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Homework Assignment 4

Due date: 22.May.2024

In this homework assignment, we will study several problems related to the electrical
double layer and electrokinetic phenomena.

Q1 Controlling Electroosmotic Flow by Gating

Figure 1: (a) The schematic illustration for an electroosmotic flow system that uses a gate
electrode to control the zeta potential. (b) The electric potential distribution at the gate elec-
trode – insulator – electrolyte solution (the dashed box in (a)).

In Lectures 10 and 12, we have shown that one can control the electric potential Ψ at
an electrolyte solution- insulator interface in a more precise manner by applying a voltage
on the additional “gate” electrode. Here let us see how it works. Consider the example of
electroosmotic flow system shown in Fig. 1(a), by applying two voltage sources, 𝑉𝑥 and 𝑉G,
one can control the lateral electric field, 𝐸𝑥 = 𝑉𝑥/𝑙, where 𝑙 is the length of the channel, as
well as the surface potential at the electrolyte solution – insulator interface, 𝜁. The thickness
of the insulator layer is d, and the relative dielectric constant for the insulator layer and the
electrolyte solution is 𝜀d and 𝜀r, respectively. A binary electrolyte solution with (𝑧+ ∶ 𝑧−)
valence (note that 𝑧+ can be not equal to 𝑍−) is considered. We define the origin of the x
coordinate at the electrolyte solution – insulator interface, as shown in Fig. 1(b).

1. Using the Debye-Hückel approximation, please derive the analytical expressions for
𝜁(𝑉G) and 𝑢S(𝑉G).

2. Using the same procedure for derivation of the G-C solution, followed by considering
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the Gauss’ law at an interface, please show that:

𝑓(𝜁) = sign(𝜁)
√

2𝜀r𝑘B𝑇
𝜀0

[𝑐+0 exp(−
−𝑧+𝑒𝜁
𝑘B𝑇

) + 𝑐−0 exp(−
−𝑧−𝑒𝜁
𝑘B𝑇

) − (𝑐+0 + 𝑐−0)]
1/2
−𝜀d

𝑉G − 𝜁
𝑑 = 0

(1)

3. The above equation has clearly suggested that one can control the zeta potential 𝜁 by
𝑉G. Please write a numerical function that solves Eq. (11) numerically, by using 𝑉G as
the input parameter.

4. Consider an aqueous, 1 mMNaCl solution at 298 K, and an Al2O3 insulator with 𝜀d = 9
and 𝑑 = 100 nm, by applying an 𝐸𝑥 = 10 V/cm, please use your numerical function in
(3) to calculate 𝜁 and 𝑢S for 𝑉G=[0 V: 1 V: 50 V]. Compare the obtained profile with that
using the expression derived in (1).

In Lectures 10 and 12, we have shown that one can control the electric potential Ψ at
an electrolyte solution- insulator interface in a more precise manner by applying a voltage
on the additional “gate” electrode. Here let us see how it works. Consider the example of
electroosmotic flow system shown in Fig. 1(a), by applying two voltage sources, 𝑉𝑥 and 𝑉G,
one can control the lateral electric field, 𝐸𝑥 = 𝑉𝑥/𝑙, where 𝑙 is the length of the channel, as
well as the surface potential at the electrolyte solution – insulator interface, 𝜁. The thickness
of the insulator layer is d, and the relative dielectric constant for the insulator layer and the
electrolyte solution is 𝜀d and 𝜀r, respectively. A binary electrolyte solution with (𝑧+ ∶ 𝑧−)
valence (note that 𝑧+ can be not equal to 𝑍−) is considered. We define the origin of the x
coordinate at the electrolyte solution – insulator interface, as shown in Fig. 1(b).

Q2 Electroosmotic Flow in a Nanotube

As shown in Fig. 2, consider an infinitely long nanotube filled with electrolyte solution, and
its diameter is comparable to the Debye screening length. Here we treat the nanotube as
a perfect cylinder with the radius 𝑅 in the cylindrical (𝑟, 𝑧) coordinate, and the surface is
negatively charged with the surface charge density 𝜎𝑠. By applying an electric field along +𝑧
direction, 𝐸𝑧, an electroosmotic flow (EOF) is induced, as we discussed in Lecture 14. When
the flow is fully developed, the electric potential 𝜓, the positive (negative) ion concentration
𝑐+(𝑐−), and the fluid flow velocity 𝑢 are all functions of 𝑟. The electrolyte is binary, univalent,
and symmetric (1:1). Please answer the following questions:

Figure 2: EOF in a nanotube; side (left) and cross-sectional (right) views. The electric poten-
tial 𝜓 and the fluid flow velocity 𝑢 profiles are sketched in blue and green curves, respectively.

