
Lecture 15

Electrophoresis

As discussed in Lecture 14, the electrophoresis is a kind of electrokinetic phenomena, that
charged particles moving under an external electric field 𝐸. The equation of motion for
such charged particle, neglecting the gravity and buoyancy, is:

𝑚d𝑣
d𝑡 = 𝐹elec + 𝐹friction= 𝑞𝐸 − 𝑣𝑓 (15.1)

where 𝑚 is the mass of particle, 𝑞 is the total charge of the particle, 𝑣 is the velocity of
the particle and 𝑓 is the friction factor (the direction of friction force is opposite to the
velocity). For a spherical object with radius 𝑅s in a fluid with viscosity 𝜇 within the low
Reynolds number regime, 𝑓 = 6𝜋𝜇𝑅s (Stokes’ law1). At steady state, d𝑣/d𝑡 = 0, therefore
we have: 𝑣 = 𝑞𝐸6𝜋𝜇𝑅s = 𝑢ep𝐸 (15.2)

where 𝑢ep = 𝑞/(6𝜋𝜇𝑅s) is the electrophoresis mobility. However, for an unknown kind
of particles we know neither 𝑞 nor 𝑅s. Nevertheless, the macroscopic diffusivity 𝒟 of the
system is measurable. Using the Einstein equation 𝑢ep = 𝑞𝒟/𝑘B𝑇, we have:

𝒟 = 𝑢ep𝑘𝑇𝑞 = 𝑘𝑇6𝜋𝜇𝑅s (15.3)

which is known as the Stokes-Einstein relation.2 This is a handy equation: the microscopic
quantity 𝑅s is directly measurable via macroscopic diffusivity 𝒟. To estimate the mobility𝑢ep, knowledge about the charge of particle 𝑞, is still required. From the Gauss law, the
total charge of a particle equals the surface integral of the displacement field, such that𝑞 = −∫𝑆 𝜀0𝜀𝑟∇𝜓 ⋅ d𝑛, therefore to solve the charge of the particle in an electrolyte solution,
is equivalently to the problem of the electrical potential (𝜁-potential) near the particle. We
will show that the 𝜁-potential indeed determines the electrophoresis mobility of particles.
As discussed in Lecture 14, the fluid flow may have a non-negligible influence on the elec-
trostatic potential. Here we will discuss two limiting cases, the Hückel limit where the
particle size is much smaller than the Debye length and the Smoluchowski limit where the
particle size is much larger than the Debye length, as shown in Figure 15.1.
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Figure 15.1: Two limiting cases of electrophoresis: (a) Hückel limit (particle size much
smaller than Debye length) and (b) Smoluchowski limit (particle size much larger than
Debye length).

15.1 The Hückel limit
The Hückel limit is the situation the 𝑅s ≪ 𝜅−1, i.e. the charged particles are considered
as point charges, and the potential is solely contributed by equilibrium ion distribution
in solution. Assuming a small 𝜁, the potential distribution is solved by the Debye-Hückel
approximation in a spherical coordinate: ∇2𝜓 = 𝜅2𝜓1𝑟2 𝜕𝜕𝑟(𝑟2𝜕𝜓𝜕𝑟 ) = 𝜅2𝜓 (15.4)

The differential equation has general solution 𝜓(𝑟) = 𝐴𝑒−𝜅𝑟𝑟 + 𝐵𝑒𝜅𝑟𝑟 . With the boundary
conditions 𝜓(∞) = 0 we know 𝐵 = 0. From the Gauss’s law we know that the total charge
within a sphere of radius 𝑅s is:

− 4𝜋𝑅2s 𝜀0𝜀𝑟𝐴 𝜕𝜕𝑟(𝑒−𝜅𝑟𝑟 )|||∞𝑅s = 4𝜋𝑅2s 𝜀0𝜀𝑟𝐴𝑒−𝜅𝑅s(𝜅𝑅s + 1)𝑅2s ≈ 4𝜋𝜀0𝜀𝑟𝐴 = 𝑞 (15.5)

The last step is derived using 𝜅s ≪ 1. Therefore we get 𝐴 = 𝑞/(4𝜋𝜀0𝜀𝑟). The 𝜁 potential is
the value of 𝜓 at 𝑟 = 𝑅s:

𝜁 = 𝜓(𝑅s) = 𝑞4𝜋𝜀0𝜀𝑟 𝑒−𝜅𝑅s𝑅s ≈ 𝑞4𝜋𝜀0𝜀𝑟𝑅s (15.6)

Plug this into Equation 15.2, we get the mobility at the Hückel limit:

