
Lecture 16

Solute Transport Across Partially
Permeable Membranes

In this lecture, we would like to understand transport of the solute, which can be macro-
molecules or charged nanoparticles, across a partially permeable membrane. As shown
in 16.1, consider a membrane separating left and right reservoirs with solute concentra-
tions 𝐶1 and 𝐶2, respectively. Because there is a concentration difference Δ𝐶 = 𝐶2 − 𝐶1,
the chemical potential difference will induce mass transfer across the membrane. Before
starting to analyze the system, the first consideration is about the time scale. Clearly, the
membrane is not infinitely thin, so there would be a concentration distribution within the
membrane, together with the fact that upon solute transport, the right and left reservoir
concentrations will be functions of time. Do we need to solve time-dependent mass trans-
fer equation in the membrane? What assumptions or prerequisites are required to simplify
the problem?

Figure 16.1: A typicalmembrane system inwhich a semi-permeablemembrane separating
two reservoirs, with the solute concentrations of 𝐶1 and 𝐶2 as a function of time assuming
well mixing.
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First we consider a system in which the solute transport is completely driven by chem-
ical potential, i.e., concentration difference Δ𝐶, and the fluid flow across the membrane is
negligible. Here there are two time scales, including that for the diffusion across the mem-
brane 𝜏𝐷 = 𝐿2/𝐷, and that for the concentration change in the reservoir 𝜏𝑉 = 𝑉Δ𝐶/𝑁𝐴,
where 𝐿 is the membrane thickness, 𝐴 is the membrane area, 𝑉 is the reservoir volume,𝑁 is the solute flux, and 𝐷 is the diffusivity. Since only diffusion is considered here 𝑁 =−(𝐷Δ𝐶/𝐿)𝜔, where 𝜔 is the solute permeability across the membrane (will be further dis-
cussed in details later), 𝜏𝑉 is therefore given by:

𝜏𝑉 = 𝑉𝐿𝐷𝐴𝜔 (16.1)

At a pseudo steady state, the time dependence for the concentration profile in the mem-
brane becomes negligible. The most important requirement that the approximation can
hold is that the rate at which themembrane concentration profile can adjust is significantly
faster than that at which the external concentration change, or in other words 𝜏𝑉 ≫ 𝜏𝐿 , or:𝐴𝐿𝜔𝑉 ≪ 1 (16.2)

In that case, one can also solve the concentrations of the two reservoirs following:

𝑉𝑑𝐶1𝑑𝑡 = −𝑁𝐴 = [𝐷(𝐶1 − 𝐶2)𝐿 ]𝜔𝐴
𝑉𝑑𝐶2𝑑𝑡 = +𝑁𝐴 = −[𝐷(𝐶1 − 𝐶2)𝐿 ]𝜔𝐴 (16.3)

With the initial conditions of 𝐶1(𝑡 = 0) = 𝐶1, 0 and 𝐶2(𝑡 = 0) = 𝐶2,0, the above ODEIVP
can be easily solved analytically or numerically.

16.1 Pressure and concentration driven solute/solvent
system

When two solutions interact with each other via a permeable membrane (interface), trans-
port occurs through a complex interplay between solute and solvent. Transport can be
driven by pressure, concentration difference and electrical forces, while both solute and
solvent can carry each other across the membrane. While such systems are in general
complex, a considerable simplification can be achieved for low solute concentration, where
solute-solvent transport interactions become linear.

Historically, pressure and concentration driven solute and solvent transportwere known
well before electric-field originated transport. Therefore, herewe can startwith concentration-
driven solute/solvent system. While pure solute transport due to concentration difference
can be solved by diffusion equations, pure solvent transport is subtler and can be explained
in the context of osmosis. For low solute concentrations, the osmotic pressure can be found
by the van’t Hoff law [1], ΔΠ = 𝑘𝐵𝑇Δ𝑐 (16.4)
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where Δ𝑐 indicates the concentration difference between the two reservoirs separated by
the membrane. The van’t Hoff law well describes the case of ideal solute-impermeable
membrane, where only the solvent can be driven by the concentration gradient (osmotic
pressure). However, when the membrane is partially permeable to the solute, solute can
also diffuse across the membrane. On the other hand, since each solute molecule/ion can
have a shell that contains solvent molecules, the solvent flux would be reduced. We there-
fore define a dimensionless rejection factor σ, such that the effective osmotic pressure dif-
ference becomes ΔΠeff = 𝜎𝑘𝐵𝑇Δ𝑐. By assuming the solvent flow within the membrane is
Hagen-Poiseuille-like, the solute flux, 𝑁, and the area-averaged solvent flow rate (or veloc-
ity) ⟨𝑣⟩ , across the membrane can be described as follows:

