
Lecture 20

The p-n Junction

The p-n junction is the interface between a p-doped and n-doped semiconductors (Figure
20.1a). The p-n junction is the fundamental building block of semiconductor electronic de-
vices, due to its diode behavior. Similar to the metal-semiconductor interface we introduced
in Lecture 19, the current of a p-n is very low under reverse bias (𝑉 < 0), while rapidly in-
creasing under forward bias (𝑉 > 0), as shown in Figure 20.1b. However the mechanism
is not exactly the same as in a metal-semiconductor junction. So what happens at the p-n
junction interface? Intuitively speaking, when n-doped and p-doped semiconductors con-
tact, the n-doped semiconductor has more electrons and the p-doped semiconductor has
more holes. The imbalance of carriers cause a flow of electrons from the n-doped region
to the p-doped region, and creates a charged region near the interface. In the following
sections we’ll introduce quantitative analysis of the band diagram and carrier transport of
the p-n junction.
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Figure 20.1: The p-n junction. (a) The device layout of a p-n junction, showing the charged
interfacial layer. The voltage is applied on the p-doped side. (b) Current-bias behavior of a
typical p-n junction.
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192 LECTURE 20. THE P-N JUNCTION

20.1 Band alignment of p-n junction
Let’s start with the band diagram of the p-n junction. Before contact, the Fermi level of the
n-doped side is higher than the p-doped side. After contact, 𝐸F is aligned. Since the p-n
junction comes from the same semiconductor (Si) while the dopant concentration varies,
the vacuum level 𝐸vac is continuous at the semiconductor interface. As a result, band bend-
ing is observed for 𝐸c, 𝐸v and 𝐸vac. An important quantity of the p-n junction is the mis-
match between the Fermi levels in the different doped regions, the built-in potential 𝜙bi:𝑒𝜙bi = 𝐸F,n − 𝐸F,p = 𝐸g − 𝑒𝜙p − 𝑒𝜙n (20.1)

where 𝜙p = 𝐸F − 𝐸v and 𝜙n = 𝐸c − 𝐸F are the Fermi level offset in p-doped and n-doped
regions, respectively. The electric potential𝜓 in the semiconductor is higher on the n-doped
side and lower on the p-doped side, with a difference of 𝜙bi. The physical parameters of a
p-n junction can be seen in Figure 20.2a.
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Figure 20.2: Band diagram of a p-n junction. (a) Band bending of a p-n junction, showing
the total band offset as 𝜙bi, the built-in potential. (b) Charge density and potential profiles
of a p-n junction under the abrupt junction approximation.

Before contact, in the n-doped region, the free electron density 𝑛 ≈ 𝑁d. Using our
knowledge of the charge distribution in semiconductors (Equation 19.3), we get:

𝜙n = 𝑘B𝑇𝑒 ln(𝑁c𝑁d
) (20.2)

and similarly in the p-doped region:

𝜙p = 𝑘B𝑇𝑒 ln(𝑁v𝑁a
) (20.3)
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Combine the definition of 𝜙n and 𝜙p with Equation 20.1, we can express the built-in poten-
tial as: 𝜙bi = 𝑘B𝑇𝑒 ln(𝑁a𝑁d𝑛2i ) (20.4)

where 𝑛i is the intrinsic carrier concentration of silicon.
Next, we will work out the potential profile across the junction. For simplicity we can

use the abrupt junction approximation as we used to solve the M-S interface. Consider the
Poisson equation in the junction:

d2𝜓
d𝑥2 = − 𝜌𝜀0𝜀r (20.5)

The abrupt junction approximation is that the dopants are completely ionized in the deple-
tion region, that the charge density 𝜌 = 𝑒𝑁d for 𝑥n < 𝑥 < 0 in the n-doped region, while𝜌 = −𝑒𝑁a for 0 < 𝑥 < 𝑥p in the p-doped region (Figure 20.2b). The boundary conditions
are:

• 𝜓(𝑥 = 𝑥n) = 𝜙bi, in the n-doped region

• 𝜓(𝑥 = 𝑥p) = 0, in the p-doped region

• d𝜓
d𝑥 (𝑥 = 𝑥n) = d𝜓

d𝑥 (𝑥 = 𝑥p) = 0
Similar to the procedure we adapted for the M-S junction, the solutions of the potential
profiles in the n- and p-doped regions, are:

• n-doped region (𝑥n < 𝑥 < 0)

𝜓(𝑥) = 𝜙bi − 𝑒𝑁d2𝜀0𝜀r (𝑥 − 𝑥n)2 (20.6)

• p-doped region (0 < 𝑥 < 𝑥p)

𝜓(𝑥) = 𝑒𝑁a2𝜀0𝜀r (𝑥p − 𝑥)2 (20.7)

At the interface, the continuity conditions for both the 𝜓 and d𝜓/d𝑥 are continuous (due
to same dielectric constant) lead to:𝜙bi = 𝑒𝑁d2𝜀0𝜀r𝑥2n + 𝑒𝑁a2𝜀0𝜀r𝑥2p (20.8)

and 𝑁d𝑥n + 𝑁a𝑥p = 0 (20.9)
Solving the above sets of equations gives the width of the depletion region:

𝑥p − 𝑥n = 𝑊 = √2𝜀0𝜀r𝜙bi𝑒 ( 1𝑁a
+ 1𝑁d

) (20.10)

with a doping density of 𝑁a = 𝑁d = 1018 cm-3, the depletion width 𝑊 is at the order of
50 nm. With increasing 𝑁a and 𝑁d, the depletion width decreases due to 𝜙bi ∼ ln(𝑁a𝑁d),
which is slower than 𝑁−1

a + 𝑁−1
d .
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20.2 Carrier transport at the p-n junction
Now let’s study the current-bias behavior of the p-n junction. We assume the bias at the
n-doped side is zero in all cases. Within the reverse bias regime, 𝑉 < 0, the Fermi level
of the p-doped side, 𝐸Fp is elevated, and vice versa. The potential drop across the junction𝜙b = 𝜙bi − 𝑉, and the depletion width becomes:

𝑊 = √2𝜀0𝜀r(𝜙bi − 𝑉)𝑒 ( 1𝑁a
+ 1𝑁d

) (20.11)

The comparison between the band diagrams under reverse and forward biases, can be seen
in Figure 20.3. Similar to the analysis in M-S junction, the change of 𝑊 as a function of
applied bias 𝑉, can be measured using the capacitance of the system, that 1/𝐶2 ∝ (𝜙bi−𝑉).
By extrapolating the curve of 1/𝐶2 versus −𝑉 to the x-axis, we get the built-in potential 𝜙bi.
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Figure 20.3: Band diagram of the p-n junction under reverse (left) and forward (right) bias.
The depletion layer thickness increases with reverse bias while decrease with forward bias.

Now let’s consider the carrier transport across the p-n junction. From the Drude model,
the current in a homogeneous semiconductor proportional to the carrier density, therefore
the current in the n-doped region is dominated by electrons, and p-doped region is domi-
nated by holes. However within the depletion region, merely no free carriers exists as we
know from the abrupt junction approximation. What happens near the boundary of the
depletion region, is recombination of e--h+ pairs. when 𝑉 ≠ 0, the semiconductor is not
at thermal equilibrium due to the carrier injection. For instance, when 𝑉 > 0 (forward
bias), more holes flow from the p-doped side to the n-doped region, creating region of ex-
cess minority carrier (hole) inside the n-doped side. Similarly, excess electrons also exist
in the p-doped side. The minority carriers are actually conducting current in the p-n junc-
tion, which we’ll see in the derivations that follow. To distinguish, we name the majority
carriers 𝑛n and 𝑝p, as well as the minority carriers 𝑛p and 𝑝n.

