
Lecture 10

The Dispersion Force and van der
Waals Interaction

In Lecture 9, we have seen the interactions caused by charges and dipoles, including the
Keesom and Debye interactions that contribute to the 𝑟−6 vdW energy. In this lecture, we
will discuss the last contribution to the vdW interactions, the London dispersion energy.

10.1 Classical view of dispersion interactions
From last lecture we have seen, that a term containing the electronic polarizabilities 𝛼0,𝑖
of both molecules occurs as the result of unification of the polarization interactions. If we
ignore any charge and dipole components, the interactions between neutral molecules still
exist!

This type of energy, known as the “dispersion interaction”, has a non-trivial origin
which stems fromquantumelectrodynamics. We can however, use a semi-classicalmethod
to approach it. Consider a Bohr atomwith radius 𝑎0which has a transient dipole 𝑢 = 𝑒𝑎0, if
a neutral molecule is in its vicinity, it can be polarized by the field of the Bohr atom (Figure
10.1).

Transient dipole 
molecule 1

EM Wave

Induced dipole 
molecule 2

Figure 10.1: The dispersion force between 2 Bohr atoms can be seen as the electromagnetic
wave between the transient dipole moments.
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94 LECTURE 10. THE DISPERSION FORCE AND VAN DERWAALS INTERACTION

The interaction free energy is thus:

𝑤𝛼𝛼(𝑟) = − (𝑒𝑎0)2𝛼02(4𝜋𝜀0𝜀r)2𝑟6 (10.1)

From the last lecture we know that, the electronic polarizability of Bohr atom with radius𝑎0 is 𝛼0 = 4𝜋𝜀0𝜀r𝑎30:
𝑤𝛼𝛼(𝑟) = − 𝑒24𝜋𝜀0𝑎0 𝛼01𝛼02(4𝜋𝜀0𝜀r)𝑟6= −2ℎ𝜈I

𝛼01𝛼02(4𝜋𝜀0𝜀r)𝑟6 (10.2)

where ℎ𝜈I = 13.6 eV is the ionization energy of the Bohr atom, and half the Coulomb
energy of a Bohr atom.

This is almost the correct result. The exact form of the London (free) dispersion energy
is given by:1 𝑤𝛼𝛼 = −32 𝛼01𝛼02(4𝜋𝜀0𝜀r)2𝑟6 ℎ𝜈I1𝜈I2𝜈I1 + 𝜈I2 (10.3)

where ℎ𝜈I1 and ℎ𝜈I2 are the ionization energies of molecules 1 and 2, respectively. If 𝜈I1 =𝜈I2, this is only different from Equation 10.2 by a pre-factor.
But we immediately notice that such energy is proportional to ℎ𝜈I of both molecules,

which is of the magnitude of 10 eV. On the other hand, the mathematical derivation from
last lecture shows that the prefactor is proportional to 𝑘B𝑇. There is a difference by 2 orders
of magnitude! This feature is explained by the frequency-dependent polarizability which
we will cover later. Nevertheless, let’s first take the result from the London dispersion the-
ory, to complete our story of vdW interactions. With the Keesom, Debye and London in-
teractions as individual recipes, we can build the complete form of the vdW interaction,
written in free energy:

𝑤vdW = − 𝑢21𝑢223𝑘B𝑇(4𝜋𝜀0𝜀r)2𝑟6⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
Keesom

− 𝑢21𝛼02 + 𝑢22𝛼01(4𝜋𝜀0𝜀r)2𝑟6⏟⎵⎵⎵⏟⎵⎵⎵⏟
Debye

− 3𝛼02𝛼01 ℎ𝜈1𝜈2𝜈1+𝜈22(4𝜋𝜀0𝜀r)2𝑟6⏟⎵⎵⎵⏟⎵⎵⎵⏟
London= −𝛽Keesom + 𝛽Debye + 𝛽London𝑟6

(10.4)