1. Let 𝜓(0) = 0 and 𝑐+(0) = 𝑐0, one may write the Poisson Boltzmann equation (PBE) as
follows:

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝜓
𝜕𝑟 ) = −

𝑒𝑐0
𝜖𝑟𝜖0

exp (−
𝑒𝜓
𝑘𝐵𝑇

) (2)
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Youmight have noticed that the right hand side (RHS) only has the cation contribution
(𝑧+ = +1). Why can the anion (𝑧− = −1) contribution be neglected?

2. Using the Gauss law, please write down the PBE Boundary condition (BC) at 𝑟 = 𝑅.

3. In the literature, it has been shown that the 1D PBE has an analytical solution given by:

𝜓 = 𝑘𝐵𝑇
𝑒 ln [(1 − 1

8 (
𝑟
𝜅−1 )

2
)
2
] (3)

where 𝜅−1 =
√

𝜖𝑟𝜖0𝑘𝐵𝑇
𝑐0𝑒2

is the Debye screening length. Combining with the BC you

obtained in Q1.2, please derive the relation of 𝜎𝑠 as a function of 𝑐0. Note that 𝑐0 corre-
sponds to the cation concentration at 𝑟 = 0, so it is also an unknown. This is why we
need three BCs, and the solution appears to fulfill the other two BCs, namely 𝜓(0) = 0
and 𝜕𝜓

𝜕𝑟
(𝑟 = 0) = 0.

4. From the equation (3), since 𝜎𝑠 < 0, please show that the maximum attainable concen-
tration 𝑐max at 𝑟 = 0, is 𝑐max =

8𝜖𝑟𝜖0𝑘𝐵𝑇
𝑒2𝑅2

.

5. Following the derivation of DLVO theory in Lecture 13, when 𝐸𝑧 = 0, the osmotic
pressure 𝑃osmotic, with the unit of force per unit area, and the electric force per unit
volume 𝐹elec, towards +r direction are given by:

𝑃osmotic = 𝑘𝐵𝑇(𝑐+ + 𝑐−)

𝐹elec = (−
𝜕𝜓
𝜕𝑟 ) 𝜌

(4)

Please derive the expressions for 𝑃osmotic and 𝐹elec , and as we did in the lecture, please
show that:

𝜕𝑃osmotic
𝜕𝑟 − 𝐹elec = 0 (5)

What is the physical meaning of this equation?

6. As we demonstrated during the derivation of DLVO theory, one can imagine the solu-
tion would exert a radial pressure to the wall of nanotube at 𝑟 = 𝑅, 𝑃wall. Please derive
the expression of 𝑃wall. Following Q1.4, what is the maximum 𝑃wall achievable? If the
electrolyte is a water solution (𝜖𝑟 = 80) at room temperature (25∘𝐶), and the nanotube
radius is 5 nm, what are the values of 𝑐max (in M) and the maximum 𝑃wall (in atm)?

7. Following the derivation of EOF in Lecture 14, when an axial electric field𝐸𝑧 is applied,
please write down the governing equation of the fluid flow velocity 𝑢(𝑟) together with
BCs for the system considered here.

8. Accordingly, please solve 𝑢(𝑟) by putting the solution of 𝜓(𝑟) from equation (3) into the
governing equation from Q1.7.

9. It appears that the maximum velocity 𝑢max, is at 𝑟 = 0. Please plot 𝑢/𝑢max as a function
of 𝑟/𝑅 for 𝜅−1/𝑅 = 0.36, 0.4, 0.5, and 1.0. Please compare it with the Hagen–Poiseuille
flow profile, i.e.,

𝑢
𝑢max

= 1 − ( 𝑟𝑅)
2

(6)

What is your observation based the calculated curves?

3



Q3 Exact Solutionof theElectricPotential betweenTwoCharged
Walls

In Lecture 13, we have considered the 1D profile of the electric potential 𝜓 between two par-
allel, semi-infinite, charged walls with the surface potential 𝜓0, as shown in Figure 3. In the
lecture, in order to determine the potential at the center between the walls, 𝜓ℎ/2, we have as-
sumed the electric potential profile is additive, which might be problematic. Is it possible to
determine the value of 𝜓ℎ/2 exactly by numerical methods? Consider a binary electrolyte so-
lution with (𝑧+ ∶ 𝑧−) valence (note that 𝑧+ can be different from 𝑧−), let us try the following
procedure:

Figure 3: The electric potential profile between two charged walls in an electrolyte solution.

Shooting Method

1. Following the same procedure for derivation of the Gouy-Chapman solution shown in
Lecture 11, show that:

d𝜓
d𝑥 (𝑥 = 0) = −sgn(𝜓0)

√√√√

√

2𝑘B𝑇
𝜀0𝜀r

[𝑐+0 exp(
−𝑧+𝑒𝜓
𝑘B𝑇

) + 𝑐−0 exp(
−𝑧−𝑒𝜓
𝑘B𝑇

)]
|
|
|

𝜓0

𝜓ℎ/2

(7)

where sgn is the sign function (https://en.wikipedia.org/wiki/Sign_function)

2. Using Equation 7, please write a numerical function using 𝜓0 and ℎ as the input vari-
ables to determine 𝜓ℎ/2 exactly. (Hint: youmay use the shootingmethod as in Question
1 of HomeworkAssignment 2, like (i) solve the Poisson-Boltzmann equation of 𝜓(𝑥) for
0 ∶ ℎ/2. (ii) guess the initial boundary condition of d𝜓

d𝑥
(𝑥 = 0) until your solution fulfills

Equation 7.)

