 < 𝜉 < 1  roots are imaginary → underdamped system, oscillation 
1 < 𝜉 roots are real → overdamped system, no oscillation 
1 = 𝜉 only 1 discrete root → critically damped 
 
 

Step input 

 
The output signal Y(s) of a step function of a second order system looks as follows: 
 

𝑌(𝑠) =
𝑘

𝜏2𝑠2 + 2𝜏𝜉𝑠 + 1
⋅
1

𝑠
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For a graphical representation of the different cases of damping for a second order system see 
Figure 7-6.  
 
 

 

Higher Order Systems 

 
Step inputs for higher order systems can be formulated analogously (see Figure 7-7). This also 
models the transition of a CSTR to a PFR as a cascade of infinite CSTRs. 
 

𝑌(𝑠) = ൬
𝑘

𝜏𝑠 + 1
൰
𝑛

⋅
1

𝑠
 

 

lim
𝑛→∞

(
1

𝜏
𝑛
𝑠 + 1

)

𝑛

= 𝑒−𝜏𝑠      
      ℒ−1      
→       time shift  𝑓(𝑡 − 𝜏) 

 
Remember that exponential functions in the Laplace space are just time shifts in the time space.  

t/τ 

y(t) 

Figure 7-6. Step response of a second order system with different damping values and 𝒌 = 𝟏. 
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In this case the time constant of the total system would be equal to the sum of the time constants 
of the individual systems. For 𝑛 = ∞ we would again have a plot in the form of the initial pulse 

but with a delay, like for a PFR. 
 

 

  

Figure 7-7. Step response of nth order systems. 

 

y(t) 

t/ n τ 
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 Specifications within the Time Domain 

 

For a damped second order system without roots the following holds: 
 

Rise time:   𝑡𝑟 ≅
1.8

𝜔𝑛
 

Overshoot:    𝑀𝑝 = exp (
𝜋𝜉

ඥ1−𝜉2
) ≅ {

5 %                  𝜉 = 0.7
16 %               𝜉 = 0.5
35 %               𝜉 = 0.3

 

Settling time:   𝑡𝑠 ≅
4.6

𝜔𝑛𝜉
 

 
Peak time:   𝑡𝑝 =

𝜋

𝜔𝑛ඥ1−𝜉
2
 

 
• We can find the peak time and the overshoot if we set the derivative of the function zero 

and look for the maximum 
• An additional root in the left half plane (LHP) enforces the overshoot if the root is less 

then factor 4 distant from the real part of the poles. 
• An additional root in the right half plane (RHP) inhibits overshooting and can even lead 

to undershooting. 
• An additional pole extends the rise time, if the additional pole is less then factor 4 

distant from the complex part of the complex poles. 
 
 

  

Figure 7-8. Specifications within the time domain. Figure from [FrPE06] 
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8 System Stability 
 
A system is asymptotically stable, if there are no ‘internal’ state variables that go towards 
infinity but all go to zero when t → ∞. When perturbed slightly the system will go back into the 
steady state. 
 
Consider the following transfer function of a system: 
 

𝐺(𝑠) =
𝑝(𝑠)

𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 𝑎0
 =

𝑝(𝑠)

∏ (𝑠 − 𝑝𝑖)
𝑛
𝑖=1  

 

 

Assume that all roots 𝑝1, 𝑝2, … 𝑝𝑛 of the characteristic equation 
 

𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 𝑎0 = 0 
 

are distinct (einfach). A differential equation with this characteristic equation has a solution of 
the form: 
 

𝑦(𝑡) =  ∑𝐾𝑖𝑒
𝑝𝑖𝑡 

𝑛

𝑖=1

 

 
This system is stable, if all terms in the series go to zero for t → ∞. 
 

In other words: 
 

If all 𝑝𝑖 < 0 for 𝑡 → ∞ 𝑦(𝑡) = 0 converging poles 
stable system 

If one 𝑝𝑖 > 0 for 𝑡 → ∞ 𝑦(𝑡) → ∞ diverging poles  
unstable system 

If one 𝑝𝑖 = 0 for 𝑡 → ∞  neither con- nor diverging poles 
asymptotically stable system 

 
If all poles are zero, these simple rules can’t be applied to predict system behavior. This is due 
to the fact that the linearization introduces an error into the calculation. It is therefore highly 
unlikely that all roots are truly zero and a different approach would be needed or more terms 
included into the linearization.  
 
If there are complex conjugate poles 𝑝𝑖, the solution would be given by an oscillatory response: 
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𝑦(𝑡) = 𝐴1𝑒
𝑝𝑖𝑡 = 𝐴(cos(𝑡) + 𝑖 sin(𝑡)) 

 

. 
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By looking at the location of the poles one can get a feeling of the system behavior and analyze 
the stability. A pole to the right of the imaginary axis, with positive real part is called RHP (right-
half plane pole). Such a pole will lead to an unstable system as it results in a system response 
which grows without bound. The term of a LHP (left-half plane pole) in contrast will go to zero 
and the system will approach the stable steady state. 
 
Roots on the right hand side of the figure lead to unstable systems which are not desirable for 
process control applications. The more on the left, the faster the system evolves towards its 
steady state. When we compare the evolution speed of two roots (with roots with purely negative 
real parts), we must look at the rightmost root (the one closest to zero) as this one governs the 
speed. The system with the more negative right root will approach its steady state faster. 
 

 
 
 

 

 

 

  

Figure 8-1. Root Locus Impulse responses as a function of the position of the roots. 
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9 Sensitivity 
 
With a sensitivity analysis we can determine the effect of changes in 𝐴 or due to uncertainties (if 
𝐴 is not known precisely).  
 
Assumption: Engine gain goes from 𝐴 to 𝐴 + 𝛿𝐴.  
 
Open loop control: 
 
 
 
 

𝐾𝐴 = 𝑇𝑜𝑙 

𝐾(𝐴 + 𝛿𝐴) = 𝑇𝑜𝑙 + 𝛿𝑇𝑜𝑙 
 
Where 𝑇𝑜𝑙 is the open loop transfer function. 
Rearrange 

𝐾(𝐴 + 𝛿𝐴) =
𝑇𝑜𝑙
𝐴
(𝐴 + 𝛿𝐴) = 𝑇𝑜𝑙 ൬1 +

𝛿𝐴

𝐴
൰ = 𝑇𝑜𝑙 + 𝛿𝑇𝑜𝑙 = 𝑇𝑜𝑙 ൬1 +

𝛿𝑇𝑜𝑙
𝑇𝑜𝑙
൰ 

1 +
𝛿𝐴

𝐴
= 1 +

𝛿𝑇𝑜𝑙
𝑇𝑜𝑙

 

Relative change: 
𝛿𝑇𝑜𝑙
𝑇𝑜𝑙

=
𝛿𝐴

𝐴
 

 
Hendrik W. Bode named this ratio the Sensitivity of the transfer behavior on changes of A. 
 

