Sample Solutions to HW2

02.Apr. 2024

Q1 Meniscus Adjacent to a Wilhelmy Plate

1. Interfacial pressure when $\theta>90^{\circ}$

At the plate the meniscus, we know $p(x=0)-p_{\text {air }}+2 \mathcal{H} \gamma=0$. Since $\theta>\pi / 2$, the mean principle radius $\mathcal{H}<0$, therefore we have $p(x=0)>1$ atm.
2. Function f

In this question we need to solve a second-order ode equation. First we shall express the ode equation using vector representation, as the skeleton code for function dHX as follows (written in the Matlab style):
The function f you need is then to take initial values and put dHX into the ode solver:
3. Influence of initial value on the precision of result.

Ideally, at $X \rightarrow \infty$, we have both H and $\frac{\mathrm{d} H}{\mathrm{~d} X}$ are 0 . Therefore, the values we obtained from the function f, represent the error of both H and $\frac{\mathrm{d} H}{\mathrm{~d} X}$ at $X=X_{\max }$. Here we plot the absolute errors as functions of the initial guess of H_{0}, with different choices of $X_{\max }$ for the ode that we study, as shown in Figure1. As can be seen, the absolute error varies dramatically within a certain range (shown in blue shader). The width of such regime also becomes narrower when $X_{\max }$ increases. Therefore, the solution of the ODE is greatly influenced by the initial guess of H_{0}.
4. Dependency of H_{0} and θ

Since both errors of H and $\frac{\mathrm{d} H}{\mathrm{~d} X}$ exist, to solve the ode equation, we can use the shooting method to get the correct H_{0} value at a certain θ value:
The solution can be found by non-linear solvers: (e.g. fsolve in Matlab or scipy.optimize.fsolve in Python). One thing you need to take care is how to estimate the residue R. To achieve a more stable solution you may want to evaluate both $H(\infty)$ and $\mathrm{d} H / \mathrm{d} X(\infty)$ for R, such as: $R=\left[H^{2}(\infty)+(\mathrm{d} H / \mathrm{d} X)^{2}(\infty)\right]$. Using the shooting method, we get the dependency of H_{0} as function of θ as shown in Figure 2 , As can be expected, the height of the meniscus is larger than 0 when $\theta>0^{\circ}$, and vice versa.
5. Height profiles

The height profile as function of X can be solved using the ode solver like ode 45 on an array of X values. The result can be seen in Figure 3 .

Figure 1: Absolute error of H and $\frac{\mathrm{d} H}{\mathrm{~d} X}$ at $X=X_{\max }$, when (a) $X_{\max }=3$, (b) $X_{\max }=5$, (c) $X_{\max }=7$ and (a) $X_{\max }=9$. The blue shader corresponding to the regime when the error dramatically changes. The answers here are obtained using scipy.integrate.ode interface in Python with (4)5-order Runge-Kutta algorithm.

```
Algorithm 1 Pseudo-code for the shooting method
    procedure \(\operatorname{Shooting}\left(\hat{H}_{0}, \theta_{0}\right)\)
        \(H(0) \leftarrow \hat{H}_{0} ; \quad \frac{d H}{d X} \leftarrow-\cot \theta_{0} \quad D\) Initial Guess
        \(\left.R \leftarrow \mathrm{ODE}\left(H(0), \frac{d H}{d X}\right)\right|_{X \rightarrow \infty}\)
        Residue
        while \(R>\) tolerance do
            \(H(0) \leftarrow H(0)+\delta H ; \quad \frac{d H}{d X} \leftarrow \frac{d H}{d X}+\delta U \quad \quad D\) Gauss method
            \(\left.R \leftarrow \mathrm{ODE}\left(H(0), \frac{d H}{d X}\right)\right|_{X \rightarrow \infty}\)
        end while
        return \(H(0), R\)
    end procedure
```


Figure 2: (a) Hight H_{0} as a function of θ at the Wilhelmy plate. (b) Residue of the estimation of $H(\infty)$ as a function of θ.

Figure 3: X-dependent height profile of varied contact angles.

As we expected, the meniscus near the plate is higher than 0 for $\theta_{0}<90^{\circ}$ (hydrophilic). On the other hand the meniscus drops below the liquid surface level for $\theta_{0}>90^{\circ}$.
Your plots may look different due to difference choice of solver and the conditions you used for the cutoff of "infinite" boundary. Nonetheless in your plot the range of the x axis should not exceed your cutoff value. Otherwise you will see a rise of the meniscus due to error accumulation in the ode solving process.
To get an accurate solution, some caution should be taken for the initial guess of H_{0}. One trick is as follows;
(a) Get the solution of H_{0} when $\theta=90^{\circ}$ (is $0!$)
(b) Use the solution of H_{0} you get from step 1 as the initial guess for angles $\theta \pm \delta \theta$. $\delta \theta$ is a small angle (for instance 0.5°)
(c) Repeat steps 1 and 2 until you get the solution for the angle you want to study.

By making $\delta \theta$ smaller, you have higher chance to obtain a stable solution.
6. Comparing the analytical and numerical solutions

The numerical and analytical solution for cases $\theta_{0}=20^{\circ}$ and $\theta_{0}=75^{\circ}$ can be seen in Figure 4 With the offset of X_{0} we see that our numerical solution is in perfect agreement with the analytical one.

Figure 4: Comparison between the numerical and analytical solutions when $\theta_{0}=20^{\circ}$ and $\theta_{0}=75^{\circ}$

Q2 Growth of Ice Crystal in Salt Water

1. Interface salt concentration

Since salt does not dissolve in solid, salt will be ejected upon ice growth, so $C_{I L}>C_{\infty}$ would occur.
2. Interface heat balance

The heat balance at interface follows

$$
\rho \lambda \frac{d a}{d t}=-k_{L} \frac{d T_{L}}{d x}
$$

Using the temperature profiles, it follows

$$
\rho \lambda \frac{d a}{d t}=-k_{L} \frac{T_{\infty}-T_{F}(t)}{\delta}
$$

Note that now it becomes an ODE with two unknowns $a(t)$ and $T_{F}(t)$.
3. Interface concentration balance

The concentration balance at interface follows

$$
C_{I L}(t) \frac{d a}{d t}=-D_{L} \frac{d C_{L}}{d x}
$$

Using the temperature profiles, it follows

$$
C_{I L}(t) \frac{d a}{d t}=-D_{L} \frac{\left[C_{\infty}-C I L(t)\right]}{\delta}
$$

Note that now it becomes an ODE with two unknowns $a(t)$ and $C_{I L}(t)$.
4. Heat and mass transfer equations

We have three unknown functions as functions of $t, a(t), T_{F}(t)$, and $C_{I L}(t)$, and three equations as follows.

$$
\begin{align*}
\rho \lambda \frac{d a}{d t} & =-k_{L} \frac{\left[T_{\infty}-T_{F}(t)\right]}{\delta} \tag{1}\\
C_{I L}(t) \frac{d a}{d t} & =-D_{L} \frac{\left[C_{\infty}-C_{I L}(t)\right]}{\delta} \tag{2}\\
T_{F}(t) & =T_{0}-\beta C_{I L}(t) \tag{3}
\end{align*}
$$

Accordingly we can solve the ODEIVPs using matlab with the following initial values: $a(t)=0, T_{F}(0)=T_{W}$ and $C_{I L}(0)=C_{\infty}$

