
Chapter 6

Stability of Colloidal Suspensions

6.1 Kinetic Stability of Colloidal Suspensions

� � �G = A
o

f sl sl

sol/liq surface change [m ]
2interfacial surface

tension (sol/liq) [J/m ]
2

γsl > 0 ⇒ colloid state is unstable, i.e., lyophobic (in water: hydrophobic); you need work to

create a dispersion (⇒ mixing)

γsl < 0 ⇒ colloid state is stable, i.e., lyophilic (in water: hydrophilic)

Lyophobic colloids can be made kinetically stable by building an energy barrier sufficiently

large with respect to the thermal energy of the particles, kT . Two stabilization mechanisms

are possible:

• electrostatic: the particles are electrically charged

• steric: the particles are coated with some material (e.g. polymer) which prevents their

close approach.

Concept of Kinetic Stability

Thermal energy provides kinetic energy to the colloidal particles which collide with energy

(kT ). The charges on the particle surface provide an energy barrier to be overcome in order to

have aggregation.
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6.2 Interaction between two Charged Bodies

The interaction between two bodies is dominated by two forces, an attractive van der Waals

force and a repulsive electrostatic force.

6.2.1 van der Waals Forces

The origin of these forces is the attraction between a temporary dipole and the correspond-

ing induced dipoles (London theory). The following semi-quantitative argument provides a

reasonably accurate picture of the physics underlying these interactions. Let us use the Bohr

model for a hydrogen atom, where electrons are regarded as traveling in well defined orbits

around nuclei. As a result of the electrons motion, every atom has an instantaneous dipole

moment p approximately equal to p = a0 ∗ e, where e is the electron charge and a0 is the

Bohr radius, which is a good estimate of the radius of a hydrogen atom. Let us consider two

hydrogen atoms, referred to as atom 1 and atom 2, positioned at a distance R. The electric

field E generated by the instantaneous dipole 1 at distance R is given by:

E =
p1

4πε0R3
(6.1)

where ε0 is the vacuum dielectric permeability. Atom 2, will be polarized by the electric field

generated by atom 1, which generates an induced dipole of strength:

p2 = αE =
αp1

4πε0R3
(6.2)
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where α is the polarizability of the second atom, and is approximately equal to α = 4πε0a3
0
.

Since the energy of interaction of two dipoles equals:

Vint = − p1 p2

4πε0R3
= − αa2

0e2

(4πε0)2 R6
= − C

R6
(6.3)

Equation (6.3) shows that van der Waals interactions between pairs of particles in vacuum are

always attractive, and decay very strongly with the distance. However, they become consider-

able at short distances.

When the overall van der Waals interactions between macroscopic objects needs to be com-

puted, one assumes that equation (6.3) holds for all pairs of molecules contained in the two

objects. This theory has been developed by Hamaker. In this case, the van der Waals interac-

tion between macroscopic object 1 and macroscopic object 2 is given by:

VA = −C
∫

V1

∫
V2

dV1dV2

R6
(6.4)

where the two integrations run over the entire volumes V1 and V2 of the two bodies, and R

is the distance between two arbitrary points, one located within the first object, the other one

within the second object. Generally, the two integrals are difficult to compute, and explicit

formulas are available only for very simple geometries. As an example, let us perform the

integration for the case of a semi-infinite solid and a point. Equation (6.4) reduces in this

case to one single volume integral, over the semi-infinite body. If we indicate with d the

distance between the point (named 1) and the surface of the semi-infinite body, and we define

a coordinate system with the x-axis along the direction of the distance d, with the zero on the

surface of the body and pointing inwards the body and both other axes parallel to its surface,

one can immediately recognize that the system has a rotational symmetry around the x-axis. It

is therefore convenient to perform the volume integration using cylindrical coordinates. The

distance R in equation (6.4) is equal to the distance between point 1 and an arbitrary point

having coordinates x and z inside the body, as shown in the next Figure. By making use of

Pitagora’s theorem, the volume integral in equation (6.4) reduces to:

VA = −C
∫ ∞

0

dx
∫ ∞

0

2πz dz(
z2 + (d + x)2

)3
= −πC

2

∫ ∞

0

dx
(d + x)4

= −πC
6d3

(6.5)

From equation (6.5) one can observe that the dependence of the van der Waals interactions

between a point and an infinite solid decreases as the reverse third power or the distance.

The simple calculation shows the effect of summing in a pair additive manner the inter-

actions of all pairs of molecules belonging to two macroscopic objects. Even though the
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interactions of two molecules are very weak, the overall interactions between the bodies can

become significant at short distances, for example at distances comparable to the size of the

two objects.