𝑆𝐴
𝑇  =

𝛿𝑇/𝑇

𝛿𝐴/𝐴
 ≈
𝐴

𝑇

𝑑𝑇

𝑑𝐴
 

 
For open loops 

𝑆𝐴
𝑇𝑜𝑙 = 1 

 
When a relative change in 𝐴 occurs, for an open loop, it will translate into a change in 𝑇 of equal 
size. Thus, if the engine gains 5%, the velocity will also rise by 5%. 
 
 
Closed loop control: 

U(s)  Y(s) 
A K 

Figure 9-1. Open loop control system 
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When we add a feedback loop to the system above  

 

The transfer function changes and 
𝐴𝐾

1 + 𝐴𝐾
= 𝑇𝑐𝑙 

 
(𝐴 + 𝛿𝐴)𝐾

1 + (𝐴 + 𝛿𝐴)𝐾
= 𝑇𝑐𝑙 + 𝛿𝑇𝑐𝑙 

 

Using the above formula for the sensitivity 𝑆𝐴𝑇: 
 

𝑆𝐴
𝑇𝑐𝑙 =

𝐴

𝐴𝑘
1 + 𝐴𝑘

(1 + 𝐴𝑘)𝑘 − 𝑘(𝐴𝑘)

(1 + 𝐴𝑘)2
=

1

1 + 𝐴𝑘
 

Therefore, for closed loops:  

𝑆𝐴
𝑇𝑐𝑙 =

1

1 + 𝐴𝑘
 

 
This illustrates the advantage of feedback control. Sensitivity to changes is usually smaller than 
1 and closed loop control reduces the effect of changes in the gain factor 𝐴 by a factor of 1 +  𝐴𝑘 
when compared with open loop control. By choosing 𝑘 large, sensitivity and the effect of 
disturbances on the system can be reduced.  
 

U(s)  Y(s) 
A K 

Figure 9-2. Closed loop control system 
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One of the main reasons for the use of feedback control is not that it can respond easier to changes 
but the fact that the system is not precisely known. In order to compensate for such uncertainties 
a low sensitivity is desirable as it will reduce the effects of changes in the transfer function.  

EXAMPLE 9-1: Advantage of Feedback 

 
Consider a closed loop with the gain 𝑘 is such that 
 

1 + 𝐴𝑘 = 100 
we can calculate the sensitivity 

𝑆𝐴
𝑇𝑐𝑙 =

1

1 + 𝐴𝑘
= 0.01 

a 10% change in A  
𝛿𝐴

𝐴
= 0.1 

 
would then lead to a change of  

𝛿𝑇 =
𝛿𝐴

𝐴
∙ 𝑆𝐴
𝑇𝑐𝑙 = 0.001 

 
The change in steady state gain in a closed loop would thus be 0.1%. When compared with the 
change for an open loop under the same conditions, which would be 10% as the sensitivity is 
one, the closed loop is much less sensitive. 
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10 Dynamic Behavior 
 

 P-Controller 

 

• A static k does not change the dynamics of an open loop control system 
• A static k changes the dynamics of closed loop control systems 

 
Consider the following closed loop control system with a P controller: 
 

This system for example could represent two stirred tanks in series with residence times 𝜏1 and 
𝜏2. 
 
The transfer function of this system (only with a P-controller) is: 
 

𝑌(𝑠)

𝑅(𝑠)
=

𝑘𝐴

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1) + 𝑘𝐴
                     with             𝐴 > 0 

 

The dynamics of the system can be understood by looking at the roots of the transfer function. 
 
→ the roots of the characteristic equation as a function of the gain 𝑘 are: 

 

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1) + 𝐴𝑘 = 0 
 

𝜏1𝜏2𝑠
2 + (𝜏1 + 𝜏2)𝑠 + 1 + 𝐴𝑘 = 0 

 

𝑠1,2    =
−(𝜏1 + 𝜏2) ± ඥ(𝜏1 + 𝜏2)

2 − 4𝜏1𝜏2(1 + 𝐴𝑘)

2𝜏1𝜏2
 

=
−(𝜏1 + 𝜏2) ± ඥ(𝜏1 − 𝜏2)

2 − 4𝐴𝑘𝜏1𝜏2
2𝜏1𝜏2

 

For 𝑘 = 0 (no P-controller) we get 𝑠1,2 =
−1

𝜏1,2
 

 
For 2nd order systems: 

- 
E(s)

k 
U(s) A 

(τ1s +1)(τ2s +1) 

Y(s) + R(s) 

1 

Figure 3-3. Control cycle with a second order system. 
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• 𝑘 affects the roots => affects the dynamics of the response 
• first, increasing 𝑘 will shift the roots towards the left half plane and thus will result in 

faster response (desired) 
• at some point the discriminant becomes zero and there will be a multiple root 
• further increasing k results in a negative discriminant and complex conjugate poles and 

thus in an oscillating response 
• if 𝑘 is big there is a “trade-off” between low stationary error (low sensitivity, see 

previous chapter) and bad dynamic behavior. 
→ complex controllers with more degrees of freedom are required (see next chapter) 
 

Plotting the behavior of the roots as a function of the parameter k gives the so called root locus: 

 

In the range of 0 <  𝑘 < (𝜏1−𝜏2)
2

4𝐴𝜏1𝜏2
 the roots are both real and negative, the system is thus stable 

and non-oscillating.  
 

For 𝑘 > (𝜏1−𝜏2)
2

4𝐴𝜏1𝜏2
 the roots are a complex conjugate pair and the system is oscillating. 

