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Q1 Understand the Lifshitz Theory of vdW Interactions

1. Temperature-dependency of interaction energy

Within a small frequency range 𝛿𝜈 = 𝜈low − 𝜈high, the number of frequencies points
𝛿𝑛 is approximately: 𝛿𝑛 = ℎ𝛿𝜈/(2𝜋𝑘B𝑇). Therefore the contributions to the Hamaker
constant within this frequency range is:

3𝑘B𝑇
2

𝜈𝑛≤𝜈high
∑

𝜈𝑛≥𝜈low
Δ13(𝑖𝜈𝑛)Δ23(𝑖𝜈𝑛) ≈

3𝑘B𝑇
2 ⋅ 𝛿𝑛 ⋅ Δ13Δ23

≈ 3ℎ𝛿𝜈
4𝜋2 ⋅ Δ13Δ23

(1)

If Δ13 and Δ23 do not change within 𝛿𝜈, the results in Eq. 1 can be regarded as indepen-
dent of 𝑇.

2. Model 𝜀(𝑖𝜈)

Based on the single-oscillator Lorentz model, the zero-frequency 𝜀 = 1 + 𝑓osc = 𝑛2,
which leads to 𝑓osc = 1.34. The 𝜀(𝑖𝜈) of such material is seen to be monotonically
decaying with 𝜈 (Figure 1).
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Figure 1: Frequency-dependent 𝜀(𝑖𝜈) in the single-oscillator Lorentz model.
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3. 𝑇-dependency of Hamaker constant
The dependency of Hamaker constant of 𝐴a with 𝑇 is shown in Figure 2. As expected,
the Hamaker constant almost does not depend on the temperature when 𝑇 < 104, in-
dicating the assumption used in (1) is quite reasonable. In other words, even if the
London dispersion theory is developed at 0 K, the results do not change at room tem-
perature.
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Figure 2: Temperature-dependent 𝐴a (in zepto-Joule) using the single-oscillator Lorentz
model.

4. Convert experimental spectra to 𝜀(𝑖𝜈)
The values of 𝜀(𝑖𝜈) of different materials can be seen in Figure 3. Within low frequency
range ℎ𝜈 < 4 eV, we have 𝜀SiO2 < 𝜀BrPh < 𝜀Au.

5. Calculation of 𝐴132

The 𝐴132 of the SiO2-BrPh-Au system is calculated to be 22.3 zJ. This is because the
attractive contributions at higher energy range (red region in Figure 4) dominates over
the repulsive contributions (blue region in Figure 4).

6. Conditions of retardation effect
The condition of retardation effect is:

𝜏 ⋅ 𝜔 ≫ 1
2𝑑
𝑐 𝜔 ≫ 1

𝑑 ⋅ (ℏ𝜔) ≫ ℏ𝑐
2

(2)

where ℏ𝑐/2 = 98.7 nm⋅eV. Therefore, we can conclude the retardation effect is only
significant for case (d), that ℎ𝜈 = 50 eV and 𝑑 = 50 nm. Note here we ignore the
impact of 𝜀 on the speed of light.
A general rule is that the retardation effect is significant for longer separation 𝑑 and
higher frequency 𝜔 (or 𝜈). It is natural to think if we introduce the retardation effect,
the low-frequency repulsive contribution in (5) can be more prominent.
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Figure 3: Comparison between 𝜀(𝑖𝜈) of SiO2, Bromobenzene and gold using the Kramers-
Kronig relations. The data points are Matsubara frequencies at 𝑇 = 300 K.
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Figure 4: Frequency-dependent contributions to the Hamaker constant 𝐴132 of the SiO2-
BrPh-Au system. The Hamaker constant is still positive since the attractive contributions
(ℎ𝜈 > 5 eV) is dominating over the repulsive contributions (ℎ𝜈 < 5 eV)
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7. Repulsive interaction in retarded regime.

The pressure 𝐹132(𝑑) as function of 𝑑 (Figure 5).

To make illustration more appealing, we plot the 𝐹123(𝑑) only for 𝑑 > 15 nm. A repul-
sive pressure exists for separation larger than 20 nm. This allows the repulsive force
measurable at the distance of 20 - 50 nm using atomic force microscopy (AFM), see
Munday et al. Nature 457, 170–173 (2009). .

20 30 40 50
d (nm)

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10
F 1

32
(d

) (
kP

a)

Non-retarded
Retarded

Figure 5: 𝐹123(𝑑) (in kPa) as function of 𝑑.
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Q2 Realistic Picture of Electric Double Layer

Q2.1 Limit analysis of Gouy-Chapmanmodel

The differential capacitance of the Gouy-Chapman model is calculated as:

𝐶EDL(𝜓EDL) =
d𝜎EDL
d𝜓EDL

= −
𝜀0𝜀wd(𝐸EDL)

d𝜓EDL

=
√

2𝑧2𝑒2𝜀0𝜀w𝑐0
𝑘B𝑇

cosh(
𝑧𝑒𝜓EDL
2𝑘B𝑇

)

(3)

The relative thickness of the EDL is calculated by using the capacitance formula for a parallel
plate capacitor,

𝑑EDL =
𝜀0𝜀
𝐶EDL

(4)

With 𝜀 = 𝜀w, Ψ0 = ΨEDL and the other given values we reach 𝑑EDL < 0.001nm, which makes
physically no sense as such values are even smaller than Atom radii. We see that higher
potentials for Ψ0 result in even lower distances 𝑑EDL, thus indicating a convergence of 𝑑EDL
to 0. This is highly inaccurate for a physical model but can be fixed by adding a finite distance
dielectric layer as it is done for the Gouy-Chapman-Stern model with the Stern layer.