We can see the coefficient 𝛽 associated with the 𝑟−6 of Lenard-Jones potential is split into
three contributions. Let’s see some key features of the vdW interaction:

The London dispersion force is not weak at all.
Thanks to the relatively large ionization energies of atoms (~10 eV), the London dispersion
is not weak. We can actually use the London dispersion energy to estimate the phase tran-
sition point of noble gases. Assume that in a noble gas liquid, the closest distance between
two sphere-like atoms, is just the atom diameter 𝜎. At the melting point (𝑇m) of the noble
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gas liquid, the thermal kinetic energy 3/2𝑘B𝑇m overcomes the London dispersion energy,
such that:

𝑤vdW + 𝐸kin = − 3𝛼204(4𝜋𝜀0)2𝜎6ℎ𝜈I + 32𝑘B𝑇m = 0 (10.5)

where 𝑇B is the melting point of the noble gas. We can see that this rough theory actually
captures the experimental boiling point, such as:1

• Ne: 𝜎 = 3.08 Å, ℎ𝜈I = 21.6 eV, 𝛼0/4𝜋𝜀0 = 0.39×10-30 m3 → 𝑇m = 22 K. Experimental𝑇m = 27 K

• Ar: 𝜎 = 3.76 Å, ℎ𝜈I = 15.8 eV, 𝛼0/4𝜋𝜀0 = 1.63×10-30 m3 → 𝑇m = 85 K. Experimental𝑇m = 87 K

The London dispersion force is dominating the vdW interaction be-
tween non-polar molecules.
This is easy to observe. In neutral or less-polar molecules the 𝑢 is usually small and 𝛼 is
large.

Dipole-Dipole interaction becomes more important between highly
polar molecules.
In highly polar molecular systems, such as interaction in water, the dipole interactions can
be quite appreciable. This can be seen from the contribution of dispersion energy in total
vdW interaction (gas phase).

• CH4 - CH4, 𝛽vdW = 102 × 10−79 J ⋅ m6, 𝜂London = 100%

• HCl - HCl, 𝛽vdW = 123 × 10−79 J ⋅ m6, 𝜂London = 86%

• NH3 - NH3, 𝛽vdW = 111 × 10−79 J ⋅ m6, 𝜂London = 57%

• H2O - H2O, 𝛽vdW = 139 × 10−79 J ⋅ m6, 𝜂London = 24%

Revisiting the relation 𝐴AB = √𝐴AA𝐴BB

In lecture 1 we have seen the empirical equation that the Hamaker constant between 2
surfaces can be written as 𝐴AB = √𝐴AA𝐴BB, when is it valid?

This is only applicable for situations where dispersion interaction dominates. We know
that the vdW coefficient (the one associated with 𝑟−6) 𝛽AA ∝ 𝛼20,Aℎ𝜈A and 𝛽BB ∝ 𝛼20,Bℎ𝜈B,
by taking that ℎ𝜈A𝜈B/(𝜈A + 𝜈B) ≈ √ℎ2𝜈A𝜈B/2, we have 𝛽AB ≈ √𝛽AA𝛽BB. This assumption
will break when contribution from permanent dipoles becomes more important, e.g. the
interaction involving water.
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The above analysis is also true for Hamaker constant 𝐴AB = 𝜋2𝜌A𝜌B𝛽AB, when the
London dispersion force dominates. Since 𝜌A𝜌B = √𝜌2A𝜌2B, we can instantly get 𝐴AB =√𝐴AA𝐴BB.

10.2 Frequency-dependent dielectric response
To main reason why the London dispersion energy is related with ℎ𝜈I instead of 𝑘B𝑇, is
that the interaction between induced dipoles are coming from the fluctuation of the EM
waves and is frequency-dependent. The frequency-dependent electronic polarizability can
be described by the Lorentz oscillator model (Figure 10.2).

x

y r F
ext 

= -eE(t)

v = r
.

.
F

f
= -Γm

e
r

F
ang 

= -m
e
rω

0
2

Figure 10.2: The forces on an electron in the classical Lorentz model.