 
From this analysis, k is chosen as large as possible without creating imaginary roots: 

→ the more left the rightmost root, the faster the response (see Chapter 8) 
 
 

 

Figure 10-2. Root locus 
With increasing k the roots approach the multiple root from 
both sides (on the horizontal) and then split when they reach 

it and continue on the vertical line drawn. 
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EXAMPLE 10.0-1: Pendulum 

 
Remember the variables from last time: 
𝑇𝑐  external force 
𝑚,𝑔, 𝑙, 𝐼  constants 
𝜃, 𝑇𝑐  variables 
 
And the describing function: 

𝑓 = 𝐼𝜃ሷ = 𝑇𝑐 −𝑚𝑔𝑙 sin 𝜃 
 
In steady state: 

0 = 𝑇𝑐 −𝑚𝑔𝑙 sin𝜃 
If there is no external force 𝑇𝑐 = 0 

0 = −𝑚𝑔𝑙 sin 𝜃 
𝜃𝑠𝑠 = 0  and 𝜃𝑠𝑠 = 𝜋 

→ two steady states exist 
 
 
Linearization 

𝑓 ≈ 𝑓𝑠𝑠 +
𝜕𝑓

𝜕𝑇𝑐
|
𝑠𝑠

Δ𝑇𝑐 +
𝜕𝑓

𝜕𝜃
|
𝑠𝑠
Δ𝜃 

𝐼Δ𝜃ሷ = Δ𝑇𝑐 −𝑚𝑔𝑙 cos 𝜃
𝑠𝑠 Δ𝜃 

 
Laplace Transformation 

𝐼𝑠2Θ̅ = 𝑇𝑐̅ −𝑚𝑔𝑙 cos 𝜃
𝑠𝑠 Θ̅ 

Θ̅

𝑇𝑐̅
=

1

𝐼𝑠2 +𝑚𝑔𝑙 ⋅ cos 𝜃𝑠𝑠
 

 
Stability of the roots 

𝐼𝑠2 +𝑚𝑔𝑙 ⋅ cos(𝜃𝑠𝑠) = 0 

𝑠2 = −
𝑚𝑔𝑙

𝐼
⋅ cos 𝜃𝑠𝑠 

 
 For 𝜃𝑠𝑠 = 0 (pendulum) 

𝑠2 = −
𝑚𝑔𝑙

𝐼
cos 0 = −

𝑚𝑔𝑙

𝐼
 

𝑠1/2 = ±𝑖√
𝑚𝑔𝑙

𝐼
 

             Imaginary roots, oscillating response (constant, stable), 𝑅𝑒(𝑠)  =  0. 
 
 For 𝜃𝑠𝑠 = 𝜋 (inverse pendulum) 

𝑠2 = −
𝑚𝑔𝑙

𝐼
cos 𝜋 = +

𝑚𝑔𝑙

𝐼
 

𝑠1/2 = ±√
𝑚𝑔𝑙

𝐼
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EXAMPLE 10.0-2: Inverse Pendulum + Controller 

 
 
 
 
 
 
 
 
𝐼 = 20  𝑚𝑔𝑙 = 10 
 
New overall transfer function 

𝑌

𝑅
=

𝑘 
1

20𝑠2 − 10

1 + 𝑘
1

20𝑠2 − 10

=
𝑘

20𝑠2 − 10 + 𝑘
 

 
New roots 

20𝑠2 − 10 + 𝑘 = 0 

𝑠1/2 = ±
ξ50 − 5𝑘

10
 

  for 𝑘 > 10  purely imaginary roots, oscillating 
  for 𝑘 < 10  1 positive, 1 negative root, unstable 
 
The controller can change the dynamics of the inverse pendulum (originally unstable) to a 

Figure 10-3. Control cycle. 

𝑠1/2 = ±√
𝑚𝑔𝑙

𝐼
 

 One positive real part, unstable 
 

- 
E

k 
U(s) = 
Tccccc 

1 
10s2-10 

Y(s)= ϴ + R(s) 

1 
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11 Improved Controllers 
 

Goal P-Controller I-Controller D-Controller 

Good final value, i.e. small 
steady state error 

For large k no steady state error 
(response increases 
with time when error 
persistent) 

fast (reacts on 
slope of error, i.e. 
before error 
occurred) 

Influence dynamics  
a) Faster 
b) Less oscillating  

 
a) For large k 
b) for small k 

slow (least negative 
root larger than for P-
control) 

sensitive to sensor 
noise 
 

influence stability for large k to 
some extent 

for large 𝑇𝐼 unstable poor influence on 
stability 

 
 

 Integral-Controller 

 
The integral controller is also called I-controller 
 
 

 
 
 
The “transfer function” of this part is given by: 

𝑢(𝑡) =
𝑘

𝑇𝐼
∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

 

Laplace transformation then gives: 

𝑈(𝑠) =
𝑘

𝑇𝐼𝑠
𝐸(𝑠) 

with: 

 𝐶(𝑠) = 𝑘

𝑇𝐼𝑠
 

Where 𝑇𝐼 is the integral or reset time (Nachstellzeit) and  1
𝑇𝐼

 is the reset rate.  

𝑢(𝑡) changes until ∫ 𝑒 = 0 and then 𝑢(𝑡) is constant and has reached its steady state. Therefore, 
for a controller with I portion the controller error will always go to zero. The steady state is 
reached when the error is zero. 
 
  

  - 
r(t) e(t)  I-controller 

C(s) 
+  

u(t)

Figure 11-1. Part of a control cycle with an I-
controller 
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Consider the following 2nd order system with an I-controller:  

The transfer function of such a system is: 
 

𝑌

𝑅
=

𝑘
𝑇𝐼
𝐴

𝜏1𝜏2𝑠
3 + (𝜏1 + 𝜏2)𝑠

2 + 𝑠 + 𝐴
𝑘
𝑇𝐼

 

 
In comparison to the transfer function with the P-controller the characteristic equation has 
changed. The order has increased by 1 and also the roots and the root locus have changed. 

 
There is an additional root for the controller at zero for k= 0. As 𝑘 increases the roots move left 
in the plane (except for the middle one which will move right) and eventually a complex conjugate 
pair forms (at some point even with positive real parts). Thus, for increasing 𝑘 the damping will 
be noticeably weaker until the system will eventually become unstable.  
 
The advantage of the I-controller is that it has no steady state error but its response is slow. As 
we have seen it also tends to oscillate and get unstable with increasing 𝑘.  
 

Figure 11-2. Control cycle of a second order system with integral 
control. 

Figure 11-3. Root locus of a second order system with integral control. 

