
Lecture 13

Stabilization of Charged Particles in
Electrolyte Solutions

In this lecture, we will see another example in surface science that involves the electrical
double layer: the stabilization of charged particles in electrolyte solutions. For example,
proteins can be regarded as charged particles in aqueous solution due to the amine and
carboxylic acid groups. Since aggregation of proteins always reduces the surface area, the
proteins are thermodynamically unstable and tend to aggregate. However depending on
the environment the proteins can be either kinetically stable (negligible aggregation over
a long time span) or kinetically unstable (aggregates within a short time). The difference
between kinetically stable and unstable colloidal systems can be seen in Figure 13.1. From
daily life, we know that adding salts into the protein solution promotes aggregation. In
this lecture, we will see the fundamental principle behind such phenomena and how the
kinetic stability of charged particles is influenced.

123



124LECTURE13. STABILIZATIONOFCHARGEDPARTICLES INELECTROLYTESOLUTIONS

+
+
+

++
+
+ +

+
+ +

+
+++

+

+
+ +

+
+++

+

+
+ +

+
+++

+

+
+
+

++
+
+ +

+
+ +

+
+++

+
+
+ +

+
+++

+

+
+ +

+
+++

+

Aggregation

Concentration

Time

Kinetically stable

Kinetically unstable

Figure 13.1: Kinetic stability of colloidal systems. Although thermodynamically all col-
loidal systems tend to aggregate, depending the time of aggregation, they can be categorized
into kinetically stable or unstable systems.

13.1 The electrostatic repulsion
Consider two charged particles with same sign of charges in solution. There are two types
interactions that counteract each other:

• Attractive force: van der Waals interactions

• Repulsive force: electrostatic repulsion between particles

Let’s first deal with the electrostatic interactions. As we know the high 𝜀𝑟 of water
greatly screens the electrostatic force between two charges. Therefore the repulsive force
is prominent only if the distance between the particles ℎ are very close to the Debye length𝜆D. When two particles are close to each other, the EDLs overlap, causing changes to both
the electrical potential 𝜓 and ionic concentrations 𝑐𝑖 between the junction. There are two
forces involved in this system:

• Electrostatic interaction: caused by the change of 𝜓
• Osmotic force: caused by the change of 𝑐𝑖
Let’s consider the situation of a z:z electrolyte solution. If the particles are much larger

compared with the distance of their junction, they can be regarded as two charged walls
and the system is essentially 1D 13.2.

The osmotic force 𝐹osmotic is created by the imbalance between the osmotic pressure
inside the junction of the particles 𝑃inner and the bulk solution 𝑃outer. In an ideal solution,
the osmotic pressure 𝑃osmotic is related to the local concentration as:𝑃osmotic(𝑥) = 𝑘𝑇(𝑐+(𝑥) + 𝑐−(𝑥)) (13.1)
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Figure 13.2: Approximation of colloidal particles as charged walls. The change of elec-
trolyte concentration causes the osmotic pressure 𝑃inner and 𝑃outer, to be different.

Consider a infinitely small domain at position 𝑥 with volume d𝑉 and area 𝐴 = d𝑉/d𝑥, the
differential osmotic force d𝐹osmotic is then:

d𝐹osmotic = d𝑃osmotic d𝑉d𝑥 = d𝑃osmotic
d𝑥 d𝑉 (13.2)

On the other hand, the differential electrostatic force d𝐹elec is:

d𝐹elec = −(𝜌d𝑉)d𝜓d𝑥 = 𝜀0𝜀𝑟d2𝜓d𝑥2 d𝜓d𝑥d𝑉 (13.3)

which uses the 1D Poisson equation d2𝜓/d𝑥2 = −𝜌/𝜀0𝜀r to derive the right hand side. At
equilibrium, the osmotic force and electrostatic forces balance each other at every 𝑥 posi-
tion. Therefore we have:

d𝑃osmotic
d𝑥 = 𝜀0𝜀𝑟d2𝜓d𝑥2 d𝜓d𝑥= 𝜀0𝜀𝑟2 d

d𝑥 [(d𝜓d𝑥)2] (13.4)

The solution is 𝑃tot = 𝑃osmotic − 𝜀0𝜀𝑟2 (d𝜓d𝑥)2 = Const (13.5)

We can then calculate the total pressure in both the inner (junction) and outer (bulk) re-
gions. Since in the inner region, d𝜓/d𝑥 = 0 when 𝑥 = ℎ/2, 𝑃tot becomes identical with𝑃osmotic(𝑥 = ℎ/2): 𝑃intot = 𝑘B𝑇(𝑐+(𝑥 = ℎ2 ) + 𝑐−(𝑥 = ℎ2 ))= 2𝑘B𝑇𝑐0 cosh [𝑧𝑒𝜓ℎ/2𝑘B𝑇 ] (13.6)
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On the other hand, in the outer region, d𝜓/d𝑥 = 0 when 𝑥 → ∞, therefore:

𝑃outtot = 2𝑘B𝑇𝑐0 (13.7)

Combine Equations 13.6 and 13.7, we get the pressure difference between the inner and
outer regions: Δ𝑃tot = 𝐹R𝐴 = 2𝑘𝑇𝑐0 [cosh(𝑧𝑒𝜓ℎ/2𝑘B𝑇 ) − 1] (13.8)

where 𝐹R is the repulsive force (towards the outer region). The only unknown parameter
here is the potential at the center of the inner region 𝜓ℎ/2. Depending on the system, the
solution of 𝜓ℎ/2 can be different:

• Constant surface potential 𝜓0
In this case the kinetics of the ion migration is very slow and surface potential 𝜓0 on
the walls remains unchanged compared with the bulk system.

