
Chapter 1

Free-Radical Polymerization

1.1 Chemical Reactions

1.1.1 Initiation

The initiation reaction produces free radicals. There are several ways to do this:

• Chemical initiation The decomposition of the initiator (e.g. AIBN) forms free radicals:

NC N C

CH3

CNC N

CH3 CH3

CH3

kd
N2 NC

CH3

C

CH3

2+

I2

kd−→ I• + I• (rd = kdI2)

I• +M
kI−→ R•1

dI•

dt
= 2 f kdI2 − kII•M ≈ 0 (1.1)

⇒ kII•M = 2 f kdI2 ≡ RI (1.2)

where f is the initiator efficiency, typically f = [0.5, 1]. Note that in order to ensure

a continuous production of radicals all over the process, 1/kd should be larger than

the characteristic time of the polymerization reaction. Examples of the decomposition

characteristic time, τd for some commercial initiators are:
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τd T

Acetyl peroxide 2 h 80 ◦C
Cumyl peroxide 12 h 110 ◦C
t-Butyl hydroperoxide 45 h 150 ◦C

Since this is a first order process, τd = 1/kd.

• Thermal initiation: thermal decomposition of the monomer (e.g. styrene).

This represents a danger, for example during monomer transportation, since it may lead

to undesired polymerization of the monomer. For this reason, inhibitors (scavengers of

radicals) are usually added to the monomers before storage. This causes the occurrence

of a non reproducible induction period when such monomers are polymerized.

• Initiation by radiation

The decomposition of the initiator is caused by light or another source of radiation.

Since this method is quite expensive, it is only applied to polymerization systems oper-

ating at very low temperatures.

1.1.2 Propagation

Propagation is the addition of a monomer molecule to a radical chain.

kp

R

n-1

+

R

n

R•n +M
kp−→ R•n+1

(
rp = kpR•nM

)

1.1.3 Chain Transfer

• Chain transfer to monomer

R•n +M
kfm−→ Pn + R•1

(
r = kfmR•nM

)
The reactants are the same as for the propagation reaction, but the activation energy is

much larger. Accordingly, kfm is usually at least 103 times smaller than kp. This reaction
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kfm

R

n-1

+

R

n-1

+

leads to the formation of a polymer chain with a terminal double bond. This can induce

chain branching through the terminal double bond propagation reaction.

• Chain transfer to chain transfer agent

R•n + S
kfs−→ Pn + R•1

(
r = kfsR•nS

)

A chain transfer agent, S is a molecule containing a weak bond that can be broken to

lead to radical transfer, similarly as in the case of monomer above (e.g. CCl4, CBr4,

mercaptans).

• Chain transfer to polymer

R•n + Pm
kfp−→ Pn + R•m

(
r = kfpR•n (mPm)

)

In this reaction the growing radical chain, R•n extracts a hydrogen from the dead chain,

Pm. Since this extraction can occur on any of the m monomer units along the chain, the

rate of this reaction is proportional to the length of Pm.

General observations on the role of chain transfer reactions:

- The concentration of radicals is not affected and therefore the rate of monomer con-

sumption is also unchanged.

- The growth of polymer chains is stopped and therefore shorter chains are produced.

- Each transfer event leaves a different end-group on the chain that can be detected (NMR,

titration) so as to identify and quantify the corresponding chain transfer reaction.

- Nonlinear (branched) polymer chains are produced: directly by chain transfer to poly-

mer or indirectly through the propagation of the terminal double bond left by a chain

transfer to monomer event.
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1.1.4 Bimolecular Termination

Bimolecular termination occurs according to two different mechanisms: termination by com-

bination and termination by disproportionation. Their relative importance depends upon the

specific polymerization system.

• Termination by combination

k
tc

R

n-1

R

m-1

+ R

n-1

R

m-1

R•n + R•m
ktc−→ Pn+m

(
r = ktcR•nR•m

)

This reaction results in an increase of the chain length.

• Termination by disproportionation

ktd

R

n-1

R

m-1

+

R

n-1

R

m-1

+

R•n + R•m
ktd−→ Pn + Pm

(
r = ktdR•nR•m

)

The chain length remains constant during the termination reaction. Note that also in this

case chains with terminal double bond are produced, which can therefore lead to the

occurrence of branching.

1.2 Diffusion Control of Chemical Reactions

When dealing with macromolecules we can regard the reaction event as constituted by two

steps in series:
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• a relative motion or diffusion of the two molecules in order to overlap their active centers

(note that the centers of gravity of the two macromolecules already overlap, i.e., we have

no mass transport involved)

• the reaction event per se, i.e., breakage and formation of chemical bonds.