A 
(τ1s + 1)( τ2s + 1) 

- 
E k 

TI s 
U(s) = 
Tccccc 

Y(s)= ϴ + R(s) 

1 
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As the error for this kind of controller will always go to zero, we only have to look at the dynamics. 
The I-controller is not usually used on its own but coupled with a P-controller.  
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 Differential Controller 

 
 

𝑑(𝑡) = 𝑘𝑇𝐷𝑒ሶ(𝑡) 

𝐷(𝑠) = 𝑘𝑇𝐷𝑠𝐸(𝑠) 

𝐶(𝑠) = 𝑘𝑇𝐷𝑠 
Where 𝑇𝐷 : Derivative time (Vorhaltezeit) 
 
Differential controllers respond to the difference in slope. For steep slopes the response will be 
much stronger than for lower slopes, therefore they have a fast response. 
As the response is very fast, the controller is sensitive to noise and is usually implemented in the 
feedback loop. 

 

 

 Comparison of Controller Responses 

 
→ P-controllers multiply the error by a constant (gain k) and result in a steady state error.  
→ I-controllers are slow but adjust the steady state error. 
→ D-controllers are fast but sensitive to background noise and tend to oscillate. 
 
As all the controllers have different advantages and disadvantages is common to combine them 
into a PID-controller with three elements. The Proportional term closes the feedback look, the 

r(t) e(t)  D-controller 
C(s) = k TD s 

u(t)+  
  - 

Figure 11-4. Part of a control cycle with differential control. 

Figure 11-5. Comparison of different controller responses with e(t) being the assumed 
error. 
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Integral term assures that there is no error remaining and the Derivative term improves the 
dynamic response and stability. 
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 PID-Controller 

 
Usually, a combination of P-, I- and D-control is used (industrial standard). 
 

𝑢(𝑡) = 𝑘 (𝑒(𝑡) +
1

𝑇𝐼
∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝑇𝐷𝑒ሶ(𝑡)) 

𝑈(𝑠) = 𝑘 ∙ 𝐸(𝑠) ൬1 +
1

𝑇𝐼𝑠
+ 𝑇𝐷𝑠൰ 

 
𝑇𝐼 , 𝑇𝐷 , 𝑘 are selected to obtain an optimal response. 
For a second order system all roots can be independently chosen with those three parameters. 
The three parameters have to be determined to get a good response. This is the aim of process 
control. 
Sometimes PD or PI-controllers are used when the desired effect can be achieved with setting 
only two parameters. 

 
In the left plot we can immediately recognize the controllers with an integral part as their steady 
state error goes to zero. When only the P-controller is used, y does not go to zero. 
Comparing the PID and PI-controller we can say that the better response (not oscillating) must 
belong to the controller with more degrees of freedom when it is set efficiently. 
On the right we can again spot the (small) steady state error of the P-controller and the smaller 
overshoot for the PID-controller when comparing it to the PI version. 
 

  

Figure 11-6. Transient behavior of different controllers after (a) a unit disturbance and (b) a reference step. Figure 
from [FrPE06] 
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 Design of PID Controllers 

 

The main aim of control unit design is the stability. PID controllers are often used because their 
stability is well understood. 
 
Experimental Methods 

 
The methods below are used when models for the system and more advanced mathematical tools 
are not available. They were both developed by Ziegler and Nichols, two chemical engineers who 
were looking primarily at chemical systems.  
 
Ziegler + Nichols (1942) 
Most real systems have a “similar“ response for a step function which is characterized by reaction 
rate 𝑅 and lag 𝐿. The method aims at designing controllers for a system based on its step response 
and is also called step method. 

The response will have a shape as above and can be approximated by a step response with the 
transfer function 

𝑌(𝑠)

𝑈(𝑠)
=
𝐴 exp(−𝑠𝑡𝑑)

𝑠
 

A step function is introduced into a process (open loop) without a controller 
 R and L can be determined from the response 

- PID + 

1 

Figure 11-8. Process response. Figure from [FrPE06]. 

Figure 11-7. Control cycle of a system with PID control. 

System 
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 the goal is to tune the control unit in such a way that the amplitude in each oscillation should 
decrease by 3/4 compared to the previous oscillation (see Figure 11-9)   decay ratio of 0.25  
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 Ziegler and Nichols developed rules to tune P, PI and PID controllers in order to achieve the 
desired response (see table below) and the parameters 𝑘, 𝑇𝑖 and 𝑇𝐷 can calculated from 𝑅 and 𝐿. 

 The method is fast and reliable but only applicable when measurements are possible and when 
the step response has a shape as in Figure 11-8. It is suitable for slow processes when we aim 
mostly at correcting disturbances. 
 

 
 

𝑘 𝑇𝑖 𝑇𝐷 

P 
1

𝑅𝐿
 / / 

PI 
0.9

𝑅𝐿
 

𝐿

0.3
 / 

PID 
1.2

𝑅𝐿
 2𝐿 0.5 𝐿 

 
  

Figure 11-9. Aim of the Ziegler and 
Nichols method. Figure from [FrPE06]. 
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Ultimate Gain method 
Ziegler and Nichols have developed a second method based on the experience that 𝑘 shall not 
exceed a certain value 𝑘𝑢 to prevent instability. 
In the experiment a closed loop system with only P control is used and 𝑘 is increased until the 
system becomes marginally stable. The oscillations are stable and constant. 
 this 𝑘 is the ultimate gain 𝑘𝑢 
 the period at 𝑘𝑢 is the ultimate period 𝑃𝑢 of the oscillation at 𝑘𝑢 
 the period and gain are measured at the point of marginal stability 
  based on these values the parameters for the controllers can be determined from the table 
below 

 

 
 
 

 
 𝑘 𝑇𝑖 𝑇𝐷 

P 0.5 𝑘𝑢 / / 

PI 0.45 𝑘𝑢 
1

1.2 
𝑃𝑢 / 

PID 0.6 𝑘𝑢 
1

2
𝑃𝑢 

1

8
𝑃𝑢 

 

  

Figure 11-9. Ultimate gain method where Pu is the ultimate 
period. Figure from [FrPE06]. 
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Mathematical Method 

 

Root-Locus 
Disadvantage: necessary to compute roots of characteristic equation; has multiple solution and 
is difficult to solve for higher order systems 
 

2nd order binomial equation 
3rd order Cardano equation 
nth order no algebraic solution (n>4) 

 
Alternative: Routh stability criterion (before computers were invented) 
 

Characteristic equation 
𝑎𝑛𝑠

𝑛  + 𝑎𝑛−1𝑠
𝑛−1 + 𝑎𝑛−2𝑠

𝑛−2 +⋯+ 𝑎0 = 0 
 Necessary condition for stability: 𝑎𝑖 > 0 
 
Routh table 
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12 Frequency Response 
 
This method is very useful to get a first impression of the system behavior and is often used in 
practice. The frequency response will allow us not only to predict the response for any sinusoidal 
input but will give qualitative information which is useful in determining the stability and 
robustness of a system. 
 