We model the motion of an electron in a Bohr atom orbiting the nucleus. The Bohr
atom has transient position r(𝑡) with intrinsic oscillating frequency 𝜔0. When external
field 𝐸(𝑡) is interacting on the electron, the total force on the electron is Ftot = 𝑚𝑒 ̈r, which
is contributed by:

• The external force: Fext = −𝑒E
• The angular force: Fang = −𝑚𝑒r𝜔20
• The friction (damping) force: Ff = −Γ𝑚𝑒 ̇r
The equation of motion is then written as:𝑚𝑒 ̈r + Γ𝑚𝑒 ̇r +𝑚𝑒𝜔20r = −𝑒E (10.6)

We can perform a Fourier transformation to r and E from time domain to frequency do-
main:
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̂r(𝜔) = ∫∞
−∞ r(𝑡)𝑒−𝑖𝜔𝑡d𝑡 (10.7)

̂E(𝜔) = ∫∞
−∞ E(𝑡)𝑒−𝑖𝜔𝑡d𝑡 (10.8)

and its reverse transformation looks like:

r(𝑡) = ∫∞
−∞ ̂r(𝜔)𝑒𝑖𝜔𝑡d𝜔 (10.9)

E(𝑡) = ∫∞
−∞Ê(𝜔)𝑒𝑖𝜔𝑡d𝜔 (10.10)

The derivatives of r regarding 𝑡 using Fourier transformation can thus be written as:
̇r(𝑡) = ∫∞

−∞𝑖𝜔r(𝑡)𝑒𝑖𝜔𝑡d𝜔 (10.11)

̈r(𝑡) = ∫∞
−∞ − 𝜔2r(𝑡)𝑒𝑖𝜔𝑡d𝜔 (10.12)

(10.13)

compare the left and right hand terms in the integral and finally we get:𝑚𝑒r̂(𝜔)(−𝜔2 + 𝑖Γ𝜔 + 𝜔20) = −𝑒Ê (10.14)

We can get the frequency 𝜔-dependent electronic polarizability:
𝛼(𝜔) = −𝑒 ̂r(𝜔)

Ê(𝜔) = 𝑒2𝑚𝑒(𝜔20 + 𝑖𝜔Γ − 𝜔2) (10.15)

At zero frequency, we have 𝛼0 = 𝛼(𝜔 = 0) = 𝑒2/(𝑚𝑒𝜔20). We can also rewrite 𝛼(𝜔) using𝛼0: 𝛼(𝜔) = 𝛼01 + 𝑖Γ 𝜔𝜔0 − ( 𝜔𝜔0 )2 (10.16)

Note ℏ𝜔0 = ℎ𝜈I actually equals the ionization energy of an electron, we may also rewrite
it in terms of 𝜈: 𝛼(𝜈) = 𝛼01 + 𝑖Γ 𝜈𝜈I

− ( 𝜈𝜈I
)2 (10.17)

The frequency-dependent polarizability is a complex quantity, with its real part repre-
senting the phase and imaginary part representing the absorption of energy at frequency𝜔. The real part of polarizability approaches its maximum at 𝜔0, as the electron is at res-
onance. To convert 𝛼(𝜈) to a real function, we can use the imaginary frequency 𝑖𝜈 as the
variable, which gives:
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𝛼(𝑖𝜈) = 𝛼01 + Γ𝑖𝜈𝜈I
+ (𝑖𝜈𝜈I

)2 (10.18)

