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Q1 Controlling Electroosmotic Flow by Gating

Q1.1

In the D-H assumption the capacitance of the double layer is expressed as 𝐶𝑒𝑙 = 𝜖𝑟𝜖0/𝜅−1,
while the capacitance of the oxide layer is 𝐶𝑜𝑥 = 𝜖𝑑𝜖0/𝑑. The charge neutrality yields:

𝜎𝑀 + 𝜎𝑒𝑙 = 0 (1)

(𝑉𝐺 − 𝜁)
𝜖𝑑𝜖0
𝑑 − 𝜁

𝜖𝑟𝜖0
𝜅−1 = 0 (2)

𝜁(𝑉𝐺) = 𝑉𝐺
1

1 + 𝜖𝑟
𝜖𝑑

𝑑
𝜅−1

(3)

The velocity (absolute value) at equilibrium would therefore be:

𝑢𝑆 =
𝜖𝑟𝜖0𝜁
𝜇 𝐸𝑥

=
𝜖𝑟𝜖0𝑉𝐺
𝜇

1

1 + 𝜖𝑟
𝜖𝑑

𝑑
𝜅−1

𝐸𝑥
(4)

Q1.2

We can use the Gouy-Chapmann conditions to solve 𝜁 as a function of the applied voltage.
The charge density in the electrolyte solution would thus be:

𝜎𝑒𝑙 = 𝜖𝑟𝜖0
𝑑𝜓
𝑑𝑥

|||
𝑥=0

= −𝜖𝑟𝜖0sign()√
{2𝑘𝑇𝜖𝑟𝜖0

[𝑐+0 exp(
−𝑧+𝑒𝜓
𝑘𝑇 ) + 𝑐−0 exp(

−𝑧−𝑒𝜓
𝑘𝑇 )]}|||

𝑥=0

𝑥=∞

= −𝜖𝑟𝜖0sign()√
2𝑘𝑇
𝜖𝑟𝜖0

[𝑐+0 exp(
−𝑧+𝑒𝜓
𝑘𝑇 ) + 𝑐−0 exp(

−𝑧−𝑒𝜓
𝑘𝑇 )] − (𝑐+0 + 𝑐−0)

(5)

On the other hand, the charge neutrality is valid for the whole metal-insulator-electrolyte
capacitor:

𝜎𝑒𝑙+𝜎𝑀 = −𝜖𝑟𝜖0sign()√
2𝑘𝑇
𝜖𝑟𝜖0

[𝑐+0 exp(
−𝑧+𝑒𝜁
𝑘𝑇 ) + 𝑐−0 exp(

−𝑧−𝑒𝜁
𝑘𝑇 )] − (𝑐+0 + 𝑐−0)+

𝜖𝑑𝜖0
𝑑 (𝑉𝐺−𝜁) = 0

(6)
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Q1.3

Q1.4

The 𝜁 and 𝑢𝑆 as functions of 𝑉𝐺 using both DH and GC models are shown in Figure 1. It
can be observed, that the DH solution is close to the GC solution at lower 𝑉𝐺 regimes, which
correspond to a low surface potential 𝜁. In the GC model, the differential capacitance in
the double layer significantly increases with 𝜁, while in the DH model such capacitance is
constant.
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Figure 1: 𝜁 and 𝑢𝑆 as functions of 𝑉𝐺 in DH and GC models.

Q2 Electroosmotic Flow in a Nanotube

1. Neglecting contributions from anions

The contributions of anions to the RHS is 𝑒𝑐−(0)𝜀0𝜀r
exp( 𝑒Ψ𝑘B𝑇

). Here 𝑐−(0) is the concen-

tration of anions at 𝑟 = 0. Due to 𝑅 ≈ 𝜅−1, we have 𝑐−(0) ≪ 𝑐+(0) = 𝑐0. Also because
Ψ < 0 (negative surface charge), we can safely assume that the contributions from an-
ions can be ignored.

2. PBE Boundary condition at 𝑟 = 𝑅

We can use the Gauss’s law on the surface of the tube as the BC. Consider a segment of
tube with length 𝐿, the Gauss’s law reads:

2𝜋𝑅𝐿 (−dΨd𝑟 )
|
|
|
𝑟=𝑅

= 2𝜋𝐿∫
𝑅

0
𝜌𝑟d𝑟

(dΨd𝑟 )
|
|
|
𝑟=𝑅

=
𝜎S
𝜀0𝜀r

(7)

which is the same as in the case of a charged plane.