 
What happens at the output for 𝑡 → ∞ (in the stationary case)? 
 For a linear system we will have oscillation with the same frequency 𝜔 but a different amplitude 
𝐴 and phase 𝜙 
 
Input 

𝑢(𝑡) = 𝐴 sin(𝜔𝑡) 
Laplace transformation 

𝑈(𝑠) =
𝐴𝜔

𝑠2 + 𝜔2
 

 

𝑌(𝑠) = 𝑈(𝑠)𝐺(𝑠) = 𝐺(𝑠)
𝐴𝜔 

𝑠2 +𝜔2
 

 

𝐺(𝑠) =
1

(𝑠 − 𝑠1)(𝑠 − 𝑠2)…
 

 
Partial fraction expansion 

𝑌(𝑠) =
𝛼1
𝑠 − 𝑠1

+ 
𝛼2
𝑠 − 𝑠2

+⋯+ 
𝛽

𝑠 + 𝑖 𝜔0
+ 

𝑖 𝛽

𝑠 − 𝑖 𝜔0
  

Inverse LT 
𝑦(𝑡) =  𝛼1𝑒

+ 𝑠1𝑡 + 𝛼2𝑒
+ 𝑠2𝑡 +⋯+ 2|𝛽| cos(𝜔𝑡 + 𝜙) 

 
For 𝑡 → ∞ and 𝑝𝑖 < 0 

𝑦(𝑡 = ∞) = 2 |𝛽| cos(𝜔𝑡 + 𝜙) 
 
 System oscillates with the same frequency, new amplitude 𝑀 = 2 |𝛽| and phase shift 𝜙. 

To find the values of 𝑀 and 𝜙 we find 𝑦(𝑡) for 𝑢(𝑡) = 𝐴 sin𝜔𝑡 by means of convolution 
 

Figure 12-1. System with frequency input. 

Input =  
𝐴 sin(𝜔𝑡) 

System 
y(t) = ?
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𝑦(𝑡) = 𝑢(𝑡) ∗ 𝑔(𝑡) 
 
And we apply the relation for exponential and trigonometric functions   sin 𝑥 = 1

2𝑖
(𝑒𝑖𝑥 − 𝑒−𝑖𝑥) 

𝑦(𝑡) = ∫ 𝑔(𝜏)
∞

−∞

 
𝐴

2𝑖
 (𝑒𝑖𝜔(𝑡−𝜏) − 𝑒−𝑖𝜔(𝑡−𝜏)) 𝑑𝜏 

 
This integral is not trivial to solve. We must find simplification for the convolution of 𝑣(𝑡) = 𝑒𝑠𝑡 
 

𝑣(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑔(𝜏)
∞

−∞

 𝑒𝑠(𝑡−𝜏)𝑑𝜏 = ∫ 𝑔(𝜏)
∞

−∞

𝑒−𝑠𝜏 𝑒𝑠𝑡𝑑𝜏 

 

= 𝑒𝑠𝑡∫ 𝑔(𝜏)
∞

−∞

𝑒−𝑠𝜏𝑑𝜏 = 𝐺(𝑠) 𝑒𝑠𝑡 

 
We could show that 𝑣(𝑡) = 𝑒𝑠𝑡 is the response in the time domain for the Laplace transform of 
the function. This can be applied to 𝑠 = 𝑖𝜔 which leads to 
 

𝑦(𝑡) =
𝐴

2𝑖
(𝐺(𝑖𝜔) 𝑒𝑖𝜔𝑡 − 𝐺(−𝑖𝜔) 𝑒−𝑖𝜔𝑡) 

 
Transform to radial coordinates   𝐺(𝑖𝜔) = 𝑀𝑒𝑖𝜑 
 

𝑦(𝑡) =
𝐴

2𝑖
 𝑀(𝑒𝑖(𝜔𝑡+𝜑) − 𝑒−𝑖(𝜔𝑡+𝜑)) 

 
And apply again the definition of the sine and compare with the expression found for 𝑦(𝑡 = ∞) 
 

𝑦(𝑡) = 𝐴𝑀 sin(𝜔𝑡 + 𝜑) 
𝐴𝑀 = 2|𝛽| 𝜑 = 𝜙 

 
Now we can find 𝑀 and 𝜙. 
  
Amplitude ratio 𝐴𝑅 

𝐴𝑅 =
𝐴𝑀

𝐴
= 𝑀 = |𝐺(𝑖𝜔)| = |𝐺(𝑠)|𝑖𝜔|   

 

Definition of the Laplace transform 
→𝐺(𝑠) 
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Phase shift 𝜙 

𝜙 = tan−1 ቆ
𝐼𝑚(𝐺(𝑖𝜔))

𝑅𝑒(𝐺(𝑖𝜔))
ቇ 

 
With the amplitude ratio and phase shift we can find the outlet for any sine or cosine by plugging 
in 𝑖𝜔 instead of 𝑠. 
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 Bode Diagram 

 
For a 1st order system the transfer function is given by: 

𝐺 = 𝑇𝐹 =
𝑘

𝜏𝑠 + 1
 

 
The input of the system is again a wave function as in Fig 12-1. The oscillation of the output will 
have the same frequency as we have seen, however amplitude and phase change. When the input 
frequency is low, the corresponds to slow changes, and we are likely to still have the same 
amplitude at the outlet (only amplified by 𝑘).  As the frequency increases, the changes occur faster 
and we approach the time constant of the system. The behavior changes to a lower response 
amplitude and phase shift (see figure 12-2). 

 

Bode plots depict the amplitude ratio and phase shift as a function of the input frequency. Both 
𝐴𝑅 and 𝜔 are on a log scale (𝐴𝑅 most often in dB), 𝜙 is drawn in degrees.  
 

Figure 12-2. Bode diagram for a 1st order system. 