• Constant surface charge 𝜎0
In this case the ions migrates fast enough that the surface potential 𝜓0 can becomes
different compared with the bulk system.

• Charge regulated system
The hydrolyzing and dissociation of the surface groups (e.g. NH4

+ and COO-) is in-
fluenced by local pH values and other interactions.

Here we only consider the constant surface potential situation. When the overlap be-
tween EDL is not great, we can assume that the potential between the walls is the superpo-
sition between potential of individual walls (𝜓single), therefore we have 𝜓ℎ/2 = 2𝜓single(𝑥 =ℎ/2). Since 𝜓ℎ/2 is usually very small when the potential superposition assumption is valid,
we can perform a Taylor expansion to Equation 13.8 to the first order:

𝐹R𝐴 ≈ 2𝑘𝑇𝑐0 [1 + (𝑧𝑒𝜓ℎ/2𝑘B𝑇 )22 − 1]
≈ 𝑘𝑇𝑐0 (2𝑧𝑒𝜓single(𝑥 = ℎ/2)𝑘B𝑇 )2

(13.9)

From Equation 11.10 we know the solution of 𝜓single from the GC method:

tanh(𝑧𝑒𝜓single4𝑘B𝑇 ) = tanh( 𝑧𝑒𝜓04𝑘B𝑇) exp(−𝜅𝑥)𝜓single = 4𝑘B𝑇𝑧𝑒 Λ0 exp(−𝜅𝑥) (13.10)
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The last equation uses the zero-order Taylor expansion of tanh on the left side and Λ0 =
tanh( 𝑧𝑒𝜓04𝑘B𝑇). Insert Equation 13.10 into Equation 13.8 we finally get the solution of 𝐹R:

𝐹R𝐴 = 64𝑘𝑇𝑐0Λ20𝑒−𝜅ℎ (13.11)

Due to the domination of the exponential term, increasing 𝑐0 decreases 𝜅−1 and reduces 𝐹R.
In other words, by adding salts, the repulsive force in attenuated between the charged par-
ticles, which corresponding to the phenomenon called “salting” discussed in the beginning
of this lecture.

The repulsive potential energy ΦR per unit area between two charged particles at dis-
tance ℎ is then calculated as:

ΦR(ℎ) = −∫ℎ
∞

𝐹R𝐴 dℎ′
= 64𝑘𝑇𝑐0𝜅−1Λ20𝑒−𝜅ℎ (13.12)

Note that such result is derived with two planar walls. For two spheres with same radii 𝑅,
the Derjarguin approximation1 shows that the repulsive potential Φss

R (not normalized by
area) between spheres with spacing of 𝐷 should be corrected from the repulsive potentials
of planar bodies in Equation 13.12:

Φss
R (𝐷) = 64𝜋𝑘𝑇𝑐0𝑅𝜅−2Λ20𝑒−𝜅𝐷 (13.13)

Such approximation is valid when:

• 𝑅 ≫ 𝐷, i.e. near the junction the surfaces from two particles are still considered as
planar.

• 𝐷 ≫ 𝜅−1, i.e. small overlap between EDLs.

13.2 The vdW attraction
Finally we will add the vdW attraction term for the charged particles. From Lecture 1, the
interaction potential between two planar bodies spaced at ℎ is:

ΦA(ℎ) = − 𝐴12𝜋ℎ2 (13.14)

where𝐴 is the Hamaker constant. Using the Derjarguin approximation again for two equal
size particles with radii 𝑅 and spaced at 𝐷, we get:

Φss
A = − 𝐴𝑅12𝐷 (13.15)
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Figure 13.3: Interaction potential of two charges particles with radius 𝑅 and spacing 𝐷
from the DLVO theory. A energy barrier is observed, which makes colloidal systems kinet-
ically stable.

We should note that both Φss
R and Φss

A are the body interaction energies between the
particles and not normalized over the area. Therefore we expect the interaction potential
to be higher for larger 𝑅. The total interaction potential Φss

tot = Φss
A +Φss

R is then written as:

Φss
tot = 64𝜋𝑘𝑇𝑐0𝑅𝜅−2Λ20𝑒−𝜅𝐷 − 𝐴𝑅12𝐷 (13.16)

The typical shape of Φss
tot as a function of 𝐷 is shown in Figure 13.3. When dΦ𝑠𝑠

tot/d𝐷 = 0
and Φss

tot > 0, a potential barrier is created which prevents the particles from aggregation.
When the potential barrier height Φbarrier is much larger than 𝑘B𝑇, the two particles are
kinetically stable. Equation 13.16 is the main conclusion of the famous DLVO theory of
colloidal aggregation [1].
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