There are two important cases where the integrations in equation (6.4) can be performed

analytically: (1) two infinite slabs and (2) two spheres having arbitrary size and distance. The

corresponding interaction potentials can be computed as follows:

• For two infinite slabs at distance D:

VA(D) = − A
12πD2

(6.6)

• For two spheres of radius a1 and a2 at distance R:

VA(R) = −A
6

[
2a1a2

R2 − (a1 + a2)2
+

2a1a2

R2 − (a1 − a2)2
+ ln

(
R2 − (a1 + a2)2

R2 − (a1 − a2)2

)]
(6.7)

where A is the Hamaker constant which depends on the physical characteristics, e.g., polar-

izability and density, of the materials involved. In the case of two spheres, one can perform

Taylor expansions of this last equation and observe that at distances much smaller than the

particle radius, the interactions decay with the first power of the distance. On the other hand,

for distances much larger than the particle radius the interaction energy decays with the sixth

power of the distance, as one could expect.

The Hamaker constant depends not only on the physical properties of the materials the

macroscopic objects are made of, but also on the dielectric properties of the medium sur-

rounding the particles. The effect of this medium can be extremely important in some cases.
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In fact, even though Hamaker constants are usually positive, there are some cases where neg-

ative values can be found for some specific types of materials/medium pairs. A negative value

of Hamaker constant implies that van der Waals interactions are repulsive.

One final caveat about Hamaker’s treatment of van der Waals interactions. A much more

rigorous approach of dispersion forces and van der Waals forces is available in the literature,

which has been pioneered by Lifshitz. It is based on rigorous quantum mechanical calcula-

tions, but the final equations are far more complex than the Hamaker theory. However, some

general features can be quickly discussed, which are necessary to point out the limitations of

the simpler Hamaker theory. First of all, Lifshitz’ theory shows that the pairwise addition of

interactions is a not rigorously correct, as van der Waals interactions a truly many-body prob-

lem. This effect can be simply accounted for by adjusting the values of the Hamaker constant.

The second limitation is given by the so-called retardation effect. Since atoms are fluctuating

dipoles, as the distance between two molecules increases beyond a certain threshold, the time

required for a molecule to feel the effect of the electric field produced by another dipole be-

comes significant. This implies that the interactions of the different dipoles are retarded, and

the energy of interaction decays even stronger with the distance, i.e., with the seventh power

of the distance, and not anymore with the sixth power. This effect weakens van der Waals

interactions for large bodies as their distance increases, compared to the predictions of the

Hamaker theory. However, due to its simplicity and good accuracy, Hamaker constants are

still commonly used in colloidal science.

Concept of Surface Tension

A

A

WAA = work per unit area needed to separate up to ∞ two parts of liquid column
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WAA = 2γAv (6.8)

where γAv is the surface tension of A in contact with vapor (vacuum). We compute WAA as the

interaction energy between two flat bodies and get (for hydrocarbons):

γAv =
1

2
WAA =

1

2
· A

12πL2
(6.9)

Since it is difficult to postulate L, we compute it from experimental values of γAv and calculated

A.

Alkane CnH2n+2

n 1020 × A (J) 103 × γAv (J/m2) 10−3 × ρ (kg/m3) L (nm)

5 3.75 16.05 0.626 0.176

6 4.07 18.40 0.660 0.171

8 4.50 21.62 0.702 0.166

10 4.82 23.83 0.730 0.164

12 5.03 25.35 0.749 0.162

14 5.05 26.56 0.763 0.159

16 5.23 24.47 0.773 0.159

We observe that L:

i) has dimension of molecular radius

ii) L ∝ 1/
√
ρ.

6.2.2 Electrostatic Forces

Electrical Double Layer

• Outside of the outer Helmholtz plane, the ions move freely, therefore this is the plane of

closest approach of (hydrated) ions (≈ 0.5 nm).

• The inner Helmholtz plane constitutes the locus of the centers of adsorbed (dehydrated)

ions (≈ 0.1 nm).
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aqueous solution,

diffusive layer

�W

OHP = outer Helmholtz plane

IHP = inner Helmholtz plane

0 i d x

For x > 0:
ρ = div (εE)

E = −grad (ψ)

}
⇒ ∇2 (ψ) = −ρ

ε

(
Poisson

equation

)
(6.10)

where ρ =
∑

all ions nizie, with ni = number ion concentration, zi = valance, e = electron charge;

E = electric field

ε = permittivity

ψ = potential referred to bulk, i.e., ψ = 0 at x = ∞.