Since the two steps are in series, the slowest one defines the rate of the overall process, that is

the reaction rate.

In the case of termination by combination, the reaction step is very fast, while the diffusion

step is slow due to the difficulty of the two macromolecules to find their respective active

centers (the two chains exhibit strong entanglements). The result is that diffusion is the rate

determining step. Accordingly the rate constant of termination by combination, ktc has the

following characteristics:

• decreases with viscosity (and therefore with conversion)

• increases very mildly with temperature

• is substantially independent of the chemical nature of the radicals.

This effect is usually referred to as Trommsdorf or gel effect. This is responsible for the

accumulation of radicals during the reaction which can also lead to thermal runaway of the

reactor.

Let us now consider the other involved reactions. It is found that in most cases they are not

diffusion controlled for the following reasons:

• termination by disproportionation: the reaction step is slower (can still be diffusion

controlled)

• chain transfer to polymer: reaction is slower and diffusion is faster since we have many

reactive points along the chain.

• propagation: reaction is slower and diffusion much faster due to the small dimension of

the monomer (this reaction stops below the glass transition temperature)
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1.3 Polymerization Processes

1.3.1 Bulk Polymerization

• ingredients: monomer and initiator only

• products: high purity

• disadvantage: poor temperature control at high conversion (thermal runaway!)

1.3.2 Solution Polymerization

• ingredients: solvent, monomer and initiator

• guarantees an efficient heat transfer

• disadvantage: low productivity because of low solubility of the produced polymer

1.3.3 Suspension Polymerization

• ingredients: water, monomer, initiator and stabilizer

• size of formed polymer particles approx. 0.01 − 0.5 cm

• initiator is solubilized in monomer phase

• polymerization occurs within the monomer droplets

• high productivity (> 40 % solid)

• heat production is under control

1.3.4 Emulsion Polymerization

• ingredients: water, monomer, initiator and stabilizer

• size of formed polymer particles approx. 0.05 − 1 μm

• initiator is solubilized in water phase

• polymerization occurs mainly within the polymer particles
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• high productivity (> 40 % solid)

• heat production is under control

• advantage: high molecular weight as well as high polymerization rate can be achieved

simultaneously

1.4 Kinetics of Free-Radical Polymerization

1.4.1 Involved Chemical Reactions

Initiation I2 −→ 2 R•1 r = 2 f kdI2 ≡ RI

Propagation R•n +M
kp−→ R•n+1 r = kpMR•n

Chain Transfer R•n +M
kfm−→ R•1 + Pn r = kfmMR•n

R•n + S
kfs−→ R•1 + Pn r = kfsS R•n

R•n + Pm
kfp−→ R•m + Pn r = kfpR•n (mPm)

Termination R•n + R•m
ktc−→ Pn+m r = ktcR•nR•m

R•n + R•m
ktd−→ Pn + Pm r = ktdR•nR•m

where n,m = [1...∞]

Note that all reaction rate constants are assumed to be chain length independent, i.e., we use

the Terminal Kinetic Model.

1.4.2 Population Balance Equations in a Batch Reactor

• n=1:

dR•1
dt

= RI − kpMR•1

+ (kfmM + kfsS )

∞∑
n=2

R•n

+kfp (1P1)

∞∑
n=1

R•n −
⎡⎢⎢⎢⎢⎢⎣kfp

∞∑
n=1

(nPn)

⎤⎥⎥⎥⎥⎥⎦ R•1

− (ktc + ktd)

⎡⎢⎢⎢⎢⎢⎣
∞∑

n=1

R•n

⎤⎥⎥⎥⎥⎥⎦ R•1 (1.3)
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• n ≥ 2:

dR•n
dt

= kpMR•n−1 − kpMR•n
− (kfmM + kfsS ) R•n

+kfp (nPn)

∞∑
m=1

R•m − kfp

∞∑
m=1

(mPm) R•n

− (ktc + ktd)

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=1

R•m

⎤⎥⎥⎥⎥⎥⎦ R•n (1.4)

Let us define

R• ≡
∞∑

n=1

R•n (1.5)

and sum up equations (1.3) and (1.4) from n = 1 to∞. In this way we obtain:

dR•

dt
=

dR•1
dt
+

∞∑
n=2

dR•n
dt

= RI − kpMR•1 + kpM
∞∑

n=2

R•n−1 − kpM
∞∑

n=2

R•n

+ (kfmM + kfsS )