In the p-doped region and far from the interface, the minority carrier (electron) density
follows: 𝑛𝑝0 = 𝑁c exp(−𝐸g − 𝑒𝜙p𝑘B𝑇 ) = 𝑛n0 exp(−𝑒𝜙bi𝑘B𝑇) (20.12)
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By applying a bias 𝑉, the minority carrier density at the boundary of the depletion region
becomes: 𝑛p(𝑥p) = 𝑛p0exp( 𝑒𝑉𝑘B𝑇) = 𝑛n0exp [−𝑒(𝜙bi − 𝑉)𝑘B𝑇 ] On the other hand, 𝑝n(𝑥n) =
𝑝n0exp( 𝑒𝑉𝑘B𝑇). Take minority carrier in the n-doped region for example, the concentration
of 𝑝n remains constant over time, and there is no photocarrier generation, the continuity
equation is then: 𝑢p𝑘B𝑇d2𝑝nd𝑥2 − 𝑝′n𝜏p = 0 (20.13)

with boundary conditions: 𝑝n(𝑥n) = 𝑝n0 exp( 𝑒𝑉𝑘B𝑇)𝑝n(−∞) = 𝑝n0 (20.14)

Solve the differential equations gives:𝑝n(𝑥) = 𝑝n0 + 𝑝n0 [exp( 𝑒𝑉𝑘B𝑇) − 1] exp(− 𝑥 − 𝑥n√𝑢p𝑘B𝑇𝜏p )⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟𝑝′n
(20.15)

The dominance of minority carriers for the transport of a p-n junction, can be seen in Figure
20.4. Since outside the depletion region 𝑥 < 𝑥n, the potential profile is flat, the current in
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Figure 20.4: Dominance of minority carriers in p-n junction. Left: diffusion and recom-
bination of minority carriers outside the depletion regions. Right:the concentration of mi-
nority carriers using the abrupt junction approximation.

the n-doped is solely due to the diffusion of excess minority carrier, that

𝐽p = −𝑒𝑢p𝑘B𝑇d𝑝nd𝑥 = 𝑒√𝑢p𝑘B𝑇𝜏p 𝑝n0 [exp( 𝑒𝑉𝑘B𝑇) − 1] exp(− 𝑥 − 𝑥n√𝑢p𝑘B𝑇𝜏p ) (20.16)

Following the same procedure, the current density in the p-doped side, is:

𝐽n = 𝑒√𝑢n𝑘B𝑇𝜏n 𝑛p0 [exp( 𝑒𝑉𝑘B𝑇) − 1] exp(− 𝑥p − 𝑥√𝑢n𝑘B𝑇𝜏n ) (20.17)
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The quantity 𝐿r = √𝑢𝑘B𝑇𝜏 is the characteristic length of combination in the doped semi-
conductors. Usually 𝐿r ≫ 𝑊, which means the recombination inside the depletion region
is negligible, and we can therefore neglect the last exponential part in Equations 20.16 and
20.17. Therefore , we approximate the current density of both carriers as:

𝐽p ≈ 𝑒√𝑢p𝑘B𝑇𝜏p 𝑝n0 [exp( 𝑒𝑉𝑘B𝑇) − 1]
𝐽n ≈ 𝑒√𝑢n𝑘B𝑇𝜏n 𝑛p0 [exp( 𝑒𝑉𝑘B𝑇) − 1] (20.18)

and the total current density:

𝐽tot = 𝑒 [√𝑢p𝑘B𝑇𝜏p 𝑝n0 +√𝑢n𝑘B𝑇𝜏n 𝑛p0] [exp( 𝑒𝑉𝑘B𝑇 − 1)] = 𝐽0 [exp( 𝑒𝑉𝑘B𝑇 − 1)] (20.19)

which has a very similar form with the current density in a Schottky M-S junction 19.13.
However, we should not that in a Schottky junction, the majority of carrier dominates the
current, while in a p-n junction it is the minority carrier. The threshold current 𝐽0 in a
Schottky junction is influenced by the Schottky barrier height, the difference between the
electron affinity, while in a p-n junction, it is mainly the built-in potential (difference be-
tween Fermi level) that controls 𝐽0. Another difference is that the flow of both carriers in a
p-n junction makes it also suitable to separate photo-generated e-h pairs after illumination,
the key process in a solar cell, while this cannot be achieved in a Schottky barrier due to
the unipolar transport behavior.