For x > d:

The ions are free to diffuse and are influenced by the local electrostatic potential, so that:

ni = n0
i exp

(
−zieψ

kT

) (
Boltzmann

equation

)
(6.11)

where n0
i is ni in the bulk. In the diffusive layer, x > d, we have ε = εw and:

∇2 (ψ) = − 1

εw

∑
n0

i zie exp
(
−zieψ

kT

) (
Poisson-Boltzmann

equation

)
(6.12)

with B.C.: ψ = 0 at x = ∞, ψ = ψd at x = d.

Let us consider a few specific cases for which we have analytical solutions.

• The Debye-Hückel approximation:

Applies when the electrical energy is small compared to the thermal energy: |zieψ| < kT .

Then,

exp
(
−zieψ

kT

)
≈ 1 − zieψ

kT
(6.13)
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which leads to

∇2ψ = − 1

εw

(∑
n0

i zie −
∑

n0
i z2

i e2

kT
ψ

)
(6.14)

According to the principle of electroneutrality for the bulk
∑

n0
i zi = 0 and, therefore, we

get

∇2ψ = κ2ψ (6.15)

where

κ2 =
1

εw

∑
n0

i z2
i e2

kT
(6.16)

is the Debye-Hückel parameter. The solution has the form

ψ = A1 exp (κx) + A2 exp (−κx) (6.17)

but since ψ = 0 as x → ∞, ⇒ A1 = 0 and imposing ψ = ψd at x = d ⇒ A2 = ψd exp(κd),

so that

ψ = ψd exp [−κ(x − d)] , for x > d (6.18)

The distance 1/κ where ψ = ψd exp(−1) is defined as the thickness of the diffusive layer.

At 25◦C in water

κ = 3.29
√

I [nm−1] (6.19)

with I = 1/2
∑

ciz2
i is the ionic strength and ci is in mol/L. For example, for a 10−3 M,

1:1 electrolyte is 1/κ = 9.6 nm.

• Flat surface:

We consider a symmetric electrolyte, z+ = −z− = z and n0
+ = n0

− = n0, so that the

Poisson-Boltzmann equation becomes

∇2ψ = − 1

εw

n0ze exp
(
−zeψ

kT

)
+

1

εw

n0ze exp
(
+

zeψ
kT

)
=

2n0ze
εw

sinh
(zeψ

kT

)
(6.20)

and then for a flat geometry

d2ψ

dx2
=

2n0ze
εw

sinh
(zeψ

kT

)
(6.21)

Multiplying both sides by (2dψ/dx) and integrating in x:∫
2

dψ

dx
d2ψ

dx2
dx =

4n0ze
εw

∫
sinh

(zeψ
kT

)
dψ

dx
dx (6.22)
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0 d d+1/� x

�d/e

�d

�

∫ x

∞

d

dx

(
dψ

dx

)2

dx =
4n0ze
εw

∫ ψ

0

sinh
(zeψ

kT

)
dψ (6.23)

where we account for the B.C.: ψ = 0 and dψ/dx = 0 at x = ∞(
dψ

dx

)2

=
4n0ze
εw

∣∣∣∣∣kT
ze

cosh
(zeψ

kT

)∣∣∣∣∣ψ
0

(6.24)

(
dψ

dx

)2

=
4n0kT
εw

[
cosh

(zeψ
kT

)
− 1

]
(6.25)

Recalling that
√

cosh(aψ) − 1 = −√2 sinh(aψ/2), we get

dψ

dx
= −

(
8n0kT
εw

) 1
2

sinh
( zeψ
2kT

)
(6.26)

This can be integrated by variable separation as follows:∫ ψ

ψd

dψ

sinh (zeψ/2kT )
= −2κkT

ze

∫ x

d

dx (6.27)

⇒ tanh
( zeψ
4kT

)
= tanh

(zeψd

4kT

)
exp [−κ (x − d)] (6.28)

In the case where zeψ < kT , we can approximate tanh (zeψ/4kT ) ≈ zeψ/4kT , and the

solution above becomes

ψ = ψd exp [−κ (x − d)] (6.29)

which is the Debye-Hückel approximate solution.
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d x

�d

�
2kT
ze

d x

�d

�

4kT
ze

a) Approximate behavior:

for ψd < 2
kT
ze

⇒ ψ ≈ ψd exp [−κ(x − d)]

for ψd > 4
kT
ze

⇒ tanh
( zeψ
4kT

)
≈ exp [−κ(x − d)]

(since tanh (y) → 1 as y → ∞)

which sufficiently away from the surface, where ψ is small, leads to

ψ =
4kT
ze

exp [−κ (x − d)] (6.30)

that is away from the surface the potential behaves like in the case where ψd =

4kT/ze, although ψd is much larger.

b) If we take d = 0, and ignore the IHP and OHP, this treatment corresponds to the

Gouy and Chapman model. The figures show the effect of electrolyte charge and

concentration on the potential behavior predicted by Debye-Hückel. The points

indicate the value ψ/ψd = exp(−1) and the corresponding Debye thickness 1/κ.

