
Lecture 14

Electrokinetic Phenomena

The electrokinetic phenomena refer to the mass t
In an electrolyte solution, the interplay between the electric field and the fluid flow field

belongs to a rich family of electrokinetic phenomena. Depending on the origin of driving
forces, the electrokinetic phenomena can be categorized into1 (Figure 14.1):

1. Electroosmosis: fluid flow field due to electric field

2. Electrophoresis: movement of charged species in a flow under an electric field

3. Streaming current / potential: electric field caused by pressure-driven flow

4. Sedimentation potential: electric field caused by the flow around a charged object
dragged by gravity

As can be seen, electrokinetic phenomena are in general second order phenomena, such
that field / flux of type A is induced by field / flux of type B. For instance, in electroosmo-
sis (Figure 14.1a) electric field causes a mechanical motion of fluid, whereas in streaming
current / potential (Figure 14.1c) the applied mechanical force to a electrolyte fluid pro-
duces an electric current. The same principle applies to electrophoresis (Figure 14.1b) and
sedimentation potential (14.1d).

In this lecture we will discuss the fundamental physics behind the electroosmosis, by
combining our knowledge of the fluid dynamics and electrostatics of the electrical double
layer.
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Figure 14.1: Typical electrokinetic phenomena. (a) electroosmosis. (b) electrophoresis.
(c) streaming current / potential. (d) sedimentation potential.

14.1 Nernst-Planck equation
The time dependent mass transport equation for a specie 𝑖, can be categorized into the flux
and reaction terms, such that:

𝜕𝑐𝑖𝜕𝑡 = −∇ ⋅ 𝑁𝑖⏟
flux

+ 𝑅𝑖⏟
reaction

(14.1)

where 𝑁𝑖 is the flux and 𝑅𝑖 is the reaction rate. Far away from the electrode surface, the
reaction term can be ignored. Analogous to the mass transport in fluid, the mass flux equa-
tion for ionic specie i in electrokinetic phenomena reads:

𝑁𝑖 = 𝑐𝑖𝑣f⏟
fluid flow

−𝒟𝑖∇𝑐𝑖⏟
diffusion

− (𝑢𝑖𝑧𝑖𝑒)∇𝜓𝑐𝑖⏟⎵⎵⏟⎵⎵⏟
electric field

(14.2)

where 𝑣f is the velocity field of the fluid, 𝑐𝑖 is the molar concentration,𝒟𝑖 is the diffusivity,𝑢𝑖 is the mobility and 𝑧𝑖 is the valency of specie i, respectively. The contribution of each
component to the total flux is schematically shown in Figure 14.2.

Theflux due to electric field (also known as drift) correspondswith the velocity of specie
/i. in the electric field, that: 𝑣𝑖 = 𝑢𝑖𝑧𝑖𝑒𝐸 = 𝑢𝑖𝑧𝑖𝑒∇𝜓 (14.3)
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Figure 14.2: Contributions to total flux in electrokinetic phenomena.

In a 1D system at steady state and without fluid flow, the flux for each specie is 0:

𝒟𝑖d𝑐𝑖d𝑥 = −𝑢𝑖𝑧𝑖𝑒d𝜓d𝑥𝑐𝑖𝒟𝑖d ln(𝑐𝑖)d𝑥 = −𝑢𝑖𝑧𝑖𝑒d𝜓d𝑥 (14.4)

Consider that both 𝒟𝑖 and 𝑢𝑖 are constant and 𝜓(𝑥 = ∞) = 0, we can express the concen-
tration profile using Boltzmann distribution:

𝑐𝑖(𝑥) = 𝑐𝑖,0 exp(−𝑧𝑖𝑒𝜓𝑢𝑖𝒟𝑖 ) = 𝑐𝑖,0 exp(−𝑧𝑖𝑒𝜓𝑘B𝑇 ) (14.5)

Compare the coefficient in the exponential term, we find the relation between the diffusiv-
ity and mobility: 𝑢𝑖 = 𝒟𝑖𝑘B𝑇 (14.6)

which is known as the Einstein relation.2 Plug this into Equation 14.2 we can express the
flux use𝒟𝑖: 𝑁𝑖 = 𝑐𝑖𝑣f − 𝒟𝑖𝑘B𝑇𝑐𝑖[𝑘B𝑇∇ ln 𝑐𝑖 + 𝑧𝑖𝑒∇𝜓]