⟨𝑣⟩ = −ℒhyd(Δ𝑝 − 𝜎𝑘𝐵𝑇Δ𝑐)𝑁 = −𝐿𝐷𝜔(Δ𝑐 + 𝑐⟨𝑣⟩) (16.5)

where 𝑐 is the solute concentration, 𝑝 is the pressure and Δ corresponds to the difference
from left to right (+𝑥 direction) reservoir, ℒhyd is the solvent permeance through the mem-
brane, defined as ℒhyd = 𝜅/(𝜂𝐿), where 𝜂 is the solvent’s dynamic viscosity, 𝐿 is the mem-
brane thickness and 𝜅 is the porousmedia permeability for themembrane (in units of Darcy
or length square); 𝐿𝐷 is the solute permeance, defined as 𝐿𝐷 = 𝐷/𝐿, where𝐷 is the diffusiv-
ity of the solute. Here, we also define another dimensionless factor 𝜔 corresponding to the
solute permeability coefficient across the membrane. The equations above are also known
as the Kedem–Katchalsky relations [2]. Here, the solvent flow is proportional to the effec-
tive pressure across the membrane, which is a sum of the externally applied pressure (Δ𝑝)
and the effective osmotic pressure (−𝜎𝑘𝐵𝑇Δ𝑐).

Figure 16.2: Geometry of the membrane (interface) separating two solutions with differ-
ent solute concentrations. The membrane can be mathematically described as a potential
acting on the solute transport. [3]

Now we would like to know the relation between the solute rejection factor 𝜎 and the
permeability 𝜔. First, we notice that when the solute rejection factor 𝜎 = 0, meaning the
existence of membrane does not hinder solute diffusion, the solute flux should reduce to𝑁 = −𝐿𝐷Δ𝑐 or 𝜔 = 1. In order to further understand the two empirical parameters 𝜎 and𝜔, we can imagine that the membrane offers an energy barrier to the solute transport (see
16.2). One can therefore introduce an hypothetic potential distribution within the mem-
brane 𝑈(𝑥), where 𝑥 is the coordinate within the membrane with the origin located at the
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film center, as shown in Fig. 16.2. Following the spirit of the Nernst-Planck equation dis-
cussed in Lecture 14, we can describe the solute transport equation within the membrane
following: 𝜕𝑐𝜕𝑡 = 0 = −𝜕𝑁𝜕𝑥 = − 𝜕𝜕𝑥(−𝐷 𝜕𝑐𝜕𝑥 + 𝑢𝑐 (−𝜕𝑈𝜕𝑥 ) + 𝑐𝑣𝑓) (16.6)

where 𝑣𝑓 is the fluid velocity as a function of 𝑥 and 𝑢 is the solute mobility expressed by
the Einstein relation 𝑢 = 𝐷/(𝑘𝐵𝑇). If we assume the convective contribution has negligible
effect on the concentration profile, i.e., low Peclet number inmembrane, at steady state the
flux 𝑁 appears to be a constant, such that the concentration profile within the membrane,𝑐(𝑥) can be solved explicitly given by (for details, see Ref. [4])

𝑐(𝑥) = −Δ𝑐 exp (−𝑈(𝑥)𝑘𝐵𝑇 ) × ∫𝐿/2
𝑥 exp (−𝑈( ̃𝑥)𝑘𝐵𝑇 ) 𝑑 ̃𝑥

∫𝐿/2
−𝐿/2 exp (−𝑈( ̃𝑥)𝑘𝐵𝑇 ) 𝑑 ̃𝑥 (16.7)