1/κ Celectrolyte

9.60 nm 0.001 M

3.00 nm 0.01 M

0.96 nm 0.1 M

It is seen that both the electrolyte concentration and its charge can strongly affect the

thickness of the double layer. This is known as double layer compression and is widely

used in applications to destabilize colloids. However, the predictions of this model on

a quantitative basis are often unrealistic. For example in the case of ψd = 100 mV with
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n0 = 0.001 M, a surface concentration value nd = n0 exp (zeψd/kT ) = 0.001 exp(12) =

160 M is obtained. This result can be corrected introducing the Stern layer, where some

counterions are strongly associated with the surface, thus also neutralizing some of the

surface ions.

Simple Example for a Boltzmann Distribution

Let us consider the molecules in the atmosphere which are free to move according to Brownian

motion but are also subject to the gravitational field.

h

dh

P

P+dP

By applying Newton law to a thin slice of atmosphere dh we get:

dP = −ρg dh (6.31)
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where ρ is the mass density which using the ideal gas law can be expressed as follows:

ρ = nM =
PM
RT

(6.32)

where M is the molecular weight and n is the number molecule concentration. Substituting in

the previous equation this leads to:

dP
P
= −Mg

RT
dh (6.33)

which integrated with I.C.: P = P0 at h = 0 yields:

P = P0 exp
(
−Mg

RT
h
)

(6.34)

Recalling that M = mNA, where m is the molecule mass and NA the Avogadro number, while

R = kNA and pressure is proportional to the number molecule concentration the above equation

leads to:

n = n0 exp

(
−mgh

kT

)
(6.35)

which, since (mgh) is the gravitational potential, coincides with the Boltzmann equation (6.6).

A More Rigorous Derivation of the Boltzmann Distribution

In order to fully justify the use of the Boltzmann distribution to describe the dependence of

the concentration of ions on the electrostatic potential, let us consider the following thermo-

dynamic argument. In the presence of a charged surface, which generates an electric field,

the thermodynamic function which determines the equilibrium condition of the ions is the

electrochemical potential μ̃, defined as:

μ̃ = μ + zeψ (6.36)

where z is the valence of the ion, ψ is the electrostatic potential at the location considered and

μ is the chemical potential. The significance of the electrochemical potential is that of free en-

ergy per molecule in the presence of electric field. For every ion, the electrochemical potential

has to be constant in the entire space in order to guarantee the thermodynamic equilibrium.

Therefore, by considering two different locations, one at distance x from the surface, where the

electrostatic potential is ψ(x), and the other one in the bulk of the solution, at infinite distance

from the surface, where the electrostatic potential is equal to zero, the equilibrium conditions

reads:

μ̃(x) = μ(x) + zeψ(x) = μ̃(x = ∞) = μ(x = ∞) (6.37)
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By using the definition of chemical potential:

μ(x) = μ0 + kT ln (a(x)) (6.38)

where a(x) is the activity of the species at a distance x from the surface and μ0 is a reference

chemical potential. By neglecting concentration effects, we can replace the activity by the

number concentration, i.e., a(x) ≈ n(x). Therefore, by calling n0 the number concentration of

the ion in the bulk of the solution, equation (6.37) becomes:

kT ln (n(x)) + zeψ = kT ln(n0) (6.39)

which leads to the Boltzmann distribution of the ion:

n(x) = n0 exp
(
−zeψ

kT

)
(6.40)

Therefore, the Boltzmann distribution arises naturally (at least for dilute electrolyte solutions)

as a consequence of thermodynamic equilibrium in the presence of an electric field.

Electrostatic Potential of Interaction

When two charged bodies approach each other the corresponding double layers overlap, the

local ion concentration increases compared to the bulk, thus creating an osmotic pressure and

therefore a corresponding repulsive force.

