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Q1 Exact Solution of Metal-Oxide-Silicon Junction

1. From the lectures (and the script), we know that:

𝑛 ∗ 𝑝 = 𝑁𝐶𝑁𝑉𝑒𝑥𝑝 (
−𝐸𝑔
𝑘𝑏𝑇

) = 𝑛2𝑖 (1)

Since the question states that 𝑁𝐶 = 𝑁𝑉, we have:

𝑛 ∗ 𝑝 = 𝑁2
𝐶𝑒𝑥𝑝 (

−𝐸𝑔
𝑘𝑏𝑇

) = 𝑛2𝑖 (2)

𝑁𝐶 = 𝑛𝑖𝑒𝑥𝑝 (
𝐸𝑔
2𝑘𝑏𝑇

) = 2.56 ∗ 1019 𝑐𝑚−3 (3)

Moreover, since the number of intrinsic n-carriers is considerably smaller than the
number of donor carriers introduced (𝑁𝐷 ≈ 𝑛), we can calculate the energy gap as
follows:

𝑁𝐷 ≈ 𝑛 = 𝑁𝐶𝑒𝑥𝑝 (−
𝐸𝐶 − 𝐸𝐹
𝑘𝑏𝑇

) (4)

𝑙𝑛 (
𝑁𝐷
𝑁𝐶

) = −
𝐸𝐶 − 𝐸𝐹
𝑘𝑏𝑇

(5)

𝑙𝑛 (
𝑁𝐷
𝑁𝐶

) = −
𝐸𝐶 − 𝐸𝐹
𝑘𝑏𝑇

(6)

𝐸𝐶 − 𝐸𝐹 = 𝐾𝑏𝑇𝑙𝑛 (
𝑁𝐶
𝑁𝐷

) = 0.26 𝑒𝑉 (7)

2. We start by writing down the 1D charge density in full form:

𝜌 = 𝑒 [𝑁𝐷 − 𝑛(𝑥) + 𝑝(𝑥) − 𝑁𝐴] (8)

Now we can introduce the electric potential dependency of the carrier concentrations
by considering both the gate voltage as well as the field inherent to the junction:

𝜌 = 𝑒 [𝑁𝐷 − 𝑁𝐶𝑒𝑥𝑝 (
−𝑒(𝜙𝑛 − 𝜓(𝑥)

𝑘𝑏𝑇
) + 𝑁𝑉𝑒𝑥𝑝 (

𝑒𝜙𝑛 − 𝜓(𝑥) − 𝐸𝑔
𝑘𝑏𝑇

) − 𝑁𝐴] (9)

By observing that 𝑛0 = 𝑁𝐶𝑒𝑥𝑝 (
−𝑒𝜙𝑛
𝑘𝑏𝑇

) = 1.02 ∗ 1015 and 𝑝0 = 𝑁𝑉𝑒𝑥𝑝 (
𝑒(𝜙𝑛−𝐸𝑔)

𝑘𝑏𝑇
) =

9.85 ∗ 104, we can plug in the obtained charge density in the PBE, which leads us to the
final result:

𝑑2𝜓
𝑑𝑥2 = − 𝑒

𝜖𝑟𝜖0
[𝑁𝐷 − 𝑝0𝑒𝑥𝑝 (

−𝑒𝜓(𝑥)
𝑘𝑏𝑇

) − 𝑛0𝑒𝑥𝑝 (
𝑒𝜓(𝑥)
𝑘𝑏𝑇

)] (10)

1



Here we note that 𝑁𝐴 = 0 𝑐𝑚−3. Moreover, the boundary conditions are selected such
that the potential at the interface corresponds to some initial valuewhich decays to zero
as the distance from said interface approaches infinity.

3. In the depletion layer layer of the semiconductor 𝑛 ≈ 𝑝 ≈ 0, thus in the case where the
acceptor concentration is zero:

𝜌 = 𝑒 [𝑁𝐷 − 𝑛(𝑥) + 𝑝(𝑥) − 𝑁𝐴] = 𝑒𝑁𝐷 (11)

This leads to the following PBE:

𝑑2𝜓
𝑑𝑥2 = −𝑒𝑁𝐷𝜖𝑟𝜖0

(12)

The solution of this equation has the following form:

𝜓(𝑥) = −𝑒𝑁𝐷𝜖𝑟𝜖0
𝑥2
2 + 𝐴𝑥 + 𝐵 (13)

By considering the derivative of the potential at W, we obtain 𝐴 = 𝑒𝑁𝐷

𝜖𝑟𝜖0
𝑊. Further, by

evaluating the potential at 𝑥 = 0, we get 𝐵 = 𝜓0. Finally, by considering the potential
at 𝑥 = 𝑊 and reducing back to a perfect square form, we arrive at the final form of the
solution:

𝜓(𝑥) = − 𝑒𝑁𝐷
2𝜖𝑟𝜖0

(𝑥 −𝑊)2 (14)

4. The exact equation can be solved using a boundary value problem solver, such as finite
element based methods or by applying the shooting method previously seen in past
homework assignments. For the analytical solution of the approximate equation, all
that is needed is a simple plotting library.

