
Lecture 17

Introduction to Semiconductors

From this lecture on, we will be studying various phenomena involving solid-state materi-
als and their interfaces. Most importantly, we will be discussing about the topic of semi-
conductors. In this lecture, the basic concept of solid-state and semiconductor physics will
be introduced. For more detailed discussions about the physics of semiconductors, we rec-
ommend the readers to more specialized textbooks such as Ref. [1] and [2].

17.1 Frommolecule orbitals to solid state bands
Thekey physical properties of semiconductors are highly relatedwith their electronic struc-
tures. Unlike single molecules, the behaviors (distribution, energy, momentum, etc.) of
electrons in a semiconductor solid are periodic. In solid state physics, such periodic elec-
tronic structure is usually represented by the band theory, as a consequence of quantum
mechanism. The rigorous derivation of the band theory is beyond the scope of this course,
however the essence of the band theory can be well understood starting from our knowl-
edge of molecule orbitals.

Let’s start from themost common semiconductor, Si. The electronic structure of Si atom
is [Ne]3s23p2. When the two Si atoms form a diatomic Si2 molecule, the atomic orbitals
(AO) split and form molecule orbitals (MO), as seen in Figure 17.1a.

Among all the Mos, the highest occupied molecular orbital (HOMO) and lowest unoc-
cupied molecular orbital (LUMO) contribute most to the physical and chemical properties
of a molecule. In the case of Si2, the HOMO is a 𝜋-type orbital and the LUMO is a 𝜎-
type orbital. When the number of atoms increases, more energy levels are created as a
result of atomic orbital splitting, while the spacing between the individual energy levels
are small enough, such that they can be regarded as a continuous distributions, which are
named as “bands” (Figure 17.1b). Similar to the concept of HOMO and LUMO in individ-
ual molecules, the highest occupied and the lowest unoccupied bands are named as the
conduction band (CB) and valence band (VB), respectively. For a semiconductor or insu-
lator, the VB is fully occupied (Figure 17.1c). At 0 K, the energy of an electron cannot stay
between the CB and VB. The energy difference between CB and VB is called the bandgap
(usually noted as 𝐸g). We will study in the next lectures, that the bandgap is the key quan-
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Figure 17.1: From molecule orbitals to bands. (a) MO diagram of Si2 dimer, with 𝜎 and 𝜋
orbital types shown. The shape of HOMO and LUMO are calculated using first principles
simulations. (b) Evolution of electronic bands by increasing number of atoms. (c) The con-
duction band (CB) and valence band (VB) of semiconductor and conductors. A bandgap
exists in semiconductor while CB and VB overlaps in a conductor.

tity that determines the property of a semiconductor. On the other hand, there is no gap
between the CB and VB of a conductor, allowing conduction to occur.

The electrons in a solid material exhibit wave-like behavior, with its energy 𝐸 varying
as a function of the momentum 𝑝 = ℏ𝑘, where ℏ is the reduced Planck constant and 𝑘 is
the wave vector. In solid state physics, people usually plot the relation of 𝐸 vs 𝑘 (or 𝑝) for
a typical material, and such plots are known as the “band structure” of a semiconductor.
A typical band structure of the CB and VB of a semiconductor can be seen in Figure 17.2a
, such that the energy 𝐸 and momentum 𝑝 has a parabolic relation.

This is similar to the case of free carriers: 𝐸 = 𝐸0 + 𝑝2/2𝑚∗, where 𝐸0 is the potential
energy and𝑚∗ is the “effective” mass of the carrier (will be discussed in following sections).
The band structures of CB andVB are generally different: VB is “flatter” compared with CB
and may also have splitting due to the effect known as spin-orbit-coupling (SOC).When we
study the motion of carriers in a semiconductor, a simpler representation is often adapted.
Consider a chain of atoms in a semiconductor without external electric field (Figure 17.2b).
The energy of a carrier at a certain position, is described by the “local band structure” of
individual atoms. At a larger length scale, the details of the band structure can be ignored,
and the energy of the carriers have a continuous distribution, leading to a representation
called “band diagram”. The bottom of CB in a band diagram is a line connecting all the
minima of the CBs in the local band structure, and the height of CB represents the kinetic
energy of electron. The situation is similar for VB.