0
x

�0

����	x

�0

D

Depending on the kinetics of the approach we can have that the ions may have or not time

enough to equilibrate. We distinguish three limiting situations:

• constant surface potential, ψ0 ⇒ slow approach;
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• constant surface charge, σ0 ⇒ fast approach or ions covalently bound to the surface;

• charge regulation ⇒ the surface groups can dissociate to an extent which depends on

the interaction, as for example:

SH� S− + H+ ⇒ σ0 = −eS −
s =

−eκdNs

κd + H+0 exp (−eψ0/kT )
(6.41)

In order to compute the repulsive force between two charged infinite planar surfaces at a

distance h, let us consider the following simple argument. At equilibrium, all forces acting on

a volume element located between the two plates must balance. The only two forces acting are

the electrostatic forces and the osmotic pressure. The osmotic pressure force per unit volume

is equal to:

Fp = −dp
dx

(6.42)

where x is the coordinate perpendicular to the two surfaces. On the other hand, the electrostatic

force per unit volume equals the product of the charge density with the electric field, and can

be written as:

Fel = −ρdψ

dx
(6.43)

By using the Poisson equation, this force balance can be recast in the following form:

dp
dx

− ε d2ψ

dx2

dψ

dx
= 0 (6.44)

The integration of this equation gives:

p − ε

2

(
dψ

dx

)2

= const. (6.45)

This last equation implies that the sum of the osmotic pressure and the so-called Maxwell

pressure, ε/2 · (dψ/dx)2, are constant in the whole domain. Due to the symmetry of the sys-

tem considered here, at the midplane the electrostatic potential profile has to have an ex-

tremum (minimum if the surface are positively charged, maximum otherwise). Therefore

(dψ/dx)x=h/2 = 0, and the constant in equation (6.45) is equal to the osmotic pressure at the

midplane. Therefore, once the pressure at midplane is known, the force acting on the planes

can be computed, and by integrating the force, the energy of interaction can be derived. In

order to determine the pressure at midplane, we can once again use the force balance written

as:

dp = −ρ dψ (6.46)
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In order to simplify the calculations, let us assume to have a solution containing just a symmet-

ric z–z electrolyte. By making use of the Boltzmann distribution for the ions concentration,

one obtains:

dp = 2zen0 sinh
(
−zeψ

kT

)
dψ (6.47)

This equation can be easily integrated between the following limits: p = p0 in the bulk (when

ψ = 0), and p = ph/2 at ψ = ψh/2. The result is the following:

ph/2 − p0 = 2kTn0

[
cosh

(
−zeψh/2

kT

)
− 1

]
= FR (6.48)

The conclusion is that the repulsive force between the planes can be computed if the potential

at midplane is known. This can be obtained by integrating the Poisson-Boltzmann equation.

One should then notice that the electrostatic repulsive energy (per unit surface) is obtained

from the repulsive force per unit surface as follows:

dVel = −FR dh (6.49)

The physical interpretation is that the potential energy per unit surface of two plates at a

distance h is equal to minus the work done to bring the plates from infinite distance to the

current distance h.

Several approximate relations have been developed to compute the electrostatic repulsive

potentials between two bodies.

• For small degree of double layer overlap (any geometry), D � 1/κ:

0
x

�0

����	x

�0

D

�m

Vψ
R
=

64n0kTZ2

κ
exp (−κD) (6.50)
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Z = tanh
(zeψ0

4kT

)
(6.51)

In this case Vσ
R
≈ Vψ

R
since the discharge remains anyway small due to the small overlap.

This corresponds to the case where the potential at midplane is approximated by the sum

of the potentials of two isolated charged infinite planes. This approximation is only valid

for small overlapping.

• For small potentials of the two surfaces, zeψ0 � kT :

In this case we can apply the Debye-Hückel approximation

Vψ
R
=

2n0kT
κ

(zeψ0

kT

)2 [
1 − tanh

(
κD
2

)]
(6.52)

• Most convenient in applications are:

Vψ
R
=

32n0kT
κ

z2
[
1 − tanh

(
κD
2

)]
(6.53)

Vσ
R =

2n0kT
κ

(
2y0 ln

[
B + y0 coth (κD/2)

1 + y0

]
(6.54)

− ln
[
y2

0 + cosh (κD) + B sinh (κD) + κD
])

(6.55)

where y0 = zeψ0/kT and B =
[
1 + y2

0 cosh2 (κD/2)
]1/2

• Illustrations:

The figure above shows a comparison of the three repulsive potentials. The one for

constant charge is clearly the largest, while the charge regulation solution is somehow

intermediate. The next figure shows that Vψ
R

decreases with distance and with y0 =

zeψ0/kT . The approximate expression for D � 1/κ (dotted) is compared with exact

solution (solid).

