
Lecture 11

Electrical Double Layer at
Solid-Electrolyte Interface

11.1 The Poisson-Boltzmann equation
In Lecture 8 we have seen the Poisson equation as the governing equation for electrostatic
problem in dielectric media. The Poisson equation is also applicable to model the distri-
bution of ions in a electrolyte solution near the electrodes, where the solvated ions are
mobile due to highly screening electrostatic interaction between individual ions in a high-
permittivity environment. If both the electric potential and the concentration are small, the
concentration of ions i at position 𝑟, 𝑐𝑖(𝑟), follows the Boltzmann distribution, such that:

𝑐𝑖(𝑟) = 𝑐𝑖,0 exp(−𝐸𝑖𝑘B𝑇) = 𝑐𝑖,0 exp(−𝑒𝑧𝑖𝜓(𝑟)𝑘B𝑇 ) (11.1)

where 𝑐𝑖,0 is the bulk number concentration (unit: m-3) of the ion when 𝜓 = 0, 𝑧𝑖 is the
valence of ion, 𝑘 is the Boltzmann constant and 𝑇 is the temperature. therefore a cation
(positively charged) is depleted while an anion (negatively charged) accumulates in the
region where 𝜓 > 0. Insert Equation 11.1 into the Poisson equation we get the Poisson-
Boltzmann equation of electrolytes

∇2𝜓 = − ∑𝑖 𝑧𝑖𝑒𝜌𝑖𝜀0𝜀𝑟= − 𝑒𝜀0𝜀𝑟 ∑𝑖 𝑧𝑖𝑐𝑖,0 exp(−𝑒𝑧𝑖𝜓𝑘B𝑇 ) (11.2)

Here we only consider the simplest 1D case, where an infinitely-large plate electrode in
inserted into the electrolyte solution. ∇2𝜓 is now simplified as d2𝜓/d𝑥2, where 𝑥 is the
coordinate perpendicular to the plate. Consider the following boundary conditions (Figure
11.1):

• 𝜓 = 0 when 𝑥 → ∞
• d𝜓

d𝑥 = 0 when 𝑥 → ∞
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• 𝜓 = 𝜓0 when 𝑥 = 0
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Electric double layer (EDL)

Figure 11.1: Scheme of the concentration of electrolyte near a charged interface. The
region of electric double layer is shown.

From Gauss’s law we know the surface charge on the conducting plate 𝜎M is related to
d𝜓/d𝑥 at 𝑥 = 0:

𝜎M = − ∫∞
0 𝜌d𝑥

= 𝜀0𝜀𝑟d𝜓
d𝑥 |||∞0= −𝜀0𝜀𝑟d𝜓
d𝑥(𝑥 = 0)

(11.3)

Although the Poisson-Boltzmann equation (Equation 11.2) is mostly calculated numer-
ically due to the nonlinear term on the right hand side, it is still possible to obtain an ana-
lytical solution after certain approximation / simplifications. Wewill introduce two of such
approaches, namely the Debye-Hückel approximation and the Gouy-Chapman solution in
this lecture to reveal some fundamental properties of the electrolyte interface.

11.2 Debye-Hückel approximation
The Debye-Hückel (DH) approximation considers that the electrical potential of ions 𝑧𝑖𝑒𝜓
is much smaller than 𝑘B𝑇. In this case the exponential parts is expanded using Taylor series



11.2. DEBYE-HÜCKEL APPROXIMATION 111

to the first order, and the charge density in the electrolyte solution becomes:

𝜌 = ∑𝑖 𝑧𝑖𝑒𝑐𝑖,0 exp(−𝑧𝑖𝑒𝜓𝑘B𝑇 )
= ∑𝑖 𝑧𝑖𝑒𝑐𝑖,0(1 − 𝑧𝑖𝑒𝜓𝑘B𝑇 )
= −𝜓 ∑𝑖 𝑧2𝑖 𝑒2𝑐𝑖,0𝑘B𝑇

(11.4)

By defining 𝜅 = [∑𝑖 𝑧2𝑖 𝑒2𝑐𝑖,0𝜀0𝜀𝑟𝑘B𝑇]1/2, the Debye-Hückel approximation is written as:

∇2𝜓 = 𝜅2𝜓 (11.5)

In the 1D case, the solution to 11.5 is:

𝜓 = 𝜓0 exp(−𝜅𝑥) (11.6)

which indicates the electrical potential decays exponentially. The characteristic length of𝜓 is thus 𝜅−1. If 𝜓0 > 0, the cations are depleted and the anions are accumulated at the
interface, forming a structure called the electrical double layer (EDL). 𝜅−1 characterizes
the thickness of the EDL, and is also frequently referred as the Debye length 𝜆D.

