
529-0610-01L
Interface Engineering of Material

FS2024

Homework Assignment 3

Due date: 26.April.2024

In this homework assignment, we will solve several questions involving interfacial trans-
port phenomena that can be answered based on our knowledge from Lectures 9 - 11.

Q1 Understand the Lifshitz Theory of vdW Interactions

In Lecture 10 we have briefly discussed the modern version of the van der Waals interaction
– the Lifshitz theory.

Here, we have some hands-on exercises on how to apply such theories to study the vdW
interactions. For your reference, theHamaker constant𝐴123 between twomacroscopic bodies
1 and 2 in medium 3 separated by distance 𝑑 (see Figure 1), is approximated as:
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Figure 1: Scheme of macroscopic bodies 1 and 2 in medium 3.
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𝜀2(𝑖𝜈𝑛) + 𝜀3(𝑖𝜈𝑛)

] (1)

where 𝜈𝑛 is the n-th Matsubara frequency such that ℎ𝜈 = 2𝜋𝑘B𝑇𝑛, and 𝜀𝑗 is the frequency-
dependent relative permittivity (dielectric function) of material 𝑗. The prime (′) indicates a
pre-factor of 1/2 to the summation term at 𝑛 = 0. For simplicity we use the notation Δ𝑗𝑘 =
𝜀𝑗 − 𝜀𝑘
𝜀𝑗 + 𝜀𝑘

for the dielectric mismatch between two materials throughout the context.

Temperature dependency of Hamaker constant

It may seem that 𝐴132 in Eq. 1 increases with 𝑇. This is not physical since we know that 𝐴123
cannot diverge when 𝑇 → ∞, and there is still vdW force even when 𝑇 = 0K. To analyze this
discrepancy, let’s take the following steps:
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1. Assume that 𝜀 does not depend on the temperature 𝑇, and can be regarded as constant
within a small frequency range (𝜈low, 𝜈high). Show that the contribution to the Hamaker
constant within this energy range

3𝑘B𝑇
2

𝜈𝑛≤𝜈high
∑

𝜈𝑛≥𝜈low
Δ13(𝑖𝜈𝑛)Δ23(𝑖𝜈𝑛) (2)

does not depend on 𝑇

2. Let’s consider a toy-model for the dielectric function of material (labeled as a). Simi-
lar to the frequency-dependent polarizability, the frequency-dependent 𝜀 in the single-
oscillator Lorentz model has the form:

𝜀a(𝑖𝜈) = 1 +
𝑓osc

1 + ( 𝜈
𝜈osc

)
2 (3)

where 𝜈𝑜𝑠𝑐 is the resonance frequency of the oscillator the𝑓osc is the oscillation strength.
Use Eq. 3 to plot 𝜀(𝑖𝜈) of as a function of 𝜈 of amaterial that has refractive index𝑛 = 1.53
and ℎ𝜈osc = 10 eV. Note that the refractive index 𝑛 = √𝜀a(𝜈 = 0).

3. Now plug your model 𝜀a of Q2.2 into Eq. 1 to calculate the Hamaker constant 𝐴𝑎 in
vacuum. In other words, we have materials 1, 2 = a, and 3 = vacuum. Show how 𝐴a
changes with the temperature 𝑇. Does your plot agree with the assumption in Q2.1 1?

Lifshitz Model for Real Materials

4. In order to apply the Lifshitz model to real materials, we need to obtain the dielectric
profile 𝜀(𝑖𝜈) of each material from experimental data. In practice, it is much easier to
measure, rather than compute, the optical absorption coefficient (also known as the
imaginary permittivity 𝜀″ 2) The conversion between 𝜀″(𝜔) on real frequency and 𝜀(𝑖𝜈)
is done via the Kramers-Kronig relations (KKR):

𝜀(𝑖𝜈) = 1 + 2
𝜋 ∫

∞

0

𝜔𝜀″(𝜔)
𝜔2 + 𝜈2d𝜔 (4)

As an example, we provide you the 𝜀″(𝜔) values of 3 different materials: silica (SiO2),
bromobenzene (BrPh) and gold (Au) in the attachment eps-data.zip. Use Eq. 4
to compute frequency-dependent 𝜀(𝑖𝜈) of each material and compare them in the same
figure. You should see 𝜀SiO2 < 𝜀BrPh < 𝜀Au when ℎ𝜈 < 4 eV.

5. Use your results in Q2.4 to calculate the Hamaker constant 𝐴132 where 1 = SiO2, 2 =
Au and 3 = BrPh. You will find𝐴132 is still positive (attractive interaction). Explain this
by plotting the frequency-dependent contribution𝐺(𝜈𝑛) to the Hamaker constant, such
that:

𝐺(𝜈𝑛) = 𝑓(𝑛) ⋅ 3𝑘B𝑇2 Δ13(𝑖𝜈𝑛)Δ23(𝑖𝜈𝑛)

𝑓(𝑛) = {
1
2 𝑛 = 0

1 𝑛 > 0

(5)

1In reality, the temperature dependency of 𝜀 cannot be ignored.
2Actually the imaginary part of the complex permittivity 𝜀(𝜔) = 𝜀′(𝜔) + 𝑖𝜀″(𝜔) on real frequency 𝜔.
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Explaining Repulsive vdW-Casimir Interactions by Lifshitz Theory

Is it possible to harness repulsive interactions in the SiO2-BrPh-Au system? Yes. In fact, due
to the limited speed of light, when the characteristic time 𝜏 of electromagnetic (EM) wave
traveling between two macroscopic bodies is much longer than the intrinsic time scale of
EM-wave oscillation (i.e. 𝜔−1 where 𝜔 = 2𝜋𝜈 is the angular frequency of the EM wave),
the interaction can be significantly suppressed (retarded). The full Lifshitz theory seamlessly
bridges the vdW (non-retarded) and Casimir (retarded) interactions 3.

