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Q1 Surface tension of graphene and graphene stacks

Graphene, a two-dimensional, one-atom-thick hexagonal lattice of carbon atoms, has re-
ceived considerable attention due to its extraordinary properties. Research on wetting phe-
nomena on graphene is the first step towards quantifying its surface properties, because the
interfacial energies involved directly determine the macroscopic contact angle, 𝜃 of a liquid
droplet on graphene. Using the concepts and methods that we discussed in class, we can ap-
proach this interesting system in a simple and insightful manner. Here are the assumptions
used in the homework:

1. Graphene is a two-dimensional sheet with zero thickness, and the mass is uniformly
distributed in the sheet.

2. Graphite is a lamellar structure of graphene with the interlayer distance of 𝑑0 = 3.35 Å.

3. van der Waals (vdW) interactions are perfectly additive and pairwise.

In this question we will derive the surface tension of graphene and its stacks using the
knowledge learned from the lecture. We assume the graphene sheets in graphite are domi-
nated by the vdW forces. The vdW potential between two carbon atoms is given by: 𝑉CC =
−𝛽CC/𝑟6, where 𝑟 is the distance between the two carbon atoms.

Please answer the following questions to solve the problem step-by-step.

1. Please show that the surface tension of single layer graphene 𝛾G1 is given by 𝛾G1 =
𝜋𝜎2𝛽CC
4𝑑40

, where 𝜎 is the surface density of carbon atoms on graphene. Graphene has

hexagonal unit cell with lattice constant 𝑎 = 2.49 Å (Figure 1).

2. Assume two stacks of graphene A and B, both composed of parallel graphene sheets
with interlayer distance 𝑑0 separated by a distance 𝛿 (Figure 2). Stack A contains 𝑚
layers of graphene, and graphene stack B contains 𝑛 layers. Please derive the expression
for the work of adhesion Δ𝑊AB(𝑚, 𝑛) between A and B separated by a distance 𝛿 as
function of 𝑚 and 𝑛.

3. If we have𝑚 → ∞ and 𝑛 → ∞,Δ𝑊AB(∞,∞) essentially becomes the work of adhesion
for graphite. Assuming that the distance 𝛿 = 𝑑0, please write the expression for the
surface tension of graphite 𝛾G∞ using the variables given here.
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Figure 1: Structure of graphene. The unit cell and lattice constant are shown.
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Figure 2: Scheme of graphene stacks A and B seperated by a distance 𝛿 with layer numbers
𝑚 and 𝑛, respectively.
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4. Experimentally, the surface tension of graphite 𝛾G∞ has been found to be 129 mJ⋅m-2 1.

Using the expression you obtained in Q1.3, calculate the value of 𝛽CC.

Q2 Derivation of the Van derWaals Equation of State from the
Lennard-Jones Potential

The Van derWaals (VdW) equation of state provides a foundational model for describing the
behaviour of real gases. By incorporating the effects of intermolecular interactions and the
finite size of molecules, it offers a simple yet instructive framework that successfully predicts
phenomena such as the liquid-gas phase transition.

In this exercise, we will derive the VdW equation directly from the Lennard-Jones (LJ)
potential discussed in lecture I. This approach allows us to gain a deeper understanding of
how microscopic interactions influence macroscopic thermodynamic properties. This exer-
cise will guide you through the derivation step-by-step, using concepts discussed in class.

To simplify the derivation, we adopt the following assumptions:

1. The system consists of a classical monoatomic gas.

2. The pairwise interaction potential u(r) is modelled using the “hard-sphere” Lennard-
Jones potential, which combines a short-range repulsive term and a long-range attrac-
tive term (LJ 𝑟−6):

𝑢(𝑟) = {
+∞ 𝑟 < 𝑟∗

−𝛽 ( 𝑟
∗

𝑟
)
6

𝑟 ≥ 𝑟∗

Here, 𝑟∗ represents the distance at which the potential reaches its minimum value 𝑢0 =
−𝛽, corresponding to the minimum energy of the interaction.