Electrical Charge of a Surface

The most common way to bring charges on the surface of particles is to adsorb ionic surfac-

tants. These can be salts which are fully dissociated (e.g. sodium dodecylsulfonate) or weak

acids (e.g. carboxylic acids) that dissociate to an extent which depends upon the solution pH.
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Another possibility is to act on the concentration of the so-called potential determining ions,

as we discuss next.

When considering a dispersion of solid AgI particles in water, since the solution is saturated
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we have:

ae
Ag+

ae
I− = KS (6.56)

where KS is the solubility product. In addition, due to the solid-liquid equilibrium we have

that the activities of each ion are equal in the two phases:

ae
Ag+
= as

Ag+
(6.57)

ae
I− = assI− (6.58)

This in general implies that, since the affinity of Ag+ and I− to the solid and solution is

different, the particle acquires a charge. We can affect such particle charge by acting on the

activity of the ions in the solution. If we add AgNO3, then aAg+ in solution increases and aI−

has to decrease, thus increasing the positive particle charge. In this case Ag+ and I− are the

potential-determining ions, and we can use them to control the particle charge and potential.

The figure below shows the potential profile and the counterion distribution around a charged

particle: they have to follow the potential distribution but thermal diffusion tends to uniformize

them, the result is the diffusive electrical double layer. The thickness of this layer can be de-

creased by adding some other electrolyte, i.e., indifferent ions, as shown in the figure. This is

the double layer compression which decreases the particle stability.
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6.2.3 Total Interaction Energy

The total potential energy of interaction is given by the sum of the attractive and the repulsive

contributions derived earlier:

VT = VA + VR (6.59)

Using expressions developed for flat surfaces and symmetric electrolyte, we get:

VT = − A
12πD2

+
32n0kT

κ
z2

[
1 − tanh

(
κD
2

)]
(6.60)

which is illustrated in the figure on the next page. It is seen that the van der Waals forces

dominate at low distances, where however VT does not go to −∞, but contrary increases due

to the occurrence of Born repulsion forces, which are very short-range and come into play

when the atom of the two surfaces come in contact. This leads to the very deep attractive well,

referred to as primary minimum. At high distances, the van der Waals forces prevail again,

often leading to the formation of a secondary minimum.
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Note

Because of the large depth of the primary minimum the energy barrier for separating two

particles is much larger, often substantially infinite, compared to that corresponding to the

reverse process.

6.2.4 Simple Manifestation of Electrical Double Layers: Soap Films

The figure shows a soap film, where the water molecules are kept in the film by the repulsive

forces between the layers of surfactant molecules adsorbed at the air-liquid interface.

double layers
repulsion

gravity on
water molecules

For the film formed with a wire frame in the figure, at each height, H the hydrostatic pres-

sure (Hρg) which tends to drain the water molecules have to be balanced by the double-layer

pressure, which corresponds to a certain thickness of the film, D that can be measured. For

example at height of about H = 10 cm, the repulsive double-layer pressure has to be of the

order of 103 N/m2. Soap film thickness of about 20 nm were stabilized by the overlapping

diffusive double layers with ψ0 ≈ 30 mV.

6.3 Coagulation of Colloidal Suspensions

From the shape of the total interaction potential curve as a function of particle distance we

can define the stability of a colloid or a latex. This is illustrated in the figure below, where we

have:

a = kinetically stable or meta-stable colloid;

b = marginally unstable (critical condition)

c = unstable

The loss of stability, or particle aggregation, can be induced in two ways as described in the

following.
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6.3.1 Aggregation by Potential Control

We can change the particle charge, and then its potential, as shown by the curves in the pre-

vious figure. This can be done by changing the activity of the potential determining ions. An

example is given by the titration of a solution containing I− using AgNO3, based on the very

low solubility of AgI. The first particles of AgI precipitated are in equilibrium with an excess

of I− in solution, therefore have a strong negative charge and are small and stable. This leads

in fact to a milky dispersion. As we add more AgNO3, more AgI precipitates and therefore

the excess of I− in solution decreases, together with the particle negative charge and stability.

The colloidal particles start to aggregate leading to large flocs of AgI, which become visible.

At some point the charge of the particle becomes zero, and after that they acquire a posi-

tive charge. By measuring particle migration in an electric field the potential at zero particle

charge is found to be at Ag+ = 3.2 × 10−6 M, which being KS = 8 × 10−17, corresponds to

I− = 2.5 × 10−11 M which is very small as required for titration.