6. When do we need to consider the retardation effect? Please qualitatively compare the
following scenarios:

a) ℎ𝜈 = 0.1 eV, 𝑑 = 0.5 nm
b) ℎ𝜈 = 50 eV, 𝑑 = 0.5 nm
c) ℎ𝜈 = 0.1 eV, 𝑑 = 50 nm
d) ℎ𝜈 = 50 eV, 𝑑 = 50 nm

7. The retardation effect makes the Hamaker “constant” actually dependent on the sepa-
ration 𝑑. A simplified expression for the interaction energy between macroscopic bod-
ies 1 and 2 over medium 2, Φ132(𝑑), using the retarded Lifshitz theory, is given by the
following equation set:

Φ132(𝑑) = −
𝐴132(𝑑)
12𝜋𝑑2
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Δ13(𝑖𝜈𝑛)Δ23(𝑖𝜈𝑛)𝑅𝑛

𝑅𝑛 = (1 + 𝑟𝑛)𝑒−𝑟𝑛

𝑟𝑛 =
4𝜋𝑑√𝜀3(𝑖𝜈𝑛)

𝑐 𝜈𝑛

(6)

where 𝑐 is the speed of light in vacuum and 𝜈𝑛 is the n-th Matubara frequency. In brief,
the distance-dependent Hamaker constant 𝐴132(𝑑) just superimposes a retardation co-
efficient 𝑅𝑛 onto the non-retarded expression (see Eq. 1). 𝑅𝑛 is further dependent on
the separation 𝑑 and frequency 𝜈𝑛. Please plot the pressure (force per area) between the
macroscopic bodies 𝐹132(𝑑) as function of 𝑑, which is calculated by:

𝐹132(𝑑) = −
𝜕Φ132(𝑑)

𝜕𝑑 (7)

Notice that the derivative may be computed numerically. Do you see a repulsive energy
/ pressure when 𝑑 > 20 nm? Propose a practical setup that may be used to measure the
repulsive interactions.

3See Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists. Cam-
bridge Press (2010), Chapter 2.3
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Q2 Realistic Picture of Electric Double Layer

In Lecture 11 we learn about the formation of an electric double layer (EDL) when a charged
plate is inserted into an electrolyte solution. For a 1D z:z electrolyte system, the potential 𝜓
can be described by the Gouy-Chapman (GC) Equation:

𝜕𝜓
𝜕𝑥 = −

√
8𝑘B𝑇𝑐0
𝜀r𝜀0

sinh(
𝑧𝑒𝜓
2𝑘B𝑇

) (8)

However, this model is sometimes too simple since it predicts that the concentration of the
ions at the interface can infinitely increase with 𝜓. A better model for the double layer is
known as the Gouy-Chapman-Stern (GCS) model, as shown in Figure 2.
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Figure 2: Scheme of the Gouy-Chapman-Stern model

In theGCSmodel, a region called the Stern layer exists between the conductor surface and
the outer-most charges in the EDL. The Stern layer acts as a dielectric, so that no charges can
move inside it. Outside the Stern layer, the charges can move freely and the Gouy-Chapman
description is still valid. The thickness of the Stern layer is 𝑑S and the dielectric constant is
𝜀S. The dielectric constant of water is 𝜀w.

1. In order to understand the limits of the Gouy-Chapman model, calculate the relative
thickness 𝑑EDL of the differential capacitance for the EDL using the GC model at 𝜓0 =
1V for a 1 M KCL solution. Please explain your observation thoroughly.

2. What does the potential profile inside the Stern layer look like? Please also write down
the boundary condition of 𝜓 at the interface between Stern layer and EDL.

3. Assume 𝑑S = 2.5 Å, 𝜀S = 25. When the potential on the conducting plate is fixed at 𝜓0
= 500 mV, compute the potential profiles for (i) 1 mM and (ii) 1 M KCl solutions at 300
K. Compare your results obtained from simple Gouy-Chapman equation and the GCS
model.

4. Assume 𝑑S = 2.5 Å, 𝜀S = 25. When the surface charge on the conducting plate is fixed at
𝜎M = 0.01 C/m2, compute the potential profiles for (i) 1 mM and (ii) 1 M KCl solutions
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at 300 K. Compare your results obtained from simple Gouy-Chapman equation and the
GCS model.

5. The differential capacitance of an electrode is defined as 𝐶diff = 𝜕𝜎M/𝜕𝜓M, where 𝜎M
and𝜓M are the charge density and potential on the electrode. Calculate the value of 𝐶diff
as a function of 𝜓M for (i) 1mMand (ii) 1MKCl solutions. Compare the results obtained
using simple Gouy-Chapman equation and the GCS model. The other parameters are
the same as in Q3.4.

6. Now compare the results from Q3.5 for the GC and the GCSmodel by plotting the ratio
of both differential capacitances, i.e. 𝐶GC

diff/𝐶
GCS
diff , as functions of potential 𝜓0 for both

concentration separately. Try to find the regions (or points) in which both models co-
incide, if there is any.
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