The plot of 𝛼(𝜈) and 𝛼(𝑖𝜈) can be seen in Figure 10.3. The polarizability in imaginary
frequency is a monotonically decaying function, and is crucial for the calculation of vdW
interactions. For molecules with multiple ionic absorption frequencies, it is more practical
to sum all the polarizability to approach the exact solution, which improves the original
London theory.
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Figure 10.3: Typical plots of Re(𝛼(𝜈)), Im(𝛼(𝜈)) and 𝛼(𝑖𝜈), Γ = 0.05
Similar to the microscopic polarizability, the permittivity of a macroscopic material is

also frequency-dependent. This can be seen using a simple capacitor model, as shown
in Figure 10.4 left. Under an oscillating electric field (such as that in an AC circuit), the
induced dipoles are not in phase with the external field, and the permittivity (known as
the “dielectric function” in this case) varies with frequency 𝜔. Typical real and imaginary
dielectric functions of a medium, are shown in Figure 10.4 right.
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Figure 10.4: Frequency-dependent dielectric response. Left: polarization in a parallel-
plate capacitor under AC field. Right: real and imaginary part of the dielectric function𝜀(𝜔) of a medium as a function of 𝜔.
10.3 Microscopic picture: McLachlan model
Microscopic: McLachlan model

The first complete theory for the vdW interaction involving 2 atoms in a medium, is
proposed by McLachlan,2 which is expressed as:

𝑤vdW(𝑟) = − 6𝑘B𝑇(4𝜋𝜀0)2𝑟6
∞∑′
𝑛=0

𝛼1(𝑖𝜈𝑛)𝛼2(𝑖𝜈𝑛)𝜀23(𝑖𝜈𝑛) (10.19)

The∑′ notation means that the first term in the summation is multiplied by 1/2. The
frequencies are sampled, only at discreet values that ℎ𝜈𝑛 = 2𝜋𝑘B𝑇𝑛 (known as the Mat-
subara frequencies). The typical 𝛼(𝑖𝜈)−𝜈 plots of polar and non-polar molecules using the
Lorentz model can be seen in Figure 10.5.

Equation 10.19 might seem complicated, but we can study two extreme cases:

1. Zero-frequency contributions
At zero frequency, we know fromLecture 9 that the polarizability reduces to the form
of 𝛼0 + 𝑢2/(3𝑘B𝑇), thus we have:

𝑤vdW(𝜈 = 0, 𝑟) = −12 6𝑘B𝑇(𝛼01 + 𝑢21/(3𝑘B𝑇))(𝛼02 + 𝑢22/(3𝑘B𝑇))(4𝜋𝜀0𝜀23)2𝑟6= − 𝑢21𝑢223𝑘B𝑇(4𝜋𝜀0𝜀3)2𝑟6⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
Keesom

− 𝑢21𝛼02 + 𝑢22𝛼01(4𝜋𝜀0𝜀3)2𝑟6⏟⎵⎵⎵⏟⎵⎵⎵⏟
Debye

− 3𝑘B𝑇𝛼01𝛼02(4𝜋𝜀0𝜀3)2𝑟6⏟⎵⎵⏟⎵⎵⏟
London(𝑛=0)

(10.20)
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Figure 10.5: Typical molecular polarizability 𝛼(𝑖𝜈) as a function of 𝜈 for polar and non-
polar molecules. The sampling frequencies at 300 K are shown as vertical lines. The dipo-
lar polarizability has contribution only at zero frequency, since 𝜈1 is already in the opti-
cal range. Figure adapted from Israelachvili, Intermolecular and surface forces (Academic
press, 2011).

We immediately see the recovery of the Keesom and Debye energies, as well as the𝛼01𝛼02 term frommathematical derivation. In fact, the last part is the zero-frequency
part of the dispersion energy. Comparing the magnitudes of 𝑘B𝑇 and ℎ𝜈, we can see
that the zero-frequency contribution to the dispersion energy is negligible.