Using the band diagram, we can easily determine the motion of carriers. The slope of
the edge of CB and VB in a band diagram, equals the opposite of external electric field,−ℰ.
As a result, an electron move downwards the CB in a band diagram, while a hole moves



17.1. FROMMOLECULE ORBITALS TO SOLID STATE BANDS 161

Energy (E)

Momentum (ℏk)

Eg

CB

VB

VB splitting

... ...

... ...

E

x

Typical band structure

Local band structure

CB

VB

Band diagram

a b

Figure 17.2: Band structure and band diagram of semiconductors. (a) Typical energy-
momentum relation of a semiconductor, showing the CB and VB as parabolic bands. (b)
Band diagram representation of semiconductors. The extrema of CB and VB in local band
structures of individual atoms are linked to form continuous bands.

upwards the VB (Figure 17.3a). The equation of motion of carriers in the semiconductor,
is: 𝑚∗

n
d𝑣
d𝑡 = −𝑒ℰ, Electron

𝑚∗
p
d𝑣
d𝑡 = 𝑒ℰ, Hole

(17.1)

where 𝑚∗
n and 𝑚∗

p are the effective masses of electron and hole, respectively. Near the
extrema of CB, the energy-momentum relation in a band structure (Figure 17.3b) gives𝐸 = 𝐸c + 𝑝22𝑚∗ , where 𝐸c the energy of the CB edge, we can calculate𝑚∗

n. Similarly, we can
get 𝑚∗

p. For silicon, 𝑚∗
n = 0.26 𝑚0 and 𝑚∗

p = 0.39 𝑚0, where 𝑚0 is the mass of electron in
vacuum. In other words, in silicon, the carriers travel faster than in vacuum and electrons
travel faster than holes.
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Figure 17.3: Motion of carriers in a band diagram. (a) Direction of carrier movement in
a band diagram, with electron moving upwards the CB and holes moving downwards the
VB. (b) Explanation of different carrier effective mass using band structure.
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17.2 Carrier distribution in semiconductors
Due to the existence of the bandgap, a semiconductor cannot conductor current at 0 K.
However when 𝑇 > 0 K, a small portion of valence electrons can be thermally excited to
the CB, leading to finite conductivity. As a result, positively-charged “holes” (usually rep-
resented by h+) are left in the VB. Note that holes are not real particles, but rather movable
vacancies of electron. In an intrinsic semiconductor (i.e. “pure” semiconductor without
any impurity), the concentration of ionized electrons, 𝑛, always equals to the concentra-
tion of ionized holes, 𝑝, and is a function of temperature 𝑇. When we introduce other
atoms (called dopants) in a semiconductor, the concentrations of electron and hole can be
different. For instance, replacing a Si atom with P ([Ne]3s23p3) introduces an additional
electron that can be easily ionized, and a positively charged, immobile ion P+. In this case,
the semiconductor is n-doped, and P is called the donor. As a result, at equilibrium, we
have more electrons than holes, such that 𝑛 > 𝑝. On the other hand, replacing Si with B
([Ne]2s22p{1}) creates additional holes and 𝑛 < 𝑝. We call such semiconductor p-doped
and B is called the acceptor. The additional carriers in doped semiconductors, compared
with the intrinsic semiconductor, provides higher conductivity. Furthermore, the degree
of conductivity, can be controlled by the concentration of donor (𝑁d) or acceptor (𝑁a). The
effect of doping on the carriers of a semiconductor, can be seen in Figure 17.4.
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Figure 17.4: Effect of doping in a semiconductor. The black dots represents the electrons
that form covalent bonds and the excess carriers (electron and hole) are shown in color.