3. Consider two semi-infinite, positively-charged walls with 𝜓0 = 40 mV immersed in
1mMNaCl solution at 300 K. Use your function in Q1.2 to calculate 𝜓ℎ/2 for h = 10 nm
- 100 nm. Compare your result with that of additive potential assumption discussed in
Lecture 13, such that:
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𝜓ℎ/2 = 2𝜓single(𝑥 = ℎ/2) (8)

where𝜓single is the potential of single chargedwall calculated using theGouy-Chapman
model.

Finite Difference (FD) Method

As you have observed, the shooting method is straightforward to be programmed, but the
accuracy depends highly on the initial guess of solutions, and sometimes can be extremely
sensitive. A more widely used numerical approach to solve the differential equations, is the
finite difference (FD) method. We will use it to solve the 1D Poisson-Boltzmann under Gouy-
Chapman assumption from this task.

Consider a function 𝑦 on domain 𝑋, the idea of FD is to discretize the domain into finite
number of points, and represent the differential equation as linear combination on discrete
points. For instance, we canuniformly discretize𝑋 = [𝑎, 𝑏] into𝑛+2points𝑥0, 𝑥1, 𝑥2, ,̈ 𝑥𝑛, 𝑥𝑛+1,
with a spacing 𝑑 = (𝑏 − 𝑎)/(𝑛 + 1), as shown in Figure 4. For any point 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛), the
second derivative can be approximated by:

x0 x1 x2 xn xn+1........

y

h
y0 = α

y1
y2 yn yn+1 = β

Figure 4: Scheme of FD discretization. The values of 𝑦 is evaluated as discrete points
𝑥0, 𝑥1, ,̈ 𝑥𝑛, 𝑥𝑛+1, with a point spacing of ℎ.

d2𝑦
d𝑥2 (𝑥𝑖) ≈

1
𝑑2 (𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1) (9)

where 𝑦𝑖 is the value of function 𝑦 on point 𝑥𝑖. For a general form Poisson equation −
d2𝑦
d𝑥2 =

𝑓(𝑥), with Dirichlet type boundary conditions 𝑦(𝑥0) = 𝛼 and 𝑦(𝑥𝑛+1) = 𝛽, the finite differen-
tial equation can be expressed as:

1
𝑑2 (−𝛼 + 2𝑦1 − 𝑦2) = 𝑓(𝑥1)

1
𝑑2 (−𝑦1 + 2𝑦2 − 𝑦3) = 𝑓(𝑥2)

⋮
1
𝑑2 (−𝑦𝑛−2 + 2𝑦𝑛−1 − 𝑦𝑛) = 𝑓(𝑥𝑛−1)

1
𝑑2 (−𝑦𝑛−1 + 2𝑦𝑛 − 𝛽) = 𝑓(𝑥𝑛)

(10)

4. Equation 10 can be expressed as a matrix form Ay = f, where y = [𝑦1, 𝑦2,⋯ , 𝑦𝑛]T.
Please show the form of matrix A and vector f according to Equation 10.

5. Now let’s use Equation 10 to write a solver for the Poisson-Boltzmann equation. Please
follow these steps:
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i Write down the boundary conditions of the Poisson-Boltzmann function on the
domain x = [0⋯ℎ] (i.e. what are the 𝛼 and 𝛽 here?)

ii Based on Equation 10, write a numerical function for your Poisson-Boltzmann
equation using the following form:

A𝚿 = 𝐹(𝚿) (11)

where𝚿 = [𝜓(𝑥0), 𝜓(𝑥1),⋯𝜓(𝑥𝑛+1)], and 𝐹 is a non-linear function that converts
𝚿 to 𝐟. Be careful with the boundary conditions and initial guess for𝚿.

iii Now use a non-linear solver (e.g. fsolve in Matlab) to solve the equations series
𝐀𝚿− 𝐹(𝚿) = 0 with values for the initial guess of 𝚿.

6. Let’s compare the shooting method and finite difference method. Consider the same
assumptions and boundary conditions Q2.3. Use your solver in Q2.5 to calculate 𝜓ℎ/2
again for h = 10 nm - 100 nm. Compare your result with the ones from Q2.3. What do
you observe?

6


	Controlling Electroosmotic Flow by Gating
	Electroosmotic Flow in a Nanotube
	Exact Solution of the Electric Potential between Two Charged Walls