EXAMPLE 12-1: Frequency response 

 
For a system with the transfer function 

𝐺(𝑠) =
1

𝑠 + 𝑘
 

We plug in 𝑖𝜔 

𝐺(𝑖𝜔) =
1

𝑖𝜔 + 𝑘
 

And we can calculate the amplitude ratio 

𝐴𝑅 =
1

ξ𝜔2 + 𝑘2
 

As well as the phase shift at the outlet 

𝜙 = tan−1 (−
𝜔

𝑘
)  
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The plots can be determined experimentally or constructed by hand (see example 12.1-1) in a 
quick and yet sufficiently accurate way. Bode plots of more complex transfer functions can be 
constructed in an additive way, where the transfer function is split up into simpler components. 
The plots for these parts can be drawn easily and are added up to give the Bode plot of the more 
complex system. 
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Simple Graphical Bode Plot Design 

 
Computing of |𝐺(𝑖𝜔)| is not necessary as certain classes of functions behave the same. Below the 
plotting of these classes will be discussed. 
 
Standard classes of TF: 
 

a) K𝑠𝑛 = K(iω)n 

→  log(𝐾|𝑖𝜔|)𝑛 = log(𝐾) + 𝑛 log(|𝑖𝜔|) 

→ 𝐴𝑅: line with slope 𝑛 through 𝐾 at 𝜔 = 1 
→ 𝜙 = 𝑛 ⋅ 90° 

 
 
 

 

b) (𝜏𝑠 + 1)𝑛 = (𝜏(𝑖𝜔) + 1)𝑛 

𝐴𝑅: constant until 𝜔 = 1/𝜏 (break point), then slope 𝑛 
𝜙 = 0 until 𝜔 = 1/𝜏, then 𝜙 = 𝑛 ⋅ 90° 

 
 

 
The plots above are only asymptotically correct and would have rounded edges and smooth 
transitions. 

Figure 12-3. Simple Bode diagram general cases of 𝐊𝒔𝒏. 

Figure 12-4. Simple Bode diagram general cases of (𝝉𝒔 + 𝟏)𝒏 . 

0.1     1     10 0.1     1     10 
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EXAMPLE 12.1-1: Drawing Bode Diagrams 

 
The following transfer function is given: 
 

𝑇𝐹 = 
2000 (𝑠 + 0.5)

𝑠 (𝑠 + 10)(𝑠 + 50)
 

 
Rearranging to have 𝜏𝑠 + 1 in the denominator: 
 

𝑇𝐹 = 
2(2 𝑠 + 1)

𝑠 (
1
10
 𝑠 + 1) (

1
50
 𝑠 + 1)

 

 
We can identify four components, one of standard class a) (of form 𝐾𝑠𝑛) and three of standard 
class b) (of form (𝜏𝑠 + 1)𝑛) with time constants: 

𝜏1 = 2 

𝜏2 =
1

10
 

𝜏3 =
1

50
 

Let us first look at the magnitude plot. The term of class a) is first order and in the denominator 
will lead to a slope of 𝑛𝑎 = −1 throughout the entire 𝜔 range. The terms of class b) will identify 
the behavior only after their break point 𝜔𝑖 which we can find by the inverse of the time 
constant. The effect on the slope will be positive or negative depending on whether the term 
is in the nominator or denominator. 
 

𝜔1 = 0.5 𝑛1 = +1 
𝜔2 = 10 𝑛2 = −1 
𝜔3 = 50 𝑛3 = −1 

 
As the slopes behave additive, we can construct the magnitude plot piecewise. Initially the 
slope will be −1 until after 𝜔 = 0.5 it will be horizontal as the 𝑛1 = +1 effect of the 2𝑠 + 1 in 

the nominator cancels the −1 slope. When 𝜔 reaches a value of 10 the effect of the 1
10
 𝑠 + 1 

term in the denominator will come in and decrease the slope to −1  and the last b) type term 
further to −2 after 𝜔 = 50.  
 
To draw the plot we should start with the first asymptote before the effect of the class b) terms. 
This asymptote has a slope of -1 (or 20 dB per decade) and we can locate it as it would pass 
through the value 2 (the value of 𝑘 in this case) at 𝜔 = 1.  The asymptotes can then be 
constructed by changing the slope at the break points and the amplitude plot is then obtained 
by connection of the lines. 
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For the phase plot the same break points play a role for type b) terms and a) terms will again 
have an influence over the entire 𝜔 range. The effect can also be read from the value of 𝑛𝑖 and 
will be  𝑛𝑖 ∙ 90°. Phase shifts also show additive behavior. We therefore start at -90°, go to 0°, 
to -90° and finally -180°. The obtained staircase like function will be only approximate with 
the actual shape being much smoother. 
 
This procedure yields the final Bode diagram in figure 12-5 and 12-6. 

Figure 12-5. Magnitude plot for example 12.1-1. Figure from [FrPE06]. 

Figure 12-6. Phase plot for example 12.1-1. Figure from [FrPE06]. 
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Bode Diagram of PID Controllers 

 

 

  
Figure 12-7. Bode diagrams for P, PD, PI and PID controllers with different 
C(s). 
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Bode Plots of 2nd Order Systems 

𝐺(𝑠) =  
𝑘

𝜏2𝑠2 + 2 𝜉 𝜏𝑠 + 1
 

With damping factor 0 < 𝜉 < 1 
→ oscillating response to step input 
→ maximum amplitude (if it exists) at the natural frequency 𝜔𝑛 is the greater, the smaller the damping 

factor 𝜉 

→ medium phase of -90° at the natural frequency 𝜔𝑛 and the steeper the smaller the damping factor 𝜉 

 

Bode Stability Criterion 

 
The Bode stability criterion is a simple method to analyze the stability of feedback control 
systems. Instead of the mathematically more complicated closed loop, the stability of the open 
loop is analyzed. 

 
If the open loop is stable, the closed loop will also be stable if at the critical frequency 𝜔𝑐 the 
condition 𝐴𝑅(𝜔𝑐) < 1 holds, where  𝜔𝑐 is the frequency when 𝜙 = −180°. 
 
The criterion can be applied only to overall decreasing Bode plots and when the open loop is 
stable. 

- C(s) + 

1 

Y(s) G(s) R(s) 

Figure 12-9. Control cycle with an open loop (green) and a closed loop (green and black). 

Figure 12-8. Bode diagrams for oscillating responses for different values of ξ. Figure from [FrPE06]. 
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Why is a phase shift of -180° critical? 
 

 

→ For a phase shift of -180° and the same amplitude the output will be exactly the opposite of the input 

→ As it is subtracted this is the same as adding again the input signal  

→ So after the back coupling there will be constructive interference! (If the amplitude ratio is greater 

than unity is will amplify, otherwise it disappears) 
 
The Bode stability criterion can also be used for controller design. When we introduce another 
controller into the system or change the parameters of the implemented controllers, the Bode 
plot will change. The new controller/parameters should change it in such a way, that the stability 
criterion is fulfilled and we can find it by construction. This procedure is illustrated in the 
following example. 
  