2. Optical-frequency contributions
The lowest legal frequency ℎ𝜈1 = 2𝜋𝑘B𝑇 ≈ 0.16 eV, is already in the IR range (Figure
10.5). The permanent dipoles cannot respond to such high frequency, therefore the
dipole polarizability has no effect on the dispersion energy at optical frequencies. The
electronic polarizability govern the dispersion energy at such frequencies. We first
consider 𝜖3 = 1, that the 2 molecules are in vacuum.
The summation in Equation 10.19 can be estimated using continuous integral at op-
tical frequencies, if temperature is very low. Since ℎd𝜈 = 2𝜋𝑘B𝑇d𝑛, we can rewrite
the integral from 𝑛 = 1 to:

𝑤vdW(𝜈 > 0) = ℎ2𝜋 6(4𝜋𝜀0)2𝑟6 ∫∞
𝜈1 𝛼1(𝑖𝜈)𝛼2(𝑖𝜈)d𝜈 (10.21)

Note that under such treatment, the vdW interaction is essentially T-independent.
Use the approximated form of 𝛼, 𝛼(𝑖𝜈) = 𝛼0/[1 + (𝑖𝜈/𝜈I)2], and 𝜀3 = 1, the integral
ends up with:

𝑤(𝜈 > 0, 𝑟) = − 3𝛼01𝛼022(4𝜋𝜖0)2𝑟6 ℎ𝜈I1𝜈I2𝜈I1 + 𝜈I2
(10.22)
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which is finally the London form of dispersion energy.
Now we know why this interaction is called “dispersion”. The largest contribution to
the energy in eq 10.21 comes from the range where 𝜈 is close to 𝜈I. Since 𝜈I is usually
in UV range, such interaction is dominated by the polarizabilities from Vis to UV
frequencies. As the polarizability and permittivity are closely related to the disper-
sion of light, it is not hard to understand why it is originally coined as “dispersion
interaction”.

10.4 Macroscopic: Lifshitz theory
So far, we have seen how to calculate the vdW interactions by either explicitly use the Kee-
som, Debye and London interactions, or using the McLachlan equation. All the equations
can lead to Hamaker constant. Such theory still has some disadvantages, such as:

1. The many-body effect, i.e. influence of 3 or more bodies is not considered

2. The retardation, i.e. finite time for EM fluctuations to response.

3. Lacking a general form of interaction regardless of geometry

A final solution to this problem is the Lifshitz theory, which consider the macroscopic
materials as continuous media, and the molecular polarizability is translated into permit-
tivity. The Lifshitz theory does not consider additivity of vdW interaction, which makes
it perfect for calculating macroscopic interactions. In addition, the Lifshitz theory, in its
complete form, considers both electrostatic and magnetism, as well as the finite speed of
light (Figure 10.6).

Figure 10.6: Illustration of Lifshitz’s macroscopic theory of van der Waals interactions.
The vdW interaction is the result of oscillating fields (green wave-like curves) between 2
macroscopic bodies. Figure adapted from arXiv:1509.03338.
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The Lifshitz theory is rather complicated in its original form. We will use a simpler
language to explain its basic ideas.

From theMcLachlan’smodel, theHamaker constant of bulk body 1 and 2 over amedium
3, can be written as:

𝐴vdW = 𝜋2𝜌1𝜌2𝛽132 = 𝜋2𝜌1𝜌2 6𝑘B𝑇(4𝜋𝜀0)2
∞∑′
𝑛=0

𝛼1(𝑖𝜈𝑛)𝛼2(𝑖𝜈𝑛)𝜀3(𝑖𝜈𝑛) (10.23)

where 𝜌1 and 𝜌2 are the number densities of species 1 and 2. Now suppose we are treating
the materials 1 and 2 as continuous media, the question essentially becomes, how does the
polarizability𝛼1 in its ownmedium 𝜀1 looks like fromanothermedium 𝜀3? Wewill look into
this problem by comparing the micro- and macroscopic approaches of interaction (Figure
10.7).
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Figure 10.7: Comparison between microscopic and macroscopic approaches calculating
the interaction energy between a charge in medium 3 with a bulk material 1. The in-
teraction energy 𝑤𝑞1 can either be calculated from microscopic approach integrating the
charge-induced dipole energy 𝑤𝑞𝛼, or from macroscopic approach considering permittiv-
ity 𝜖1. Both approaches should yield the same result.