To calculate the concentration of electrons and holes, we need to introduce the concept
of density of states (DOS). The DOS at energy 𝐸, 𝐷(𝐸), is defined as the number of states
divided by the energy spacing Δ𝐸 per unit volume Ω:

𝐷(𝐸) = limΔ𝐸→0 Number of statesΔ𝐸Ω (17.2)
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and usually expressed in eV-1cm-3. An intuitive way to understand the origin of DOS, is to
start from the single molecule picture again. For a single molecule, the energy levels are
discrete. The number of states can be viewed as how many orbitals have the same energy
level. When the number of atoms approaches infinity, the energy levels in a semiconductor
becomes continuous, and the number of states at each energy level, is described by the DOS
(Figure 17.5).
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Figure 17.5: Evolution of discrete energy levels in single molecule to continuous density
of states in semiconductor solid.

For a bulk semiconductor, theDOSs of electrons (𝐷c(𝐸)) andholes (𝐷v(𝐸)) have parabolic
distribution, and are calculated by:

𝐷c(𝐸) = 8𝜋𝑚∗
n√2𝑚∗n(𝐸 − 𝐸c)ℎ3 (17.3)

𝐷v(𝐸) = 8𝜋𝑚∗
p√2𝑚∗p(𝐸v − 𝐸)ℎ3 (17.4)

where 𝐸c and 𝐸v are the energies of the CB and VB edges, respectively, and ℎ is the Planck
constant. Note that such parabolic relation is only valid for bulk (3D) semiconductors,
while the DOS of lower dimension semiconductors takes completely different forms (Fig-
ure 17.6).

Now let’s calculate the density of carriers in a semiconductor. We define the occupation
number 𝑓(𝐸) as the probability that states at energy 𝐸 is occupied. 𝑓(𝐸) = 0means that the
states are fully unoccupied while 𝑓(𝐸) = 1 means the states are fully occupied. The total
number of carriers in a semiconductor can be calculated using the DOS and occupation
number:

𝑛 = ∫∞
Ec
𝐷c(𝐸)𝑓(𝐸)d𝐸 (17.5)

𝑝 = ∫Ev

−∞ 𝐷v(𝐸)[1 − 𝑓(𝐸)]d𝐸 (17.6)
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Figure 17.6: DOS of semiconductors with different dimensions.

The quantity 𝑓(𝐸) is described by the Fermi-Dirac distribution as:

𝑓(𝐸) = 11 + exp(𝐸−𝐸F𝑘B𝑇 ) (17.7)

where 𝐸F is the chemical potential (or known as the Fermi level) of the semiconductor, and𝑘B is the Boltzmann constant. The shape of Fermi-Dirac distribution is shown in Figure
17.7a.
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Figure 17.7: Carrier distribution in semiconductors. (a) The Fermi-Dirac distribution
functions at different temperatures. (b) Energy-dependent distribution of electron (blue
shaded region) and hole (red shaded region) for intrinsic and doped semiconductors. The
dash curves correspond to the DOS.

At 0 K, 𝑓(𝐸) is a step function, with all states below 𝐸F occupied and all states above 𝐸F
unoccupied. With the temperature increasing, we see that the shape of 𝑓(𝐸) is gradually
smeared and the probability to get a occupied state above 𝐸F increases, which corresponds
to the thermal activation we discussed before. There are several concepts you need to re-
member about the Fermi-Dirac distribution:
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1. The location of 𝐸F does not necessary mean there is a state. For instance in intrinsic
semiconductors, 𝐸F is in the middle of the bandgap, where 𝐷(𝐸) = 0.

2. Although the distribution function changes with temperature, the position of 𝐸F is
independent of the temperature.

3. The states that 𝐸 > 𝐸F can be occupied as a result of thermal activation, described by
the Fermi-Dirac distribution.

In comparison with semiconductors, the CB and VB of a conductor overlap. Therefore𝐸F coincide with the top of the VB. In practice, people usually use the quantity “work func-
tion” 𝜙 to define 𝐸F. The definition of work function is the energy difference between 𝐸F
and the vacuum energy 𝐸vac, such that:

𝑒𝜙 = 𝐸vac − 𝐸F (17.8)

and have unit of V. The values of work functions in several common metals are listed in
Table 17.1.