= 𝑐𝑖𝑣f − 𝒟𝑖𝑘B𝑇𝑐𝑖∇𝜇𝑖 (14.7)

where 𝜇𝑖 = 𝑘B𝑇 ln 𝑐𝑖 + 𝑧𝑖𝑒𝜓 is the electrochemical potential of specie i. Equation 14.7 is
known as the Nernst-Planck equation. This is the principle equation describing the mass
transfer of ionic species in the electrokinetic system. We need further information for both𝑣𝑖 and 𝜓 to solve the Nernst-Planck equation, which will be discussed in the next section.
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14.2 Self-consistentNernst-Planck-Poisson-Stokes equa-
tions

The influence of the electric field on the fluid flow is described by adding the electrostatic
force into the Navier-Stokes equation:

𝜌(𝜕𝑣f𝜕𝑡 + 𝑣f ⋅ ∇𝑣f)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
0 if steady state and slow flow

= 𝜌𝑔 − ∇𝑝 + 𝜇∇2𝑣f + 𝐹elec𝐴
= 𝜌𝑔⏟

gravity
− ∇𝑝⏟

pressure
+𝜇∇2𝑣f⏟

viscous
+𝜀0𝜀𝑟∇2𝜓∇𝜓⏟⎵⎵⏟⎵⎵⏟

electrostatic

(14.8)

The expression for electrostatic force 𝐹elec is taken from Lecture 13 by considering the os-
motic pressure of the solution. This term is important when the fluid is near the electrode
surface, where both ∇𝜓 (electric field) and ∇2𝜓 (charge density) are non-zero.

The potential of the system is described by the Poisson equation ∇2𝜓 = −𝜌/𝜀0𝜀𝑟. Note
due to the existence of external flow, the Boltzmann distribution for ionic species is usually
not valid.3 As a consequence the concentration of ionic species has to be solved by coupling
with the mass transport equation. Putting all the pieces (Nernst-Planck (N-P) equation
for concentration, Navier-Stokes (N-S) equation for fluid field and Poisson equation for
electric potential), we have the self-consistent equation sets describing the mass transfer
with electrostatic interactions:

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑐𝑖𝜕𝑡 = −∇ ⋅ [𝑐𝑖𝑣f − 𝒟𝑖𝑘B𝑇𝑐𝑖(𝑘B𝑇∇ ln 𝑐𝑖 + 𝑧𝑖𝑒∇𝜓)] N-P𝜌𝑔 − ∇𝑝 + 𝜇∇2𝑣f + 𝜀0𝜀𝑟∇2𝜓∇𝜓 = 0 N-S∇2𝜓 = − 𝜌𝜀0𝜀𝑟 Poisson∇ ⋅ 𝑣f = 0 Continuity

(14.9)

The equation set is also called as the Nernst-Planck-Poisson-Stokes equations, after the in-
dividual named equations. Such equations are numerically solvable but very complicated,
due to the highly non-linear term of the electrostatic interaction (∇2𝜓∇𝜓) in the Navier-
Stokes equation. A possible simplification is to assume that in a fully developed flow, the
charge density 𝜌 is not distorted by the flow. This is not a bad assumption since the bound-
ary layer thickness of the flow is generally much larger than the Debye length 𝜆D. In other
words, we can divide the electrical potential into two parts, namely the “equilibrium” po-
tential 𝜓eq created by the equilibrium charge distribution, and the “non-equilibrium” po-
tential 𝜓ne caused by the flow, such that 𝜓 = 𝜓eq + 𝜓ne. Under such assumption, we have𝜌 = 𝜌eq = −𝜀0𝜀𝑟∇2𝜓eq and ∇2𝜓ne = 0. We can therefore decouple the velocity field and
potential in the Navier-Stokes equation as:

𝜌𝑔 − ∇𝑝 + 𝜇∇2𝑣f + 𝜀𝑟𝜀0∇2𝜓eq∇𝜓 = 0 (14.10)
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14.3 Electroosmosis in a channel
As an example of the decoupled Navier-Stokes equation, we study the electroosmosis in a
parallel-wall channel with width 𝐻, as shown in Figure 14.3.
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Figure 14.3: Electroosmosis in a channel.