Let’s assume that we have a test point charge 𝑞 in themedium 3. The interaction energy
between the test charge 𝑞 and a molecule in medium 1 is known from Lecture 9:

𝑤𝑞𝛼 = − 𝑞2𝛼1(4𝜋𝜀0𝜀3)2𝑟4 (10.24)

Assume the distance between 𝑞 and medium is 𝛿. If we sum the integral over medium 1,
then the total interaction between 𝑞 and medium 1 is:

𝑤𝑞1 = ∫∞
𝛿 dx∫∞

0 𝑤𝑞𝛼(𝑟 = √(𝑥2 + 𝑦2))𝜌1(2𝜋𝑦)d𝑦 (10.25)

The integral gives the energy using microscopic approach:

𝑤𝑞1 = − 𝜋𝑞2𝜌1𝛼1(4𝜋𝜀0𝜀3)2𝛿 (10.26)
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On the other hand, we know that the interaction between a charge and a dielectric surface
can be calculated using the “method of image”. Let’s consider a general case, where two
medium l and r are separated by the line 𝑥 = 0. They have permittivities 𝜀𝑙 and 𝜀𝑟, respec-
tively. Now a test charge 𝑞 is place at position (−𝛿, 0), the total interaction it feels can be
simulated by replacing the medium r by a point charge 𝑞′ at its mirror position, (𝛿, 0), as
shown in Figure 10.8. We need to solve the quantity of charge 𝑞′ and the interactions of
this system.
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Figure 10.8: Scheme of the method of images.

Left half of space (𝑥 < 0), the total electrostatic potential is contributed by 𝑞 and a
mirrored image 𝑞′ located at position 𝑥 = 𝛿. The total electrostatic potential is thus:

𝜙(𝑥, 𝑦) = 1(4𝜋𝜀0)𝜀𝑙 [ 𝑞√(𝛿 + 𝑥)2 + 𝑦2 + 𝑞′√(𝛿 − 𝑥)2 + 𝑦2] , 𝑥 < 0 (10.27)

Right half of space (𝑥 > 0), the potential seems as if there is a charge 𝑞″ at position𝑥 = −𝛿 (because there is no actual image in the right half!). The potential is:
𝜙(𝑥, 𝑦) = 1(4𝜋𝜀0)𝜀𝑟 𝑞″√(𝛿 + 𝑥)2 + 𝑦2 , 𝑥 > 0 (10.28)

The boundary conditions at the interface are:
1. The displacement field is continuous in the x-direction: 𝐷𝑙𝑥 = 𝐷𝑟𝑥 (no boundary

charge).
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2. The electric field is continuous in the 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 𝐸𝑙𝑦 = 𝐸𝑟𝑦 (energy conservation).
We then have:

𝐷𝑙𝑥 = 𝐷𝑟𝑥𝜕𝜙𝜕𝑧 𝜀𝑙|||𝑥=0− = 𝜕𝜙𝜕𝑧 𝜀𝑟|||𝑥=0+(𝑞 − 𝑞′)𝛿√(𝛿2 + 𝑦2)3 = (𝑞″)𝛿√(𝛿2 + 𝑦2)3
(10.29)

𝐸𝑙𝑦 = 𝐸𝑟𝑦𝜕𝜙𝜕𝑦 |||𝑥=0− = 𝜕𝜙𝜕𝑦 |||𝑥=0+(𝑞 + 𝑞′)𝑦𝜀𝑙√(𝛿2 + 𝑦2)3 = 𝑞″𝑦𝜀𝑟√(𝛿2 + 𝑦2)3
(10.30)

The solution is:

𝑞′ = −𝜀𝑟 − 𝜀𝑙𝜀𝑟 + 𝜀𝑙𝑞 (10.31)

𝑞″ = 2𝜀𝑟𝜀𝑟 + 𝜀𝑙𝑞 (10.32)

This is easy to examine. When the right part medium is a conductor 𝜀𝑟 = ∞, we have𝑞′ = −𝑞, which is the “image charge” near a metal surface.
Now let’s apply the results from the method of image for interfacial interaction in eq