Figure 1: Potential profile as a function of distance from the insulator-semiconductor inter-
face for an initial surface potential of -0.25V. The analytical solution of the approximate PBE
shows the expected parabola behavor which is only physically meaningful until the depletion
width is reached (see B.C.), whereas the numerical solution of the exact equation results in a
profile that is sensible within the whole plotted range.
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5. In order to determine 𝜓0 as a function of 𝑉𝐺, we start by considering charge neutrality,
which, in this case, can be reduced to a surface charge form due to the geometry of the
problem and of the charge distribution.

𝜎𝑐 + 𝜎𝑑 = 0 (15)

Where 𝜎𝑐 and 𝜎𝑑 are the surface charges due to the gate voltage (in themetal) and due to
the difference in Fermi energy (in the semiconductor). Since the gate voltage is applied
such that it forms a capacitor, we get:

−(𝜓0 − 𝑉𝐺)
𝜖𝑑𝜖0
𝑑 +∫

∞

0
𝜌𝑑(𝑥) 𝑑𝑥 = 0 (16)

−(𝜓0 − 𝑉𝐺)
𝜖𝑑𝜖0
𝑑 −∫

∞

0
𝜖0𝜖𝑟

𝑑2𝜓
𝑑𝑥2 𝑑𝑥 = 0 (17)

The final expression can then be solved numerically to obtain 𝜓(𝑉𝐺) for the desired
voltage range.

Figure 2: Potential profile as a function of the gate voltage.

Q2 Examining the Shockley-Queisser Limit

1. Spectral radiance of black body

The spectral radiance of black body can be seen in Fig. 3.

The maximal radiance occurs at 𝜕𝐵/𝜕𝜈 = 0:

𝜕𝐵
𝜕𝜈 ∝ 𝜈2

(𝑒𝛽𝜈 − 1)2
[𝑒𝛽𝜈(𝑒𝛽𝜈 − 3) + 3] = 0 (18)

where 𝛽 = ℎ/𝑘B𝑇. The solution is 𝛽𝜈max ≈ 2.82, corresponding to 𝜈max = 3.87 × 1014
Hz, or 1.60 eV or 773.7 nm.
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Figure 3: Spectral radiance 𝐵𝜈,𝑇 of black body with 𝑇 = 6600 K. The absorption by Si is
indicated by magenta, and the visible light range is marked in gray.

2. Light absorption by Si

See the magenta region marked in Fig. 3. The total solar energy absorbed is about 83
%.

3. Light conversion in Si

The high-energy photons excite electron-hole pairs into “deep levels” away from the
conduction band / valence band minima (CBM / VBM). The excited electron / holes
have momentum 𝑝 = √2𝑚∗Δ𝐸 where Δ𝐸 of deep level away from band minima and
𝑚∗ is the effective mass. When the carriers relaxed to the bandminima, due to the con-
servation of momentum, their momentum are transferred to a phonon which causes
energy loss. After a very short time (∼ fs), all the photo-excited electron-hole pairs fall
into the states at the band edge, having an energy associated with the silicon band gap.
The onset energy is the bandgap of Si.

4. Theoretical limit

For any photon with ℎ𝜈 > 𝐸g, the maximum output energy is 𝐸g. Therefore the theo-
retical upper limit is

𝜂upper =
∫∞
𝐸g/ℎ

𝐸g
ℎ𝜈𝐵(𝜈, 𝑇)d𝜈

∫∞
0 𝐵(𝜈, 𝑇)d𝜈

(19)

where 𝐸g = 1.1 eV is the bandgap of Si. Using the bandgap of Si, 𝜂upper is estimated to
be about 43 %.

5. Gap-dependent efficiency limit

The theoretical upper limit of solar energy conversion as function of bandgap can be
seen in Fig. 4. Si is very close to the theoretical optimal bandgap. In addition, the
theoretical upper limit calculated using the AM1.5 global spectrum are also plotted for
comparison. Note the limit we obtained only considered the bandgap mismatch be-
tween a semiconductor and solar spectrum. The actual Shockley-Quessier limit of Si is
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calculated to be about 33%which consideredmore effects. You can access their original
paper for more details.
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Figure 4: Bandgap-dependent theoretical upper limit of an ideal solar cell with black body
radiation at 6600 K and AM1.5 global spectrum.
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