3. Expression of surface charge density
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Since 𝑅 ≈ 𝜅−1, 1 − 1
8 (

𝑅
𝜅−1 )

2
> 0, therefore Ψ(𝑟) < 0 and dΨ

d𝑟 < 0 always hold within
0 ≤ 𝑟 ≤ 𝑅. Using the 1D analytical solution of Φ, the BC (Eq. (7)) is:

𝑘B𝑇
2𝑒

4𝑅
𝑅2 − 8𝜅−2 =

𝜎S
𝜀0𝜀r

(8)

Replace 𝑘B𝑇𝜀0𝜀r/𝑒 with 𝜅−2𝑐0𝑒, we get:

𝜎S =
4𝑅𝑐0𝑒

𝑅2𝜅2 − 8 (9)

Since 𝑅 ≈ 𝜅−1, 𝜎S becomes negative.

4. Maximum solute concentration

To enure 𝜎S is always negative, we need to have 𝑅2𝜅2 − 8 < 0, which in turn becomes:

𝑐0 < 𝑐max =
8𝑘B𝑇𝜀0𝜀r
𝑒2𝑅2 (10)

5. Osmotic pressure and electrostatic force inside charged tube

Osmotic pressure In our case, we can still assume that osmotic pressure is controlled
by the cations alone, and thus:

Π ≈ 𝑘B𝑇𝑐0 exp(−
𝑒Ψ
𝑘B𝑇

) (11)

Force On the other hand, 𝐹elec is given by:

𝐹elec ≈ −dΨd𝑟 𝑐0 exp(−
𝑒Ψ
𝑘B𝑇

) (12)

It is easy to observe that dΠ/d𝑟 = − 𝑒
𝑘B𝑇

ΠdΨ
d𝑟
, and thus dΠ

d𝑟
= 𝐹elec. In other words,

the total pressure (osmotic + electrostatic) along the radius direction is independent of
the size 𝑅, which is the same conclusion in parallel charged walls under the Poisson-
Boltzmann conditions.

6. Pressure against the wall

The total pressure 𝑃wall can be regarded as the osmotic pressure Π(𝑟 = 0) according to
the conclusions in Q1.5, such that:

𝑃wall = Π(𝑟 = 0) ≈ 𝑘B𝑇𝑐0
≤ 𝑘B𝑇𝑐max

≤
8𝑘2B𝑇2𝜀0𝜀r
𝑒2𝑅2

(13)

Plug in the numbers of 𝑅, and 𝜀𝑟, we get:

• 𝑐max ≈ 60mM
• Πmax ≈ 1.50 × 105 Pa = 1.48 atm
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7. Governing equation of fluid flow

Now let’s use the steady-state Navier-Stokes equation (Eq. 14.8 in lecture notes) while
neglecting the gravity and external pressure terms:

𝜇∇2𝑢(𝑟) + 𝜌𝑒𝐸𝑧 = 0

𝜇1𝑟
d
d𝑟 (𝑟

d
d𝑟𝑢(𝑟)) + 𝑐0 exp(−

𝑒Ψ
𝑘B𝑇

)𝐸𝑧 = 0

(14)

with BCs:
𝑢(𝑟 = 𝑅) = 0 Non-slip boundary
d𝑢
d𝑟 (𝑟 = 0) = 0 Symmetry

(15)

8. Analytical solution of 𝑢(𝑟)

Plug the expression of Ψ(𝑟) into Eq. (14), we get:

d
d𝑟 (𝑟

d
d𝑟𝑢(𝑟)) = −

𝐸𝑧𝑒𝑐0
𝜇

𝑟

[1 − 1
8
𝑟2𝜅2]

2

d
d𝑟𝑢(𝑟) = −

4𝐸𝑧𝑒𝑐0
𝜇𝜅2

1
𝑟[1 − 1

8
𝑟2𝜅2]

+ 𝐶1
𝑟

𝑢(𝑟) = −
4𝐸𝑧𝑒𝑐0
𝜇𝜅2 {ln(𝑟) − 1

2 ln (1 −
1
8𝑟

2𝜅2) + 𝐶2} + 𝐶1 ln(𝑟)

(16)

Due to the symmetry at 𝑟 = 0, we know that 𝑙𝑛(𝑟) termmust perish in the final equation.
On the other hand, 𝐶2 =

1
2
ln (1 − 1

8
𝑅2𝜅2), therefore the final result of 𝑢(𝑟) is:

𝑢(𝑟) =
2𝐸𝑧𝑒𝑐0
𝜇𝜅2 ln [

1 − 1
8
𝑟2𝜅2

1 − 1
8
𝑅2𝜅2

] (17)

At the center of the tube, 𝑢(𝑟) is maximum and positive (towards the direction of 𝐸𝑧).