𝑢H = 2𝜀0𝜀𝑟𝜁3𝜇 (15.7)

which is independent of the particle size (as long as the condition 𝜅𝑅s ≪ 1 holds).
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15.2 The Smoluchowski limit
The Hückel limit is suitable for particles much smaller than the Debye length, i.e. single
charge picture. For particles that are much larger than the Debye length, the electrophore-
sis comes to the Smoluchowski limit, i.e. 𝜅−1 ≪ 𝑅s . The influence from the fluid field
becomes important for particles at the Smoluchowski limit.3 On the surface of the particle,
the thickness of EDL becomes negligible, and is similar to the situation of electroosmo-
sis discussed in Lecture 14. Close to the surface of the particle (but outside the EDL), the
particle surface can be regarded as a charged wall with interfacial potential 𝜁. If we set
the particle as the rest frame, the fluid field flows parallel to the surface with a velocity𝑣f = (𝑣𝑥, 0, 0). Using the non-slip boundary condition, the fluid velocity far outside the
EDL is (see Equation 14.18): 𝑣𝑥 = −𝜀0𝜀𝑟𝜁𝜇 𝐸x (15.8)

Since the fluid is macroscopically still, the velocity of the particle relative to the fluid is
then: 𝑣p = 𝜀0𝜀𝑟𝜁𝜇 𝐸x = 𝑢S𝐸x (15.9)

with mobility 𝑢E: 𝑢S = 𝜀0𝜀𝑟𝜁𝜇 (15.10)

As we can see the mobility differs from that in the Hückel limit only by a prefactor. This
is an interesting result, since the mobility is again independent of neither the size nor the
shape of the particle. In colloidal science, Equations 15.7 and 15.10 are the basis for the in-
struments called zeta potential analyzers, which measures 𝜁 potential of particles through
the electrophoresis mobility. On the other hand, radius 𝑅s (and its distribution) is usually
measured by the technique called dynamic light scattering (DLS)4 .

In summary, the electrophoresis mobility of a particle can be described using the fol-
lowing models:

• Einstein-Stokes relation: 𝑢ES = 𝑞𝒟𝑘𝑇
This equation is valid regardless of the particle size.

• Hückel limit: 𝑢H = 3𝜀0𝜀𝑟𝜁2𝜇
This is valid when 𝑅s ≪ 𝜅−1, the 𝜁 potential is small compared with 𝑘B𝑇 and the
particle is spherical

• Smoluchowski limit: 𝑢S = 𝜀0𝜀𝑟𝜁𝜇
This is valid when 𝑅s ≫ 𝜅−1, and for any shape of particles.
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15.3 Applications of electrophoresis
As we can see in both the Hückel and Smoluchowski limits, the electrophoresis mobility
does not depend on the size 𝑅s. If 𝜁 of particles are similar, electrophoresis alone cannot
separate them based on the size. This might sound a bit counter-intuitive since we know 𝒟
depends on the particle size. However since 𝑞 is also dependent on 𝑅s and 𝜁 (see Equation
15.6), the influence of 𝑅s is canceled out. In size-separation electrophoresis techniques
such as the polyacrylamide gel electrophoresis (PAGE, see Figure 15.2) which separates
proteins and nucleic acids, additional resistance comes from nanoscale pores in the poly-
acrylamide gel. Larger proteins / nucleic acids passes much slower compared with the
smaller species and forms bands in the lanes of the gel.

Figure 15.2: Scheme of a typical PAGE separation experiment. Image adapted from
wikipedia.

Another recent application is single molecule sensing (such as DNA) based on elec-
trophoresis through nanopores.5 In such apparatus, the size of the nanopore is ultra-small
that only allows one molecule to pass at the same time. When the nanopore is unoccu-
pied, a baseline current is measured on the electrodes. Once a molecule passes through
the nanopore, the flux of current-carrying ions through the nanopore is reduced and the
current measured on the electrodes drops (Figure 15.3). Single molecule trans-pore events
are thus captured at the low current stages. Depending on the time window Δ𝑡 and current
dropΔ𝐼 of the translocation events, the molecule length the folding states can be quantified.
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Figure 15.3: Sensing DNA molecules by electrophoresis through nanopores. The current
drops when a single molecule passes through the pore. The degree of the drop of current
depends on the configuration of molecule inside the pore (i.g. single / double strand).



144 LECTURE 15. ELECTROPHORESIS



References

(1) Stokes, G. G. Trans. Camb. Phil. Soc 1850, 9, 106.
(2) Einstein, A. Ann. Phys. 1905, 322, 549–560.
(3) Von Smoluchowski, M. Bull. Akad. Sci. Cracovie. 1903, 8, 182–200.
(4) Bhattacharjee, S. J. Control. Release 2016, 235, 337–351.
(5) Clarke, J.; Wu, H.-C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Nat. Nanotechnol.

2009, 4, 265–270.

145



146 REFERENCES