Please answer the following questions to solve the problem step-by-step.

1. Our starting point is the ideal gas. Therefore, we begin by considering a system of non-
interacting molecules, where each molecule is independent, contributing only with ki-
netic energy. The single-molecule partition function is:

𝑞 = 𝑉
Λ3

where

Λ =
√

ℎ
2𝜋𝑚𝑘𝐵𝑇

is the thermal de Broglie wavelength.
For a gas of 𝑁 independent and indistinguishable molecules, the total canonical parti-
tion function is:

𝑄 = 1
𝑁!𝑞

𝑁 = 1
𝑁! (

𝑉
Λ3 )

𝑁
.

Given that:
𝑝 = 𝑘𝐵𝑇 (

𝜕 ln𝑄
𝜕𝑉 )

𝑇,𝑁

Find the equation of state and confirm that is exactly the ideal gas law.
1Renju Zacharia, Hendrik Ulbricht, and Tobias Hertel. “Interlayer cohesive energy of graphite from thermal

desorption of polyaromatic hydrocarbons”. In: Phys. Rev. B 69 (2004), p. 155406.
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2. In the VdWmodel, to account for LJ attraction and repulsion, we modify 𝑄, using the
following assumptions:

(a) Since 𝑢(𝑟) = +∞ for 𝑟 < 𝑟∗, not all volume 𝑉 is available to the gas:

𝑉 → 𝑉eff.

(b) We can add an energy term equal to the total interaction energy felt by a single
molecule due to the ”mean field” of the rest (assumed distributed randomly with
uniform density 𝜌 = 𝑁/𝑉). Use as template the derivation done in lecture I and
show that the total interaction energy can be written as

𝜑 = −2𝑎𝑁𝑉

where 𝑎 = 2𝜋𝛽
3
𝑟∗.

(c) The single-molecule partition function ismodified by aBoltzmann factor 𝑒−𝜑/2𝑘𝐵𝑇,
where the factor of 2 is to avoid double counting:

𝑞 =
𝑉eff𝑒−𝜑/2𝑘𝐵𝑇

Λ3 ,

where 𝑉eff is the effective volume. Remembering that each molecule excludes a
volume of 𝑏 = 4𝜋(𝑟∗)3

3
1
2
due to hard-core repulsion, where 1

2
accounts for the fact

that the effect is also due to pair interactions. Write the effective volume.

Derive the total partition function using these new assumptions. From this, now derive
the equation of state as before.

3. Critical parameters.
Now you will calculate the critical parameters. First rewrite the equation of state (EoS)
found in point 2 in terms of molar quantities using 𝑣 = 𝑉/𝑁 and write the pressure p
as function of v and T.
The critical point is then found as the inflection point of p-v curve which is equivalent
to the following two equations:

(
𝜕𝑝
𝜕𝑣 )𝑇

= 0

(
𝜕2𝑝
𝜕𝑣2 )𝑇

= 0

Solving the system gives the critical volume 𝑣𝑐 and the critical temperature 𝑇𝑐. Substi-
tuting back into the EoS gives the critical pressure 𝑝𝑐.

4. To help plot the EoS we write the parameters v, P and T in dimensionless form by nor-
malizing them by their critical values. The reduced variables are defined as:

𝑝𝑟 =
𝑝
𝑝𝑐
, 𝑣𝑟 =

𝑣
𝑣𝑐
, 𝑇𝑟 =

𝑇
𝑇𝑐
.

Now write the Van der Waals equation in reduced form 𝑃𝑟(𝑇𝑟, 𝑣𝑟). This expression
demonstrates that the Van der Waals equation, in terms of reduced variables, is inde-
pendent of the material-specific parameters a and b. This universality is known as the
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Law of Corresponding States, which implies that all substances described by the Van
derWaals equation share the same behaviour when expressed in terms of their reduced
variables. Plot the VdW EoS in the reduced variables at different values of 𝑇𝑟. Explain
what happens at 𝑇𝑟 = 1 andwhy the critical point is an inflection point in the p-v curve.