It will require the potential profile within the membrane 𝑈(𝑥), to analytically solve 𝑐(𝑥).
In order to find the next relation, we consider the force balance acting on solute within
the membrane, based on the Stoke equation, the force vector of the membrane potential
acting on solute is given by −∇𝑈, so the force acting on solute per unit volume is given by−𝑐(𝑥)𝜕𝑈/𝜕𝑥. Together with the Stoke equation (at low Reynold number), the force balance
within the membrane is given by:

− 𝜕𝑝𝜕𝑥 − 𝑐(𝑥)𝜕𝑈𝜕𝑥 + 𝜂∇2𝑣𝑓 = 0 (16.8)

One can rearrange Eq. (16.8) and find that the effective pressure drop Δ𝑃, balancing the
viscous dissipation 𝜂∇2𝑣𝑓, along the channels in membrane is given by:

Δ𝑃 = Δ𝑝 + ∫𝐿/2
−𝐿/2 𝑐(𝑥)𝜕𝑈(𝑥)𝜕𝑥 𝑑𝑥 (16.9)

where is the pressure difference applied externally (say using a pump), by comparing with
Eq. (16.5), it follows:

∫𝐿/2
−𝐿/2 𝑐(𝑥)𝜕𝑈(𝑥)𝜕𝑥 𝑑𝑥 = −ΔΠeff = −𝜎𝑘𝐵𝑇Δ𝑐 (16.10)

This is the Starling equation in the physiology literature. CombiningEqs. (16.7) and (16.10),
the rejection factor 𝜎 is given by:

𝜎 = 1 − 𝐿
∫𝐿/2
−𝐿/2 exp (𝑈(𝑥)𝑘𝐵𝑇 ) 𝑑𝑥 (16.11)
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There are three cases which are of our interests as follows. (𝑖) When 𝑈 ≫ 𝑘𝐵𝑇, or there
is a very high energy barrier within the membrane for the solute to overcome 𝜎 → 1 ,
whichmeans the film is not permeable for solute but permeable forwater, giving an osmotic
pressure difference following the van’t Hoff equation (Eq. (16.4)). (𝑖𝑖) When 𝑈 ≈ +𝑘𝐵𝑇,
the membrane remains to be repulsive to solute, giving 0 < 𝜎 < 1, so the solvent flow
is still in the direction of increasing concentration. (𝑖𝑖𝑖) When 𝑈 < 0, or the membrane
itself is attractive to solute, yielding 𝜎 < 0. The membrane-induced “negative osmotic
pressure” implies that the solvent flow direction would be from high concentration to low
concentration. One can imagine that since the membrane accelerate the solute diffusion,
there must be a solvent flow induced along the diffusion direction.

Next, under the assumption that the flow across the membrane follows the Darcy’s law,
namely ⟨𝑣⟩ = − 𝜅𝜇 Δ𝑃𝐿 , combining with Eq. (16.9), the relation of the solvent permeance
in Eq. (16.5) is obtained, ℒhyd = 𝜅/𝜂𝐿. Here the permeance takes into account of the
membrane properties such as pore size and geometry.

Finally, within the membrane, if we neglect the convective term, the solute transport
is driven by the spatial gradient of chemical potential 𝜇(𝑥) (due to the concentration dif-
ference) and the membrane potential 𝑈(𝑥). Accordingly, one can write the solute flux as
follows: 𝑁 = −𝑢𝑐 𝜕𝜕𝑥(𝜇 + 𝑈) (16.12)

where 𝑢 is the solute mobility, and 𝜇 = 𝑘𝐵𝑇 ln(𝑐/𝑐′) is the chemical potential of the solu-
tion, with 𝑐′ as the reference concentration. Since 𝑁 is a constant independent of 𝑥, the
integration of Eq. (16.12) w.r.t. 𝑥 from −𝐿/2 to 𝐿/2 yields:

𝑁𝐿 = −𝑢(∫𝐿/2
−𝐿/2 𝑐𝜕𝜇𝜕𝑥𝑑𝑥 − ∫𝐿/2

−𝐿/2 𝑐𝜕𝑈𝜕𝑥 𝑑𝑥) (16.13)