9. Flow profile inside tube

The profiles of 𝑢(𝑟)/𝑢max can be seen in Fig. 2. The profile approaches the Hagen-
Poiseuille equation when 𝜅−1 ≈ 𝑅. However please note this behavior cannot be ex-
trapolated to the regime 𝜅−1 < 𝑅/√8, since we need to ensure 𝜎S < 0 (when 𝑐max is
achieved.)
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Figure 2: Profiles of 𝑢(𝑟)/𝑢max with different 𝑘−1/𝑅 values. When 𝑘−1/𝑅 becomes larger, the
profiles approaches the Hagen–Poiseuille (HP, quadratic) equation.

Q3 Solving Poisson Equation Using Simple Finite Difference
Method

1. The Poisson-Boltzmann equation under the Gouy-Chapman condition for a 𝑧+ ∶ 𝑧−
electrolyte solution is written as:

𝑑2𝜓(𝑥)
𝑑𝑥2 = − 𝑒

𝜖𝑟𝜖0
[𝑧+𝑐+0 exp(

−𝑧+𝑒𝜓
𝑘𝑇 ) + 𝑧−𝑐−0 exp(

−𝑧−𝑒𝜓
𝑘𝑇 )] (18)

Let 𝑌 =
𝑒𝜓
𝑘𝑇 , we further get:

𝑑
𝑑𝑥[(

𝑑𝜓
𝑑𝑥 )

2] = −2 𝑒
𝜖𝑟𝜖0

[𝑧+𝑐+0 exp(
−𝑧+𝑒𝜓
𝑘𝑇 ) + 𝑧−𝑐−0 exp(−

𝑧−𝑒𝜓
𝑘𝑇 )]

𝑑𝜓
𝑑𝑥

= −2𝑘𝑇𝜖𝑟𝜖0
[𝑧+𝑐+0 exp(−𝑧+𝑌) + 𝑧−𝑐−0 exp(−𝑧−𝑌)]

𝑑𝑌
𝑑𝑥

(19)

Let’s perform an integral of eq 19 from 0 to ℎ/2:

∫
ℎ/2

0

𝑑
𝑑𝑥[(

𝑑𝜓
𝑑𝑥 )

2]𝑑𝑥 = ∫
ℎ/2

0
−2𝑘𝑇𝜖𝑟𝜖0

[𝑧+𝑐+0 exp(−𝑧+𝑌) + 𝑧−𝑐−0 exp(−𝑧−𝑌)]
𝑑𝑌
𝑑𝑥𝑑𝑥

(
𝑑𝜓(𝑥)
𝑑𝑥

|||
𝑥=ℎ/2

)2 − (
𝑑𝜓(𝑥)
𝑑𝑥

|||
𝑥=0

)2 = ∫
𝑌(ℎ/2)

𝑌(0)
−2𝑘𝑇𝜖𝑟𝜖0

[𝑧+𝑐+0 exp(−𝑧+𝑌) + 𝑧−𝑐−0 exp(−𝑧−𝑌)]𝑑𝑌

𝑑𝜓
𝑑𝑥

|||
𝑥=0

= −sgn(𝜓0)
√√

√
{2𝑘𝑇𝜖𝑟𝜖0

[𝑐+0 exp(
−𝑧+𝑒𝜓
𝑘𝑇 ) + 𝑐−0 exp(

−𝑧−𝑒𝜓
𝑘𝑇 )]}|||

𝑥=0

𝑥=ℎ/2
(20)

The negative sign is given since 𝑑𝜓/𝑑𝑥|||
𝑥=0

will be negative for positive 𝜓(0) values.

It is easy to observe that we can use arbitrary position 𝑥′ (0 < 𝑥′ < ℎ/2) as the upper
limit of the integral in Equation 20, which gives us a first-order ODE between d𝜓

d𝑥
and
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𝜓:

𝑑𝜓
𝑑𝑥

|||
𝑥=𝑥′

= −sgn(𝜓0)
√√

√
{2𝑘𝑇𝜖𝑟𝜖0

[𝑐+0 exp(
−𝑧+𝑒𝜓
𝑘𝑇 ) + 𝑐−0 exp(

−𝑧−𝑒𝜓
𝑘𝑇 )]}|||

𝑥=𝑥′

𝑥=ℎ/2
(21)