We assume the parallel walls of the channel are negatively charged. The flow passes
along the x-direction with 𝑣 = (𝑣𝑥, 0, 0) (however 𝑣𝑥 also depends on the position 𝑦!). At
the interface of electrolyte solution, the electric potential is 𝜁 (known as the 𝜁-potential).
The external field created by the charged walls creates 𝜓eq that is uniform in x-direction,
while the flow creates 𝜓ne that only varies in x-direction:𝜓 = 𝜓eq(𝑦) + 𝜓ne(𝑥) (14.11)

where both potentials follow:
d2𝜓ne
d𝑥2 = 0
d2𝜓eq
d𝑦2 = −𝜌(𝑦)𝜀0𝜀𝑟

(14.12)

Therefore we can solve 𝜓ne and 𝜓eq separately:

• 𝜓ne
The non-equilibrium potential is linear in x-direction, and has form:𝜓ne = −𝐸𝑥𝑥 (14.13)

• 𝜓eq
At equilibrium 𝜌 follows the Boltzmann distribution. If we use the Debye-Hückel
approximation, 𝜓eq has the form:𝜓eq = 𝜁 exp(−𝜅𝑦) (14.14)

Yet more accurate solutions such as the Gouy-Chapman method needs to be used
when 𝜁 is large.
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Combine the solutions for 𝜓eq and 𝜓ne, we can solve the flow velocity in the Navier-
Stokes equation. Neglecting the gravity and pressure terms, we have:

𝜕2𝑣𝑥𝜕𝑦2 = −𝜀0𝜀𝑟𝜇 d2𝜓eq
d𝑦2 d𝜓ne

d𝑥= 𝜀0𝜀0𝐸𝑥𝜁𝜅2𝜇 exp(−𝜅𝑦) (14.15)

The boundary conditions are:

{𝑣𝑥(𝑦 = 0) = 0 non-slip𝜕𝑣𝑥𝜕𝑦 (𝑦 = 𝐻) = 0 symmetry (14.16)

which gives the final solution for 𝑣𝑥 as a function of 𝑦:
𝑣𝑥(𝑦) = −𝜀0𝜀𝑟𝐸𝑥𝜁𝜇 [1 − exp(−𝜅𝑦)] (14.17)

This means, if 𝐻 ≫ 𝜅−1, the flow has an average flow speed of:

𝑣infty = −𝜀0𝜀𝑟𝜁𝜇 𝐸𝑥 = −𝑢eo𝐸x (14.18)

where 𝑢eo = 𝜀0𝜀𝑟𝜁/𝜇 is the effective “flow mobility” of the electrolyte solution, as an analog
to the mobility of individual ions. When the characteristic width𝐻 of the channel is much
larger than the Debye length 𝜅−1 (or 𝜆D), the fluid behaves like a plug flow with velocity𝑣∞ with a slip boundary. As a comparison, the pressure-driven flow has a quadratic profile
of velocity along the x-direction, as described by the Poiseulli flow:

𝑣𝑥(𝑦) = −𝐻22𝜂 (𝜕𝑝𝜕𝑥)[1 − ( 𝑦𝐻)2] (14.19)

where 𝜂 is the dynamic viscosity of the liquid.
One can estimate the magnitude of the electroosmosis flow using Equation 14.18. With𝜁= 200 mV, to reach a significant flow at the order of 1 cm⋅s-1, one need to apply a voltage

drop of ca 70V⋅m-1. As a consequence, in typical electroosmosis setups, the voltage applied
across the ends of the channel is usually larger than the electrochemical window and thus
gas bubbles are generated. The resistive heating in the channel may also become consid-
erable. Notice in the Equation 14.18, the 𝜁-potential influences both the magnitude and
direction of the flow. Usually in glass-based capillaries, 𝜁 is difficult to be tuned. However,
using the technique introduced in Lecture 12, we can use a dielectric layer as the gate on
the channel wall and induce 𝜁 by the field effect, which is a technique known as the field
effect electroosmosis.4
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