Table 17.1: Work function 𝑒𝜙 for several metals.𝑒𝜙 in eV
Al ∼4.0
Ag ∼4.5
Au ∼5.0

Finally we can derive the expressions for 𝑛 and 𝑝 in a semiconductor. Using Equation
17.5 and the Fermi-Dirac distribution, we get:

𝑛 = ∫∞
𝐸c
8√2𝜋𝑚∗

n
3/2ℎ3 √𝐸 − 𝐸c 11 + exp 𝐸−𝐸F𝑘B𝑇

d𝐸
≈ ∫∞

𝐸c
8√2𝜋𝑚∗

n
3/2ℎ3 √𝐸 − 𝐸c exp(𝐸 − 𝐸F𝑘B𝑇 )d𝐸

= 𝑁c exp(−𝐸c − 𝐸F𝑘B𝑇 )
(17.9)

where the approximation is valid when 𝐸c −𝐸F ≫ 𝑘B𝑇. The value 𝑁c is called the effective
density of states in the CB, and has the form:

𝑁c = 2 [2𝜋𝑚∗
n𝑘B𝑇ℎ2 ]3/2 (17.10)

Similarly, we can derive the concentration of holes:

𝑝 = 𝑁v exp(−𝐸F − 𝐸v𝑘B𝑇 ) (17.11)
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with 𝑁p expressed as:

𝑁v = 2 [2𝜋𝑚∗
p𝑘B𝑇ℎ2 ]3/2 (17.12)

An important feature is that the product of 𝑛 and 𝑝 is constant for a semiconductor, such
that: 𝑛 × 𝑝 = 𝑁c𝑁v exp(− 𝐸g𝑘B𝑇) = 𝑛2𝑖 (17.13)

For intrinsic semiconductors, we know that 𝑛 = 𝑝 = 𝑛𝑖 = √𝑁c𝑁v exp(− 𝐸g2𝑘B𝑇). This is
about 1010 cm-3 for silicon (𝐸g = 1.12 eV) at 300 K.

With the help of Equations 17.9 and 17.11, we are able to calculate the carrier density
using the value of 𝐸F. In an intrinsic semiconductor, we have 𝐸F = (𝐸c+𝐸v)/2. What about
doped semiconductors that we do not know the position of 𝐸F? Qualitatively speaking, in
an n-doped semiconductor, we have 𝑛 > 𝑝, meaning the 𝐸F shifts towards the edge of CB,𝐸c, such that (𝐸c−𝐸F) < (𝐸F−𝐸v). Similarly, in p-doped semiconductors, 𝐸F shifts towards𝐸v, such that (𝐸c − 𝐸F) > (𝐸F − 𝐸v). The charge distribution described by the Fermi-Dirac
model in intrinsic and doped semiconductors, can be seen in Figure 17.7b. We can describe
the carrier density in a doped semiconductor in a generalized picture: the overall charge
is contributed by the mobile carriers (𝑛 and 𝑝), as well as immobile ionic dopants (𝑁d and𝑁a). They are governed by the following equations:

𝑛 + 𝑁a = 𝑝 + 𝑁d𝑛 × 𝑝 = 𝑛2𝑖 (17.14)

giving the solutions:

𝑛 = 𝑁d − 𝑁a2 + [(𝑁d − 𝑁a2 )2 + 𝑛2𝑖 ]1/2 (17.15)

𝑝 = 𝑁a − 𝑁d2 + [(𝑁a − 𝑁d2 )2 + 𝑛2𝑖 ]1/2 (17.16)

When the majority carrier is dominated by doping, the carrier concentrations can be sim-
plified:

1. n-doped, 𝑁d − 𝑁a ≫ 𝑛𝑖
We have:

𝑛 ≈ 𝑁d − 𝑁a = 𝑁c exp(−𝐸c − 𝐸F𝑘B𝑇 )
𝑝 ≈ 𝑛2𝑖𝑛 (17.17)

2. p-doped, 𝑁a − 𝑁d ≫ 𝑛𝑖
We have:
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𝑛 ≈ 𝑛2𝑖𝑝𝑝 ≈ 𝑁a − 𝑁d = 𝑁v exp(−𝐸F − 𝐸v𝑘B𝑇 ) (17.18)

Using Equations 17.17 and 17.18, we can estimate the position of 𝐸F if we know the
dopant concentration, or calculate the carrier concentration when we know the position of𝐸F.
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