In chemistry the molar concentration 𝑀𝑖,0 (in mol⋅L-1) is usually used instead of the
number concentration 𝑐𝑖,0 in the original DH approximation. 𝜅 in this case is written as:

𝜅 = [1000𝑒2𝑁a𝜀0𝜀𝑟𝑘B𝑇 ∑𝑖 𝑧2𝑖 𝑀𝑖,0]1/2
= [1000𝑒2𝑁a𝜀0𝜀𝑟𝑘B𝑇 ]1/2 √2𝐼 (11.7)

where 𝐼 = 1/2 ∑𝑖 𝑧2𝑖 𝑀𝑖,0 is the ionic strength of the electrolyte solution. At 25 °C the
Debye length can be approximated with 𝜅 = 0.431/√2𝐼 nm if 𝐼 is in mol⋅L-1. For example
10 mM KCl solution has a Debye length of 3.05 nm. There are several aspects influencing
the Debye length 𝜅−1:

• The permittivity of the solvent𝜅−1 ∝ 𝜀1/2𝑟 : the larger 𝜀𝑟 is, the longer the Debye length.

• The ionic strength𝜅−1 ∝ 𝐼−1/2: the larger 𝐼 is, the shorter the Debye length.

TheDouble layer also have capacitance: the higher𝜓0 is, themore charges accumulates
at the electrode plate. In the DH approximation, 𝜎M = −𝜀0𝜀𝑟 d𝜓d𝑥 (𝑥 = 0) = 𝜀𝜀𝑟𝜅𝜓0, therefore
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the differential capacitance per area 𝐶DH is:

𝐶DH = d𝜎M
d𝜓0= d(𝜀𝜀𝑟𝜅𝜓0)
d𝜓0= 𝜀0𝜀𝑟𝜅−1

(11.8)

which resembles a parallel plate capacitancewith relative permittivity 𝜀r and thickness 𝜅−1.
11.3 Gouy-Chapman solution
The DH approximation can only be valid when 𝑧𝑖𝑒𝜓/𝑘B𝑇 ≪ 1, i.e. 𝜓 ≪ 25 mV at 300 K,
which is not the case for most electrochemical reactions. However there is one situation
where analytical solution in 1D is still available, known as the Gouy-Chapman solution,
where the electrolyte only contains one salt with 𝑧+ = −𝑧− = 𝑧. The Poisson-Boltzmann
equation in GC assumption is written as:𝑑2𝜓𝑑𝑥2 = −𝑧𝑐0𝑒𝜀𝑜𝜀𝑟 [exp(−𝑧𝑒𝜓𝑘B𝑇) − exp( 𝑧𝑒𝜓𝑘B𝑇)]

= 2𝑧𝑐0𝑒𝜀𝑜𝜀𝑟 sinh (𝑧𝑒𝜓𝑘B𝑇) (11.9)

The solution to the GC equation is:
tanh(𝑧𝑒𝜓/4𝑘B𝑇)
tanh(𝑧𝑒𝜓0/4𝑘B𝑇) = exp(−𝜅𝑥) (11.10)

The charge on the conducting plate is:

𝜎M = √8𝑘B𝑇𝜀0𝜀𝑟𝑐0 sinh( 𝑧𝑒𝜓02𝑘B𝑇) (11.11)

And the capacitance from the GC solution is:

𝐶GC = √2𝑧2𝑒2𝜀0𝜀𝑟𝑐0𝑘B𝑇 cosh( 𝑧𝑒𝜓02𝑘B𝑇) = 𝜀0𝜀𝑟𝜅−1 cosh( 𝑧𝑒𝜓02𝑘B𝑇) (11.12)

Unlike 𝐶DH, 𝐶GC depends on both 𝜅−1 and 𝜓0, and increases rapidly with 𝜓0. Nevertheless,
when 𝜓0 → 0, we have 𝐶GC ≈ 𝐶DH. For a 1:1 electrolyte solution with concentration of 1M
and 𝜓0=50mV, 𝐶GC is ∼ 330 𝜇F⋅cm-2. This is a considerably large capacitance, which is not
possible to achieve using even high-permittivity solid statics. For instance such capacitance
is equivalent to that in a 10.4 pm thick SiO2 (𝜀𝑟 = 3.9) layer or 2.2 Å thick TiO2 (𝜀𝑟 = 80)
layer, both are thinner than even one single lattice. Therefore the electrolyte EDL has been
used for creating supercapacitors1 and gatingmaterials in solid state transistors.2 However,
practical considerations should also be given, since a higher electrolyte concentration also
leads to larger leakage current in supercapacitors.
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