6.3.2 Aggregation by Electrolyte Addition

Even if the concentrations of the potential determining ions are such as to give a good sur-
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face charge, and therefore stability to the particles, we can induce aggregation acting on the

indifferent ions, that is causing the double layer compression. This is shown in the figure

above, where we see that as the concentration of the indifferent electrolyte increases, the en-

ergy barrier decreases and eventually becomes zero. At this point there is no opposition to

aggregation, which becomes very fast and controlled by Brownian diffusion. The smallest

electrolyte concentration leading to such a fast coagulation is called critical coagulation con-

centration. Typical values for three different colloids are reported in the table below:

Valency of Sol of As2S3 Sol of Au Sol of Fe(OH)3

counterions negatively charged negatively charged positively charged

Monovalent LiCl 58 NaCl 9.25

NaCl 51 NaCl 24 1/2BaCl2 9.65

KNO3 50 KNO3 23 KNO3 12

Divalent MgCl2 0.72 CaCl2 0.41 K2SO4 0.205

MgSO4 0.81 BaCl2 0.35 MgSO4 0.22

ZnCl2 0.69 K2Cr2O7 0.195

Trivalent AlCl3 0.093

1/2Al2(SO4)3 0.096 1/2Al2(SO4)3 0.009

Ce(NO3)3 0.080 Ce(NO3)3 0.003

It is seen that the ccc values seem to be independent of the electrolyte type but strongly af-

fected by the charge of the counterion. The value of the ccc can be computed from a suitable

expression of VT(D) by imposing the two conditions for criticality:

VT = 0 and
dVT

dD
= 0 (6.61)

Let us consider the case of flat surfaces with small overlapping (κD > 1):

VT = − A
12πD2

+
64n0kTZ2

κ
exp (−κD) (6.62)

By setting

V ′
T =

2A
12πD3

− κ64n0kTZ2

κ
exp (−κD) = 0 (6.63)

and substituting in the equation VT = 0, we get

2A
12πD3

− κ A
12πD2

= 0 ⇒ 2

D
− κ = 0 ⇒ κD = 2 (6.64)
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Substituting in the relation VT = 0, we get the critical κ:

κ3 =
(4 · 12 · 64)πn0kTZ2 exp (−2)

A
(6.65)

and recalling for symmetrical electrolytes z = z+ = z−

κ2 =

∑
n0

i z2
i e2

εwkT
=

2NAz2e2

εwkT
Cs (6.66)

where Cs = n0
i /NA is the molar electrolyte concentration, it follows

ccc[mol/L] =
(384)2(4π)2

2 exp (4)

ε3
w(kT )5Z4

NAA2(ze)6
(6.67)

which at 25◦C in water for relatively high potential so that Z ≈ 1, reduces to

ccc =
87 · 10−40

z6A2
[mol/L] (6.68)

This relation, although approximated, correctly predicts that the ccc value depends only on the

charge of the electrolyte and in a rather strong way. This is known as the Schultz-Hardy rule.

Its reliability is clearly demonstrated by the data shown in the table, where for the colloid

As2S3 we have that the ccc values for mono, di and trivalent electrolytes can be scaled as

follows:

50 : 0.7 : 0.09 ≈ 1 : 0.014 : 0.0018 (6.69)

which compare well with the equation prediction 1 : 2−6 : 3−6 = 1 : 0.016 : 0.0014. It is

confirmed that the type of electrolyte, if the valency is the same, plays a minor role.

Note

Since the stability behavior of colloids is dominated by the concentration of the counterion,

we can restrict our attention to symmetric electrolytes. Then, MgCl2 would behave like a

2:2 electrolyte in the presence of negatively charged surfaces, and like a 1:1 electrolyte in

the presence of positively charged surfaces. This is confirmed by the ccc data reported in the

previous table.

6.4 Steric Interactions

Steric interactions are the third important type of interactions between colloidal particles.

Steric interactions are commonly used to stabilize particles when long term stability is re-

quired. The most common way to achieve steric stabilization is to graft some polymer on
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the particle surface. The grafting can be achieved in various ways. The most common is to

add polymer to a solution of particles and let it attach onto the particle surface. However,

the amount of polymer to be added has to be accurately chosen, otherwise unwanted desta-

bilization effects (instead of stabilization) such as depletion induced flocculation or bridging

flocculation can arise. Recently, another method has been developed, which consists in grow-

ing a polymer brush directly from the particle surface.