- G(s) + 

sin(𝜔𝑡 − 180) 

= −sin(𝜔𝑡) 
 

𝑌(𝑠) = 

sin(𝜔𝑡 − 180) 
 

C(s) 
𝑈(𝑠) = 

sin(𝜔𝑡) 
 

Figure 12-10. Bode diagram with phase shifts up to -180° 

Figure 12-11. Control cycle with phase shift of – 180° 
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EXAMPLE 12.3-1: Controller Design using Bode Plots 

 

The following transfer function is examined in this exercise 

𝐺(𝑠) =
1

(0.2𝑠 + 1)(2𝑠 + 1)(𝑠 + 1)2
 

 
The Bode diagrams for the system with a P and a PI-controller are drawn below. When only a 
P-controller with 𝑘 = 10 is introduced, the function becomes 𝐺(𝑠) ∙ 𝑘 and according to the 
Bode stability criterion will be slightly unstable. 
 
With a PI-controller with 𝜏𝐼 = 1 we can achieve stability when the criterion is considered. 

Figure 12-12. Bode diagram of the system with a P- and a PI-controller. 
The critical frequencies for both set ups are indicated in red. 
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Stability Margin 

The Bode criterion can be extended to analyse the stability also in a quantitative way and to 
determine not only whether the system is stable or not but how stable. This described by the gain 
and phase margin.  
 
As a chemical process is rarely unchanged as the process conditions may vary or it might be 
disturbed, this is very useful. The margins indicate how likely such changes will result in 
instability.  
 
Gain margin 

at 𝜙 = −180°, how far away is 𝐴𝑅 of 1 
Phase margin 

at 𝐴𝑅 =  1, how far away is 𝜑 of 180° 
 
Bode stability is only valid for a system with stable open loops 
 Nyquist stability criterion for closed loops with unstable open loops and complex systems 
 
 

 Nyquist Diagram 

 

Nyquist Stability Criterion 

The imaginary and real for all ω between -∞ and ∞ are plotted against each other. The amplitude ratio 

and phase shift can be read from the plot but not the corresponding ω value of the frequency. 
 
𝐴𝑅 = |𝐺(𝑖𝜔)| = distance from origin 
 

𝜑 = tan−1 ൬
𝐼𝑚(𝐺(𝑖𝜔))

𝑅𝑒(𝐺(𝑖𝜔))
൰ = angle  

 
 

 
       Nyquist point: (−1,0) 
 
 
 
 

 
 
 

Figure 12-12. Nyquist diagram of G(s). The red dot is 
called Nyquist point. 

Re(G(s)) 

Im(G(s)) 

AR 

ɸ 
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Criterion: If G(s) in the open loop is unstable, the closed loop is stable if the Nyquist plot 
encircles (−1,0) in counter-clockwise direction once per unstable root. 
 
Remember: Positive angles are left-turning. 
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EXAMPLE 12.2-1: Inverse Pendulum 

 

 
Figure 12.10. Problem description. 

 

𝜃ሷ + 𝛼𝜃ሶ +
𝑔

𝑙
sin𝜃 =

𝑇𝑐
𝑚𝑙2

 

with 𝛼 as a damping constant 
 
Steady states for no external force 𝑇𝑐 = 0 

0 + 0 +
𝑔

𝑙
sin𝜃 = 0 

steady states for  sin 𝜃 = 0 

     𝜃 = 0 
     𝜃 = 𝜋 
 
Linearized system 

𝑓 = 𝜃ሷ + 𝛼𝜃ሶ =
𝑇𝑐
𝑚𝑙2

−
𝑔

𝑙
sin 𝜃 

𝑓 ≈
d𝑓

d𝑇𝑐
|
𝑠𝑠

Δ𝑇𝑐 +
d𝑓

d𝜃
|
𝑠𝑠
Δ𝜃 

 

𝑓 ≈
1

𝑚𝑙2
Δ𝑇𝑐 + (−

𝑔

𝑙
cos 𝜃𝑠𝑠)Δ𝜃 

 

with cos 𝜋 = −1 

𝑓 = Δ𝜃ሷ + 𝛼Δ𝜃ሶ =
Δ𝑇𝑐
𝑚𝑙2

+
𝑔

𝑙
Δ𝜃 

Laplace transform 

𝑠2Θ̅ + 𝛼𝑠Θ̅ =
𝑇𝑐̅
𝑚𝑙2

+
𝑔

𝑙
Θ̅ 

Θ̅

𝑇𝑐̅
=

1

𝑚𝑙2𝑠2 +𝑚𝑙2𝛼𝑠 − 𝑚𝑙𝑔
= 𝐺(𝑠) 

With 𝑚 = 1 𝑘𝑔, 𝑙 = 1 𝑚, 𝛼 = 0.01 and 𝑔 = 10𝑚
𝑠2

 

 
Roots 

𝑠2 + 0.01𝑠 − 10 = 0 
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Root locus 

 
 
It is not possible to tell from the open loop if the closed loop is stable or not. 
 
Nyquist plot of    1

𝑠2+0.01𝑠−10
 

𝐺(𝑖𝜔) =
1

−𝜔2 + 0.01𝑖𝜔 − 10
 

 
for 𝜔 ∈ ℝ 
 
Plotting 𝑅𝑒(𝐺(𝑖𝜔))  versus 𝐼𝑚(𝐺(𝑖𝜔)) gives the Nyquist plot: 
 

 
 
Stability criterion: Encircle (−1, 0) counterclockwise once per unstable root of the open 

loop to obtain stability for closed loop. 
 
This criterion can be fulfilled by adding a controller to move/scale the behavior of the 
system. 
 
Nyquist plot for P-control 
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 Time Delay 

In many chemical systems the problem of time delay occurs and affects the controller.  
 

 
 

Figure 12-13. Problem description. 