∞∑
n=2

R•n − (kfmM + kfsS )

∞∑
n=2

R•n

+kfp (1P1)

∞∑
n=1

R•n − kfp

⎡⎢⎢⎢⎢⎢⎣
∞∑

n=1

(nPn)

⎤⎥⎥⎥⎥⎥⎦ R•1

+kfp

∞∑
n=2

[nPn]

∞∑
m=1

R•m − kfp

⎡⎢⎢⎢⎢⎢⎣
∞∑

n=2

R•n

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
∞∑

m=1

(mPm)

⎤⎥⎥⎥⎥⎥⎦
− (ktc + ktd) R•1

∞∑
n=1

R•n − (ktc + ktd)

⎡⎢⎢⎢⎢⎢⎣
∞∑

n=2

R•n

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
∞∑

m=1

R•m

⎤⎥⎥⎥⎥⎥⎦ (1.6)

dR•

dt
= RI − kpMR• + kpM

∞∑
n=1

R•n

+kfpR•
⎡⎢⎢⎢⎢⎢⎣P1 +

∞∑
n=2

(nPn)

⎤⎥⎥⎥⎥⎥⎦ − kfp

⎡⎢⎢⎢⎢⎢⎣
∞∑

n=1

(nPn)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣R•1 +

∞∑
n=2

R•n

⎤⎥⎥⎥⎥⎥⎦
− (ktc + ktd) R•

⎡⎢⎢⎢⎢⎢⎣R•1 +
∞∑

n=2

R•n

⎤⎥⎥⎥⎥⎥⎦ (1.7)

⇒ dR•

dt
= RI − (ktc + ktd) R•2 (1.8)
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1.4.3 Rate of Monomer Consumption

Under the assumption of pseudo steady state for the concentration of active chains (see 1.5)

we can write:
dR•

dt
= RI − (ktc + ktd) R•2 = 0 (1.9)

and obtain:

R• =
√

RI

(ktc + ktd)
(1.10)

Let us now consider the rate of monomer consumption, Rp. Neglecting the chain transfer to

monomer reaction we have:

Rp = kpM
∞∑

n=1

R•n = kpM

√
RI

(ktc + ktd)
(1.11)

The mass balance for the monomer can be written as follows (still in the case of a batch

reactor):
dM
dt
= −Rp = −kpMR• (1.12)

Considering kpR• as the pseudo-first order reaction rate constant for monomer consumption,

we can conclude that the characteristic time for the process of monomer consumption is τM =
1

kpR• . Using the conversion instead of the concentration, X = (M0 − M) /M0, and combining

equation (1.11) and (1.12) we get:

dX
dt
= − 1

M0

dM
dt
=

Rp

M0

= (1 − X) kp

√
RI

(ktc + ktd)
(1.13)

dX
(1 − X)

= kp

√
RI

(ktc + ktd)
dt (1.14)

where the initial condition is X(t = 0) = 0. Therefore we can write:

X = 1 − exp

⎡⎢⎢⎢⎢⎣−
∫ t

0

kp

√
RI

(ktc + ktd)
· dt

⎤⎥⎥⎥⎥⎦ (1.15)

As long as the temperature in the reactor remains constant, i.e., before the onset of the so-

called gel effect, ktc and ktd are independent of the conversion X. Moreover, if the half-life of

the initiator is much larger than the characteristic time of the monomer consumption process,

τM, τd 	 τM, the solution to equation (1.15) is:

X = 1 − exp

⎡⎢⎢⎢⎢⎣−kp

√
RI

(ktc + ktd)
· t
⎤⎥⎥⎥⎥⎦ (1.16)
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1

X

t

gel effect
(Trommsdorf)

equation (1.16)

• Which kinetic parameter(s) can be estimated from the plot of the monomer conversion

vs. time?