The first integral on the right hand side (RHS) yield 𝑘𝐵𝑇Δ𝑐; using Eq. (16.11), the second
integral on the RHS is given by 𝜎𝑘𝐵𝑇Δ𝑐. Following the Einstein relation 𝑢 = 𝐷/(𝑘𝐵𝑇), we
have: 𝑁 = −𝐷𝐿 (1 − 𝜎)Δ𝑐 (16.14)

Comparing with the second equation of Eq. (16.5), by negliecting the convective contri-
bution, the parameter of solute permeativity 𝜔 = (1 − 𝜎). Putting that back to Eq. (16.5),
with the membrane characteristic parameters 𝜅 and 𝜎, one can describe solute and solvent
transport across amembrane, when the concentration and pressure differences are known!

16.2 Inclusion of electric field into the transportmatrix
The picture we defined in the previous section only considered the pressure and concentra-
tion driven systems. Nowwe can also include electrical forces and generalize the transport
equations into a matrix form (still assuming a linear transport regime, with low solute con-
centration). Here, we define a transport matrix 𝕃 and write the generalized equation by
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using the excess solute flux 𝑁 − 𝑐⟨𝑣⟩ instead of 𝑁, and preferring the chemical potential of
the solute 𝜇 = 𝑘𝐵𝑇 ln(𝑐) instead of the concentration. For electrical effects, we add electric
current 𝐼 and applied electric field −∇𝜓,

( ⟨𝑣⟩𝑁 − 𝑐⟨𝑣⟩𝐼 ) = 𝕃 × (−∇𝑝−∇𝜇−∇𝜓) (16.15)

The matrix 𝕃 is symmetric and positive definite due to Onsager principle [5]. The diagonal
terms of this matrix relates solvent flux to pressure gradient, solute flux to concentration
gradient, and ionic current to applied electric field. The off-diagonal terms indicate the
cross effects as indicated in Figure 16.3. The off-diagonal terms of matrix 𝕃 can be defined

Figure 16.3: Transportmatrix as described in Equation (16.15) and its physical origins, with
colors indicating the symmetric terms. Adapted from [6]

by the corresponding mobility values, which are dependent on the flow geometry. We can
write these terms for the first column: for the electric current and the excess solute flux
generated due to a pressure drop as,

𝐼 = 𝑢EO × (−∇𝑝)𝑁 − 𝑐⟨𝑣⟩ = 𝑢DO × (−∇𝑝) (16.16)

where 𝑢EO is the electro-osmotic mobility (for a channel, we have found this value in Lec-
ture 14.3) and 𝑢DO is the diffusio-osmotic mobility (for a membrane, we have found it
above, in terms of permeance and rejection factor, 𝑢DO = ℒhyd𝜎𝑘𝐵𝑇). The last off-diagonal
term can be written for an electric current generated by a concentration (osmotic) gradient,
which can be found for example for a nanochannel separating two reservoirs as [7],

𝐼 = 𝐾osm × (−Δ ln(𝑐𝑠)) (16.17)

where 𝑐𝑠 is the salinity ratio of two reservoirs and 𝐾𝑜𝑠𝑚 is the osmotic electric mobility,
which depends on the geometry and surface charge profile of the interfacial system and
can be found by applying the Poisson-Boltzmann equations to determine electric double
layer properties.
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16.3 Osmotic diodes and osmotic pressure rectification
by external bias

Consider a membrane with nanoscale pores/channels with asymmetric geometry or sur-
face charge profile. Assuming the nanochannel’s surface charges play a comparable role
to the bulk charges inside, the nanochannel behaves as an ionic diode, rectifying the ionic
current versus the applied bias (Figure 16.4). Moreover, such a nanochannel would also
have an asymmetric interaction with the solute inside, which in turn means an asymmet-
ric force on the solvent molecules, thereby rectifying the osmotic pressure versus the con-
centration gradient. In order to quantify the rectification, we can start by the mechanical