𝑇𝐹 =
𝑘

𝜏𝑠 + 1
 

 

𝑇𝐹 with time delay 𝜆 
 

𝑇𝐹𝑇𝐷 =
𝑘

𝜏𝑠 + 1
𝑒(−𝑠𝜆) 

 
To illustrate the effect of time delay, we consider the following system: 
 

Bode plot of 1

𝑠2+0.01𝑠−10
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With the transfer function 

𝑌

𝑅
=

𝐷
𝑘

𝜏𝑠 + 1
𝑒(−𝑠𝜆)

1 + 𝐷
𝑘

𝜏𝑠 + 1 𝑒
(−𝑠𝜆)

=
𝐷𝑘𝑒(−𝑠𝜆)

𝜏𝑠 + 1 + 𝐷𝑘𝑒(−𝑠𝜆)
 

 
Time delay makes it hard to use root locus method to evaluate stability. We can still apply the 
criterion for Bode plots. 
 

Bode Plot with Time Delay 

 
Without time delay 

 
With time delay 

 

𝑇𝐹 =
𝑘

𝜏𝑠 + 1
 

 

𝑇𝐹𝑇𝐷 =
𝑘

𝜏𝑠 + 1
𝑒(−𝑠𝜆) 

 

 
Figure 12-13. Bode diagrams of systems with time delay. 

 

- D + 

1 

Y TFTD 

 

R 

Figure 12-12. Control Cycle of a system with time delay. 
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The Bode plot can still be used to assess stability of a system with time delay (stability criterion: 
𝐴𝑅 < 1 for 𝜑 = −180°). 
 
When time delay occurs the AR will be unaffected but the phase shift will be unbounded and 
decrease by −𝜔𝜆 and the point of 𝜑 = −180° is approached sooner. This is detrimental to the 
stability of closed loop systems. 
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EXAMPLE 12.3-1: Time Delay and Instability 

 
For a system with the transfer function 

𝐺(𝑠) =
10

(0.2𝑠 + 1)(2𝑠 + 1)(𝑠 + 1)
𝑒−0.5𝑠 

 
With a time constants in minutes and time delay of 0.5 minutes (in the exponential term). 
 
The Bode plots of the system with (left) and without time delay (on the right) are drawn below. 
 
The amplitude ratios of the two systems are the same. However, the system with time delay 
approaches the critical phase shift of -180° much sooner. The critical frequency is indicated 
with a red line. 
 
One can see that the system without time delay is stable, as the amplitude ratio is below 1 at 
the critical frequency.  The phase shift of the delayed system decreases much faster and 
reaches the critical phase shift earlier, when the amplitude ratio is still above 1, indicating 
that the system will be unstable. 

Figure 12-14. Left: Bode Plot of system with time delay of 0.5 min 
Right: Bode Plot of system without time delay 
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13 Problems with Current Control Loops 
 

So far: 
find 𝐷(𝑠), i.e. PID 

 experimental 
 root locus 
 Bode/Nyquist stability 

 
Problems: 

 only for single input, single output 
 slow: first error, then reaction 

 

 Feed Forward Control 

𝑌 =
𝐷𝐺

1 + 𝐷𝐺
𝑅 +

𝐷𝑓𝐺 + 𝐺𝑤

1 + 𝐷𝐺
𝑊 

 
Idea: 𝐷𝑓 predicts the disturbance and reacts to it before it has altered the system response 
(significantly) 
Goal: 𝑌 independent of disturbance 𝑊 

Remove 2nd term 

Choose 𝐷𝑓 = −
𝐺𝑤

𝐺
 such that 𝑊 has no effect on system 

- D(s) + 

1 

Y 
G(s) R 

Figure 13-1. Control cycle. 

+ 
+ 

+ - D(s) + G(s) 

Gw(s) 

Df(s) 

+ 

Figure 13-2. Control cycle of a system with feed forward control. 
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Prerequisites 
- 𝑊 measurable 
- 𝐺 and 𝐺𝑤 have to be stable 
- 𝐷𝑓 has to be stable 

 Cascade Control 

In cascade control an inner closed loop  𝐺2 is added to the system which compensates for 
disturbances within the inner system. This system has to be faster than the outer system 𝐺1 in 
order to be effective.  
 
Cascade control is used for example in heating to correct for disturbances in the valve before their 
effect becomes measurable by a change in room temperature.  
 

 

EXAMPLE 13.1-1: pH Control 

 

 
Figure 13-4. Problem description. 

Inner loop: flow control    Outer loop: pH control 

Figure 13-3. Control cycle of a system with cascade control. 
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 Multivariable Control 

When there are multiple input variables which influence more than one output variable in a 
system, we call this system multivariable system or MIMO (multiple input, multiple output). 
In some cases 𝑢1 might have no or negligible effect on 𝑦2 and 𝑢2 might not influence 𝑦1 
significantly. Then the system can be treated as two single variable systems as there is no 
coupling. 
When the coupling is stronger, decoupling compensators are used to make up for the effects. The 
transfer functions in front of the process are chosen in such a way that they cancel out the 
coupling and again the system can be treated as two single variable systems. This is achieved with 

a control system as drawn in the figure below. 
The strength of the coupling is quantified through the relative gain measured along the loop 
represented in green in the setup below. The effect of 𝑔𝑐1 on 𝑦2

𝑢2
 is determined and the relative 

gain 𝑚 is defined such that 
 

𝑚 =

𝑦2
𝑢2
|𝑔𝑐1 = 0

𝑦2
𝑢2
|𝑔𝑐1 ≠ 0

 

 
and will have values between 0 (no coupling) and ∞ (very strong coupling). It is often normalized 
with the maximum gain so that 0 < 𝑚 < 1.  

Figure 13-5. Multivariable system (MIMO) 

Figure 13-6. Decoupling compensator. 
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Figure 13-7. Relative gain array. 
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 Model Predictive Control 

 
Control systems today are mostly based on model predictive control. 

The system is limited by the precision of the model that predicts the system behavior. It is based 
on differential equations that must be solved fast enough.  
 
Procedure: 

 Measure current values 
 Solve differential equations of the model to get path which reaches target 
 Implement only the first step 
 Repeat measurements and calculations 

 
In order to compensate for the fact that the model is not able to represent the system precisely, 
the whole path to reach the target is simulated but only the first step is implemented. This 

System 

𝑢1 

𝑢2 

𝑢3 

𝑦1 

𝑦2 

𝑦3 

Model 

𝑢1
′  

𝑢2
′  

𝑢3
′  

𝑦1
′  

𝑦2
′  

𝑦3
′  

Figure 13-8. Model Predictive Control. 

Figure 13-9. Model Predictive Control over time, here the target is the reference 
trajectory. Figure from http://new.abb.com/control-systems/features/model-

predictive-control-mpc, 8.6.16 
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compensates for uncertainties but a reasonable good model is still necessary as well as large 
computing power. 
 