The physical mechanism underlying steric stabilization is strongly related to the thermody-

namic behavior of polymers in solutions. The simplest theory used to explain this mechanism

is the Flory-Krigbaum theory. As two particles coated with a polymer layer approach each

other, when the center-to-center distance is small enough there is an overlap between the poly-

mer layers. This overlap generates an change in the free energy of the polymer layers. There

are two contribution of the free energy of the solution: the first one is a mixing contribution,

the second one is an elastic contribution to the free energy. For the first case, if the polymer

volume fraction in an isolated layer is equal to φ, then the overlapping leads to a concentration

of 2φ in the lens region, as depicted in the figure.

Polymer chains, if soluble in a solvent, occupy a large amount of volume, and their confor-

mation is that of a random coil. If the degree of polymerization of the coil is equal to n, the
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size of the coil scales as R ∼ n0.5. Therefore, if a chain is trying to occupy the same volume

already occupied by another chain, there is usually an increase in the free energy of the sys-

tem. The change in free energy resulting from the overlap of two sterically stabilized particles

is equal to:

ΔG = ΔGovVlens (6.70)

The first term on the right hand side is the free energy change per unit volume, while the

second term is the volume of the lens where the overlap occurs. The volume of the lens is a

pure geometrical term, and is equal to:

Vlens =
2π

3

(
δRs − d

2

)2 (
3Rs + 2 ∗ δRs +

d
2

)
(6.71)

where d is the surface to surface distance between the cores of the particles, δRs is the outer

radius of the shell and Rs is the radius of the core (see the previous Figure). The free energy

of overlap per unit volume is equal to:

ΔHov = 2kT

⎛⎜⎜⎜⎜⎜⎜⎝ V2

2

V1V2
d

⎞⎟⎟⎟⎟⎟⎟⎠
(
1

2
− χ

)
(6.72)

where Vd is the volume occupied by a polymer coil, V1 is the solvent molar volume, and V2 is

the polymer molar volume. It is important to note that the sign of the free energy of mixing

per unit volume depends on the parameter χ. In units of kT , the parameter χ is a measure of

the energy change between solvent-monomer interactions and solvent-solvent and monomer-

monomer interactions. Mathematically this is expressed as follows:

χ =
z

2kT
(2w12 − w11 − w22) (6.73)

where z is the coordination number of a monomer (or solvent) molecule, and wi j is the energy

of interaction between molecule i and molecule j. Here 1 are solvent molecules and 2 are

monomer molecules. Therefore, depending on whether the monomer units like more solvent

molecules rather than other monomer units, the χ parameter can become smaller or larger

than 1/2. When χ > 1/2 we are in the presence of a bad solvent, i.e., the monomer units

prefer to stay close to each other because the polymer is not soluble under those conditions

in that solvent. This means that the free energy given by equation (6.72) is negative. In

this case, interpenetration of polymer shells is favored, and the polymer does not provide a

good stabilization. If instead χ < 1/2 the free energy given by equation (6.72) is positive,
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and interpenetration is unfavorable. In that case, steric stabilization is effective. It is quite

common that the quality of solvent can be changed for many polymers by simply playing

with the temperature. In fact, the following temperature dependence of the χ parameter on the

temperature is usually observed:

1

2
− χ = ψ

(
1 − Θ

T

)
(6.74)

where Θ is the famous Theta temperature. T > Θ implies a good solvent, while T < Θ implies

a poor solvent. T = Θ is the critical solubility temperature for many solvents.

The second contribution to steric stabilization, arising when two polymer shells try to in-

terpenetrate, is the elastic contribution. This mechanism underlying elastic stabilization is

actually an entropic one, since polymer coils tend to assume in absence of any constraint a

rather swollen configuration. By compressing a polymer, one limits their degrees of freedom

and this reduction in configurational entropy generates a force that for small compressions can

be approximated as obeying Hook’s law, with an elastic constant equal to:

ΔS ov ∝ kHd,where kH =
3kT
nl2

(6.75)

where n is the degree of polymerization of a chain and l is approximately the length of a

monomer unit. The contribution to the total free energy given by this mechanism is always

positive, which means that compression of a polymer coil is always an unfavorable process.

When both contributions to steric stabilization are considered together, it turns out that in

the case of a good solvent, steric interactions are always strongly repulsive. In the case of bad

solvents, instead, attractive interactions dominate initially, but when the distance between the

particle surface is further reduced, repulsion due to elastic compression eventually prevails.
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