5. Instability region and spinodal curve.
In the (𝑇, 𝑉, 𝑁) ensemble, the appropriate thermodynamic potential is the Helmholtz
free energy 𝐹(𝑇, 𝑉, 𝑁) where

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉

The stability condition for an isotherm requires that: ( 𝜕
2𝐹

𝜕𝑉2 )𝑇,𝑁
≥ 0 so that F must be a

convex function of the volume.
Show that it is equivalent to the condition that 𝑝(𝑣) must be strictly decreasing. Plot
the region of the p-v plane that is unstable according to the VdW EoS. Osserve that it
vanishes at the critical point. What happens in this region?

6. Saturation curve.
The spinodal points delimit the region of instability in the 𝑝 − 𝑣 plane where phase
separation by spinodal decomposition occurs. However in each isotherm:

𝑝min(𝑇) ≠ 𝑝max(𝑇),

where 𝑝min(𝑇) and 𝑝max(𝑇) are the spinodal points at temperature T. Therefore satura-
tion must occur at some intermediate value between 𝑝min < 𝑝𝑠 < 𝑝max and at 𝑣 not
within the unstable area.
This suggests that phase separation (at constant 𝑇 = 𝑇𝑠) occurs when

𝑣gas𝑠 > 𝑣(𝑝max) > 𝑣(𝑝min) > 𝑣liq𝑠 .

To find the saturation curve, we need to solve (for each value of 𝑇) for (𝑝𝑠, 𝑣
𝑔𝑎𝑠
𝑠 , 𝑣𝑙𝑖𝑞𝑠 ),

and we need three equations:

(a) EoS for the liquid phase
(b) EoS for the gas phase
(c) 𝜇𝑔𝑎𝑠 = 𝜇𝑙𝑖𝑞

For a single component system the molar Gibbs free energy is equal to the chemical
potential 𝑔 = 𝜇. On an isotherm 𝑑𝑔 = 𝑣𝑑𝑝 = 𝑑(𝑝𝑣) − 𝑝𝑑𝑣. Therefore, equation (c) can
be obtained by integrating from 𝑣𝑙𝑖𝑞𝑠 to 𝑣𝑔𝑎𝑠𝑠 .

Δ𝑔 = 𝑔gas − 𝑔liq = 𝑝𝑠(𝑣
𝑔𝑎𝑠
𝑠 − 𝑣𝑙𝑖𝑞𝑠 ) −∫

𝑣𝑔𝑎𝑠𝑠

𝑣𝑙𝑖𝑞𝑠
𝑝𝑑𝑣

Write down these equations and show that (c) can be written as follows

𝑘𝐵𝑇 [
𝑣𝑔𝑎𝑠𝑠

𝑣𝑔𝑎𝑠𝑠 − 𝑏
− 𝑣𝑙𝑖𝑞𝑠
𝑣𝑙𝑖𝑞𝑠 − 𝑏

− ln (𝑣
𝑔𝑎𝑠
𝑠 − 𝑏
𝑣𝑙𝑖𝑞𝑠 − 𝑏

)] − 2𝑎 ( 1
𝑣𝑔𝑎𝑠𝑠

− 1
𝑣𝑙𝑖𝑞𝑠

) = 0

Now write the same system in reduced variables ( ̄𝑝𝑠, ̄𝑇𝑠, ̄𝑣𝑙𝑖𝑞, ̄𝑣𝑔𝑎𝑠).
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7. Optional numerical solution for extra points.
Given ̄𝑇𝑠 we can numerically solve for each 𝑇𝑠 and plot ( ̄𝑝𝑠, ̄𝑣𝑙𝑖𝑞, ̄𝑣𝑔𝑎𝑠).

Solve numerically for one value of T and draw the 2 points: ( ̄𝑝𝑠, ̄𝑣𝑔𝑎𝑠) and ( ̄𝑝𝑠, ̄𝑣𝑙𝑖𝑞).
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