Q2.2 Boundary conditions of potential

Since there is no free (mobile) charges inside the Stern layer, the potential profile is linear.
The boundary condition at the interface between the Stern layer and the EDL is the continuity
of displacement field along the x-direction:

𝐷S|𝑥=𝑑S = 𝐷EDL|𝑥=𝑑S

𝜀0𝜀S
d𝜓
d𝑥

|
|
|

−

𝑥=𝑑S

= 𝜀0𝜀w
d𝜓
d𝑥

|
|
|

+

𝑥=𝑑S

(5)

By defining Δ𝜓 = 𝜓0 − 𝜓EDL where 𝜓S is the potential at the Stern layer / EDL interface,
d𝜓
d𝑥

in the Stern layer is expressed as -Δ𝜓/𝑑S. Combine this with the Gouy-Chapman model, we
have the boundary condition as:

𝜀S
𝜓0 − 𝜓EDL

𝑑S
= 𝜀w√

8𝑘B𝑇𝑐0
𝜀r𝜀0

sinh(
𝑧𝑒𝜓EDL
2𝑘B𝑇

) (6)

Q2.3 Potential profiles of GCS model, constant 𝜓0
There are several ways to solve the potential profile. Although the Poisson-Boltzmann equa-
tion is second order ODE, within the Gouy-Chapmanmodel you can simply solve it as a first-
order ODE, since the relation between d𝜓/d𝑥 and 𝜓 is explicitly known. Another approach
is to use the analytical form of the Gouy-Chapman equation as shown in the Lecture notes:

tanh( 𝑧𝑒𝜓
4𝑘B𝑇

)

tanh( 𝑧𝑒𝜓0
4𝑘B𝑇

)
= exp(−𝜅𝑥) (7)
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The solution for the potential profiles in GC and GCS models can be seen in Figure 6. As
can be seen, when 𝑐0 increases, the potential profiles decays faster due to the shorter Debye
length.
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Figure 6: Potential profiles of different models with constant 𝜓0. (a) naive Gouy-Chapman
model with 𝑐0 at 1 mM and 1 M. (b) GCS model with 𝑐0 at 1 mM and 1 M. The region of the
Stern layer is labeled in light grey.

On the other hand, we can see that the Stern layer reduces the interfacial potential 𝜓EDL.
For 1 mM salt 𝜓EDL is about 0.23 V, while for 1 M salt 𝜓EDL further decreases to about 80 mV,
due to the larger electric field in the EDL.

Q2.4 Potential profiles of GCS model, constant 𝜎0
If we keep 𝜎0 at constant, since the capacitance of the EDL increases with more concentrated
salt, the surface potential profile becomes lower for a concentrated salt. The behavior can be
seen in Figure 7 when 𝜎0 = 0.01 C/m2.

Q2.5 Differential capacitance

From Q2.1 we know that the differential capacitance of the Gouy-Chapman model is:

𝐶EDL(𝜓EDL) = √
2𝑧2𝑒2𝜀0𝜀w𝑐0

𝑘B𝑇
cosh(

𝑧𝑒𝜓EDL
2𝑘B𝑇

) (8)

6



0 1 2 3 4 5
x (nm)

0.02

0.04

0.06

0.08

ψ 
(V

)

a
Naive Gouy-Chapman

1e-03 Mol⋅L−1

1e+00 Mol⋅L−1

0 1 2 3 4 5
x (nm)

0.025

0.050

0.075

0.100

ψ 
(V

)

b
GCS Model

Figure 7: Potential profiles of different models with constant 𝜎0. (a) naive Gouy-Chapman
model with 𝑐0 at 1 mM and 1 M. (b) GCS model with 𝑐0 at 1 mM and 1 M. The region of the
Stern layer is labeled in light grey.
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while the capacitance of the Stern layer is described by the parallel-plate capacitor:

𝐶S =
𝜀0𝜀S
𝑑S

(9)

The total differential capacitance of the system is calculated as capacitor-in-series:

𝐶tot = ( 1𝐶S
+ 1
𝐶EDL(𝜓EDL)

)−1 (10)

the 𝜓EDL has to be calculated using the boundary conditions in Q2.2. As shown in Figure 8,
without the Stern layer, the capacitance increases dramatically with 𝜓0, which makes such
assumption unphysical. On the other hand, in the GCSmodel, the total capacitance is limited
by the geometric capacitance of the Stern layer 𝐶S, which is independent of the salt concen-
tration.

−0.4 −0.2 0.0 0.2 0.4
ψ0 (V)

100

102

104

C 
(F

/m
2 )

a
Naive Gouy-Chapman

1e-03 Mol⋅L−1

1e+00 Mol⋅L−1

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
ψ0 (V)

0.00

0.25

0.50

0.75

1.00

C 
(F

/m
2 )

b

CSCS

GCS Model

Figure 8: Total differential capacitance in (a) GC and (b) GCS models.

Q2.6 Direct comparison of GC and GCS model

In Figure 9 one can see the ratio between total differential capacitance of the GC and GCS
model. We see that for the higher concentration both models don’t coincide even for poten-
tials smaller than 0.1V. For the lower concentration one can observe that both models differ
by at least by approximately 1.08.

From this we can see that even for small potentials and concentration both models do not
coincide for larger regions, thus meaning that in these cases both models are different. The
coincidence of both models is highly dependent on the thickness of the Stern layer.
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Figure 9: Ratio between total differential capacitance of GC and GCS model
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