1.5 Pseudo Steady State Approximation

In this section we introduce an important concept often used in chemical reaction engineer-

ing, the so-called pseudo steady state approximation (PSSA). Therefore, let us consider two

consecutive first-order reactions occurring in a batch reactor:

I −→ R (r1 = k1I)

R −→ P (r2 = k2R)

with initial conditions I(0) = I0, R(0) = R0 and P(0) = 0. The mass balances are:

dI
dt
= −k1I (1.17)

dR
dt
= k1I − k2R (1.18)

The solution of equation (1.17) is:

I = I0 exp (−k1t) (1.19)

which substituted in equation (1.18) leads to a linear non-homogeneous ODE. We consider

the solution of the homogeneous associated equation:

RH = A exp (−k2t) (1.20)
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and then the particular solution having the form:

RP = K exp (−k1t) (1.21)

Substituting in equation (1.18) we get:

−k1K exp (−k1t) = k1I0 exp (−k1t) − k2K exp (−k1t) (1.22)

⇒ k1K + k1I0 − k2K = 0 (1.23)

⇒ K =
k1I0

k2 − k1

(1.24)

Thus the general solution is:

R = RH + RP = A exp (−k2t) +
k1I0

k2 − k1

exp (−k1t) (1.25)

which using the initial condition to compute A reduces to:

R =
(
R0 − k1I0

k2 − k1

)
exp (−k2t) +

k1I0

k2 − k1

exp (−k1t) (1.26)

Let us now consider the case where R is a very reactive species, that is k2 	 k1, then equation

(1.26) reduces to:

R =
k1I0

k2

exp (−k1t) =
k1

k2

I (1.27)

This means that R starts at R0 and after a short time of the order of 1/k2 the term exp (−k2t)

vanishes and R = k1I/k2 as shown in the figure.

We see two time scales in the process:

• 1/k2: characteristic time of disappearance for R⇒ fast

• 1/k1: characteristic time of disappearance for I⇒ slow

Since the dynamics of R is faster than that of I, we can assume that R is at any given time

at steady state with respect to I, i.e., R is so fast to reach steady state before I can change

significantly. This is the PSSA, which means that we can assume dR/dt = 0 in equation

(1.18), and compute the PSSA value of R:

Rss =
k1

k2

I (1.28)

which is the same value given by equation (1.27).
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t1/k2 1/k1

R
o

k I1

o

k2

k I1

k2

R =
ss

Note

In the PSSA we do not mean that dR/dt = 0, and in fact in the case above we see that:

dRss

dt
= −k2

1I0

k2

exp (−k1t) = −k2
1

k2

I (1.29)

Actually we simply mean that

dRss

dt

 k1I and

dRss

dt

 k2Rss (1.30)

as it is readily seen by comparison noting that k1/k2 
 1.

Another Point of View

Let us rewrite equation (1.18) as follows:

dR
dt
= k2

(
k1

k2

I − R
)
= k2 (Rss − R) (1.31)

We can observe that:

if R > Rss ⇒ dR/dt < 0 ⇒ R decreases

if R < Rss ⇒ dR/dt > 0 ⇒ R increases

which means that R remains always “around” Rss. Note that this is not true in general, but only

in the case where k2 is very large we have that the “force” attracting R to Rss increases up to

the point where R cannot differ significantly from Rss.
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Conclusion

The PSSA can be applied when we have very different characteristic times, typically when

the intermediate species is very reactive, i.e., k2 	 k1. The obtained solution is valid for most

of the process time, with the exception of a short initial transient. We have two characteristic

times:

• the fast one (1/k2) which belongs to R and where I does not change significantly

• the slow one (1/k1) which belongs to I and determines the process time, that is the time

needed by the slowest species to complete its dynamics.

With respect to numerical integration this has important implications:

• the integration time is given by the process time, i.e., τp ≈ 1/k1

• the integration step is proportional to the characteristic time of the fastest dynamics that

we want to follow, i.e., Δτ ≈ 1/k2

• the number of integration steps is proportional to τp/Δτ ≈ k2/k1 which means that the

larger is k2/k1 the more we are entitled to use PSSA ... and the more integration steps

we have to compute if we fail to use it.

1.5.1 Stiffness Ratio

In general, for a system of ODEs the ratio between the largest and the smallest eigenvalue

is referred to as the stiffness ratio of the system. This gives a measure of the difficulty in

integrating a system of ODEs numerically. The coefficient matrix of the system of ODEs,

defined as:
dx
dt
= A x (1.32)

in our case is given by:

A =

∣∣∣∣∣∣ −k1 0

k1 −k2

∣∣∣∣∣∣ with x =

∣∣∣∣∣∣ I
R

∣∣∣∣∣∣ (1.33)

The eigenvalues of A are given by:

(−k1 − λ) (−k2 − λ) = 0

⇒ λ1 = −k1 , λ2 = −k2
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and the stiffness ratio is then given by:

λ2

λ1

=
k2

k1

(1.34)

which, as discussed above, is proportional to the integration steps to be used in the numerical

integration of the system of ODEs.
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