Figure 16.4: Osmotic diode rectification. (a) Schematic of the nanochannel with asymmet-
ric surface charge (Σ) distribution, where 𝛼 ≠ 1. Rectification behavior is shown in the
plots, for apparent osmotic pressure vs. the salinity gradient (b) and the applied voltage
(c). Δ𝑛 is the normalized concentration difference between the left and right reservoirs.
Adapted from [6, 8]

forces driving the solvent, which means writing the Stokes equation,− ∇𝑝 − 𝜌∇𝑉𝑒 + 𝜂∇2𝑣𝑓 = 0 (16.18)

where𝐴 is the cross-section area and 𝐿 is the length of the nanochannel, 𝜌 is the net charge
density (we assume monovalent ions) and 𝑉𝑒 is the electric potential. Following a similar
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route we employed in section 16.1, by integrating the Stokes equation we can write the
solvent flux in terms of the effective pressure,

⟨𝑣⟩ = −𝐴ℒhyd𝐿 (𝑝 − Πapp) (16.19)

Combining the last two equations, the apparent osmotic pressure becomes,

Πapp = − 1𝐴 ∬𝑑𝑥𝑑𝐴𝜌∇𝑉𝑒 (16.20)

Now, we can combine the solvent mechanics (Stokes equation) with the solute transport
(Poisson Nernst Planck (PNP) equations) and define the solute flux as (again assuming a
low Peclet number, as the advection is likely to be negligible due to narrow channel profile),

𝑁 = −𝒟(∇(𝑛+ + 𝑛−) + 1𝑘𝐵𝑇(𝑛+ − 𝑛−)𝑒∇𝑉𝑒) (16.21)

where 𝑛± is the normalized ion concentration with the corresponding charge sign. Com-
bining the last two equations, we can write the apparent osmotic pressure in terms of the
solute flux as, ΔΠapp = 𝑘𝐵𝑇 (Δ𝑛sol + 𝐿𝐷𝑁) (16.22)

where 𝑛sol = 𝑛+ +𝑛− and 𝑁 is the solute flux along the nanochannel. The full PNP system
can be solved analytically (see the supplementary material from [7]) in the regime of high
surface charge and the apparent osmotic pressure can be written explicitly as,

ΔΠapp = 𝑘𝐵𝑇 (2 (1 − 1𝛿)Δ𝑛 − 𝛼 − 1𝛼𝛿 𝑛𝑅𝑛0 (𝑛𝐿 exp (𝑒Δ𝑉𝑒𝑘𝐵𝑇 ) − 𝑛𝑅)) (16.23)

where 𝛼 is the surface asymmetry factor as shown in Figure 16.4, 𝑛𝑅 and 𝑛𝐿 are the nor-
malized concentrations on both sides of the nanochannel, 𝑛0 is the bulk concentration in
the channel defined as (𝑛𝑅 + 𝑛𝐿)/2 and 𝛿 is the dimensionless factor indicating the rel-
ative importance of the surface charge (𝛿 = |Σ/(𝐻𝑛0)|), with 𝐻 being the height of the
nanochannel. Hence, at the absence of external pressure the solvent flux becomes,

⟨𝑣⟩ = 𝐴ℒhyd𝐿 𝑘𝐵𝑇𝜎(𝑛𝐿 − 𝑛𝑅) + 𝑄𝑆(exp (𝑒∇𝑉𝑒𝑘𝐵𝑇 ) − 1) (16.24)

where 𝜎 is the rejection coefficient, which is a nonlinear function of the reservoir concen-
trations and can be found directly from the last two equations and𝑄𝑆 is the limiting solvent
flux expressed as, 𝑄𝑆 = 𝐴ℒhyd𝐿 𝑘𝐵𝑇1 − 𝛼𝛼𝛿 𝑛𝑅𝑛𝐿𝑛0 (16.25)

The rectification behavior is plotted in Figure 16.4, showing an enhanced rectification at
higher applied bias. Under appropriate conditions, this rectification behavior can generate
an induced water/solvent flow against the osmotic gradient, which can bemaintained over
time by applying oscillating voltage bias, thereby enabling new approaches for advanced
water purification applications.
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