10.27. Replace 𝜀𝑟 = 𝜀1 and 𝜀𝑙 = 𝜀3, we get the interaction energy using the macroscopic
approach:

𝑤𝑞1 = 𝑤𝑞𝑞′ = 𝑞𝑞′(4𝜋𝜀0)𝜀3(2𝛿) = − 𝑞2(4𝜋𝜀0)𝜀3(2𝛿) 𝜀1 − 𝜀3𝜀1 + 𝜀3 (10.33)

Compare this with eq 10.26, we get:

𝜌1𝛼1 = 2𝜀0𝜀3 𝜀1 − 𝜀3𝜀1 + 𝜀3 (10.34)

This is the last piece we need for transforming the microscopic McLachlan theory to the
macroscopic Lifshitz theory. Doing the same procedure for 𝜌2𝛼2, and don’t forget the fre-
quency dependency for all 𝜀, we can rewrite eq 10.23 as:

𝐴132 = 3𝑘𝑇2 ∞∑′
𝑛=0 [𝜀1(𝑖𝜈𝑛) − 𝜀3(𝑖𝜈𝑛)𝜀1(𝑖𝜈𝑛) + 𝜀3(𝑖𝜈𝑛)] [𝜀2(𝑖𝜈𝑛) − 𝜀3(𝑖𝜈𝑛)𝜀2(𝑖𝜈𝑛) + 𝜀3(𝑖𝜈𝑛)] (10.35)

There are some properties of the Lifshitz theory:

1. It is dominated by the optical frequencies, like the McLachlan theory.
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2. The “Hamaker constant” naturally comes from the difference of dielectric properties
between media. When 𝜀1 = 𝜀2 = 𝜀3, there will be no dispersion interaction at all.

3. The “Hamaker constant” can be negative! Consider the case where 𝜀1 < 𝜀2 < 𝜀3. A
nanoscale air bubble will always be repelled from nanoparticles in water.

The Lifshitz theory, in its complete form, consider that the interaction comes from the
surface EM modes between interfaces. A general form of the Lifshitz energy in planar
geometry can be written as:

𝑤(𝛿) = 𝑘𝑇8𝜋𝑙2 ∞∑′
𝑛=0 ∫

∞
2𝛿√𝜀(𝑖𝜈𝑛)𝜇(𝑖𝜈𝑛)𝜈𝑛/𝑐 𝑥 ln(𝒟E𝒟M)d𝑥 (10.36)

it take s the finite light velocity into account. the 𝒟E and 𝒟M are the dispersion relations
(specific conditions that surface modes can form) in electrostatic and magnetic fields. The
geometric information is embedded in the conditions of 𝒟E and 𝒟M. Thus the additive
assumption (note we still use it to arrive at eq 10.25) is fully abandoned.

10.5 Limitations of current understanding of vdW in-
teractions

We have seen extensive effort in modeling the vdW interactions in materials. Are we satis-
fied with the current theoretical framework yet?

The Lifshitz theory is correct from its origin, the electromagnetic fluctuation. However,
some assumptions in the Lifshitz theory may be problematic:

1. The abrupt change of dielectric medium is not realistic. In reality we cannot create
an interface with step-function-like 𝜖 profile.

2. The energy divergence problem. We can see that from the Lifshitz theory, the inter-
action energy when 𝛿 → 0 will diverge. The step-function-like 𝜖 profile, causes such
discrepancy.

3. 𝜀-profile across the interface is not captured. The surface density of molecules varies
from its bulk property, as we have seen in the case of water-graphene interface. The
uniform 𝜖 assumption may be problematic.

Again, we should note oncewe know the exact local 𝜖 profiles at the interface, the appli-
cation of Lifshitz theory would be flawless. Two main approaches are used to tackle such
problem:

1. Use fluctuation and time-dependent quantum mechanism calculation to calculate
interaction of molecular systems.

2. Develop the Lifshitz formulae in non-uniform medium.
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