2. There are severalways to implement such function, either to treat the Poisson-Boltzmann
equation as second- or first-order ODE.
If you treat the PB equation as second order equation, here are the typical procedures
that can be adapted (assume your ode function if called pb)

(a) Guess value of 𝜓ℎ/2, and calculate the corresponding value of
d𝜓
d𝑥
(𝑥 = 0)

(b) Use d𝜓
d𝑥
(𝑥 = 0) from step 1 and 𝜓0 as initial conditions of pb

(c) Calculate the values of 𝜓 and d𝜓
d𝑥
at 𝑥 = ℎ/2, they should be𝜓ℎ/2 (the value guessed

in step 1) and 0, respectively. If not, return to step 1 and update your guess of 𝜓ℎ/2.

Another approach is to use the first-order ODE as in Equation 21. This is approach
is more robust than the second-order ODE approach, however you should be careful
with the choice of boundary condition (assume your ode function if called pb, which
requires 𝜓ℎ/2 as an input variable):

(a) Guess the value of 𝜓ℎ/2, use 𝜓0 as initial condition, calculate the values of 𝜓(𝑥)
near 𝑥 = ℎ/2.

(b) Calculate the second order derivative d2𝜓
d𝑥2

at 𝑥 = ℎ/2 using finite difference. Check
if it is the same as the value calculatedwith Poisson equation (Equation 18). If not,
return to step 1 and update the guess of 𝜓ℎ/2.

The choice of the boundary condition for the first-order ODE approach, is that the so-
lutions of Equation 21 𝜓(𝑥 = ℎ/2) is always 𝜓ℎ/2 and d𝜓/d𝑥(𝑥 = ℎ/2) is always 0. The
two approaches should yield the same result.

3. The solution of 𝜓ℎ/2 as a function of ℎ can be seen in Figure 3. In addition to the exact
solution of the GC equation, we also compare the solution by the overlap-double-layer
assumption, that the overall potential between two charged plates are the sum of indi-
vidual double layer potential.
It can be found that when ℎ > 6𝜅−1, or ℎ/2 > 3𝜅−1, the two methods produce almost
identical results. This is true since at such separation distance the overlay of double
layers does not significantly affect the ion distribution. On the other hand, such simple
assumption fails when ℎ is comparable with 𝜅−1, which overestimates the value of 𝜓ℎ/2.

4. The finite difference matrix is written as:

A = 1
𝑑2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

−1 2 −1
⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

which is a positive definite matrix. The vector f is then:

f = [𝑓(𝑥1) +
𝛼
𝑑2 , 𝑓(𝑥2), … , 𝑓(𝑥𝑛−1), 𝑓(𝑥𝑛) +

𝛽
𝑑2 ]

T (23)
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Figure 3: 𝜓ℎ/2 as a function of ℎ for exact solution of the GC equation shown in eq 19, and
the assumption that potential overlaps between two adjacent double layers. The twomethods
produce almost negligible difference when ℎ > 6𝜅−1.

5. By following the steps in the exercise one should reach a nonlinear differential equation
for 𝝍 = (𝜓1, … , 𝜓𝑛)𝑇 of shape:

𝐀𝝍 − 𝐹(𝝍) = 0 (24)

whereas 𝐀 is given from exercise Q2.4 and 𝐹(𝝍) has following shape,

𝐹(𝝍) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑑2𝜓1
𝑑𝑥2

+ 𝛼
𝑑2

𝑑2𝜓2
𝑑𝑥2
⋮

𝑑2𝜓𝑛
𝑑𝑥2

𝑑2𝜓𝑛+1
𝑑𝑥2

+ 𝛽
𝑑2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

´ (25)

with 𝜓𝑖 = 𝜓(𝑥𝑖),
𝑑2𝜓𝑖
𝑑𝑥2

being given by the Poisson-Boltzmann equation (18) under Gouy-
Chapmann conditition evaluated for 𝜓𝑖 and the boundary conditions 𝜓0 = 𝛼 = 𝜓𝑛+1 =
𝛽. With this one should be able to a solver routine to get the values of 𝝍.

6. The comparison of bothmethods is visualized in Figure 4. We observe that the finite dif-
ference method achieves similar results to the shooting method for a sufficiently large
value of 𝑛. However the finite differencemethod excels the shootingmethod in stability
as it doesn’t require initial values close to the solutions and in speed as it is significantly
faster than the shooting method using the same number of nodes.
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Figure 4: Comparison between the exact solution, the shooting method and the finite differ-
ence approach.
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