
Lecture 4

Fluid Mechanics Involving Interface

In this lecture, wewill discuss the basic concepts of fluidmechanics involving the interface.
To keep the discussion simple, we ignore all interfacial chemical reactions.

4.1 Interfacial coordinate system
For the interface between fluids A and B, there are two local vectors 𝑛 (normal vector) and𝑡 (tangent vector) along the boundary line. 𝑛 and 𝑡 are equivalent to 𝑒𝑦 and 𝑒𝑥 of the local
coordinate system, respectively. We define 𝑛 pointing fromA to B and 𝑡 always on the right
hand side orthogonal to 𝑛, as seen in Figure 4.1.
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Figure 4.1: Normal vector 𝑛 and 𝑡 on the interface between A and B.

The velocities of both phases are 𝑣A and 𝑣B, respectively. The boundary conditions of 𝑣
are:

• Tangential: no-slip boundary 𝑣A ⋅ 𝑡 = 𝑣B ⋅ 𝑡
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The no-slip boundary is a consequence of adhesion of molecules at the interface, and
microscopically the outermostmolecules at each phase do notmove along the bound-
ary line.1,2 This is usually a convenient boundary condition for solid-liquid interface,
however its limitation on real systems should also be noticed.3,4

• Normal: no-penetration boundary 𝑣A ⋅ 𝑛 = 𝑣B ⋅ 𝑛
This is easy to imagine since otherwise a non-zero normal velocity will make the
boundary penetrate into one phase.

Using the local coordinate system on the interface, the stress balance at the boundary
involving the pressure 𝑝, stress tensor 𝜏 is:5

• Normal component: 𝑝A − 𝑝B + 𝜏nn|B − 𝜏nn|A + 2ℋ𝛾 = 0
Here 𝑝 is the pressure, 𝜏𝑛𝑛 is the nn (yy)-component of the stress tensor 𝜏, andℋ =−12(∇s ⋅ 𝑛) is the local mean curvature of the boundary. ∇s is the surface gradient
operator defined as ∇s = ∇ − 𝑛(𝑛 ⋅ ∇).

• Tangential component: 𝜏nt|B − 𝜏nt|A + 𝑡 ⋅ ∇s𝛾 = 0
Here 𝜏nt is the nt (yx)-component of the Cauchy stress tensor.

At equilibrium, the normal components of the stress tensor balance each other, i.e.𝜏nn|A = 𝜏nn|B. If there is no temperature change over the interface, 𝑡 ⋅ ∇s𝛾 = 0 and we also
have 𝜏nt|A = 𝜏nt|B. As a result the pressure difference across the interface is described by
the surface tension and curvature: 𝑝A − 𝑝B + 2ℋ𝛾 = 0 (4.1)

The surface curvature ℋ can be expressed using the two principle radii 𝑅1 and 𝑅2 of the
surface, as shown in Figure 4.2, with the equation:

|ℋ| = 12( 1𝑅1 + 1𝑅2 ) (4.2)

For a spherical surface, 𝑅1 = 𝑅2 = 𝑅 and |ℋ| = 1𝑅 . The sign of ℋ depends on the direction
of 𝑛: when 𝑛 points towards the local center of the curvature (where the center of the
principle arc is), 𝐻 > 0, and vice versa (Figure 4.3).

The relation of curvature can be used to explain several interesting phenomena. For
example, the pressure inside a bubble is larger than the outside. Consider a gas bubble (A)
in liquid (B). The normal vector 𝑛 points fromA to B and away from the center of curvature.
Thereforeℋ = − 1𝑅 < 0. The pressure in liquid 𝑝B is lower than 𝑝A:

𝑝B = 𝑝A − 2𝛾𝑅 (4.3)

This is known as the Young-Laplace equation.6 The pressure difference Δ𝑝 = 𝑝A−𝑝B = 2𝛾𝑅
can be huge for micro- and nanoscale bubbles. For instance when $R$=1 𝜇m, Δ𝑝 is as



4.1. INTERFACIAL COORDINATE SYSTEM 31

n

Principle radius R1

Principle radius R2

Local center of curvature

Figure 4.2: Scheme of the principle radii of a surface. For each point on the surface, the
local curvature can be approximated by two arcs (shown in red and blue curves) with radii𝑅1 and 𝑅2, called the principle radii.
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Figure 4.3: Sign of curvatureℋ depends on the direction of 𝑛.
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Figure 4.4: Pressure differenceΔ𝑝 between a gas droplet in water as a function of its radius𝑅. Δ𝑝 can be as huge as several atm when the bubble has a size below 1 𝜇m.

high as 1.4 atm, while on the contrary when $R$=1 mm, Δ𝑝 becomes only 144 Pa. The
simulated pressure difference between a gas bubble and water as a function of its radius is
shown in Figure 4.4. The simple analysis in Figure 4.4 indicates that nanobubbles (radius
smaller than 1 𝜇m) cannot survive due to the huge pressure imbalance. However recent
evidence shows that such nanobubbles do exist and have even longer lifetime on a surface
than we expected,7 due to the effect of contact line pinning.

4.2 Meniscus near aWilhelmy plate
Another example of interfacial fluid mechanics is the meniscus profile near a Wilhelmy
plate. When the contact angle 𝜃 is smaller than 90° on theWilhelmy plate, the cross section
of themeniscus is a convex curve. If we set the liquid phase asA, and air as B,we know from
our previous analysis that everywhere along the meniscus, 𝑝B(𝑥) = 𝑝A(𝑥) + 2ℋ(𝑥)𝛾 andℋ > 0. Very far from the interface 𝑥 → ∞, 𝑝B ≈ 𝑝A, as shown in Figure 4.5. From another
point of view, the pressure difference across the meniscus is caused by the hydrodynamic
pressure. Since 𝑝B is constant everywhere, 𝑝B = 𝑝B(𝑥 → ∞). Combine this with the
hydrodynamic pressure in the liquid phase, 𝑝A(𝑥) + 𝜌L𝑔ℎ(𝑥) = 𝑝A(𝑥 → ∞), we get:𝑝B(𝑥) = 𝑝A(𝑥) + 𝜌L𝑔ℎ(𝑥) (4.4)

Follow the Young-Laplace equation, the relation between the local height and curvature is
obtained as a differential equation:

2ℋ(𝑥) = 𝜌L𝑔ℎ(𝑥)𝛾L
d2ℎ
d𝑥2 = 𝜌L𝑔ℎ(𝑥)𝛾L [(dℎd𝑥)2 + 1] 32 (4.5)

which is derived from the equation of curvature in 1D.5
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Figure 4.5: Meniscus near aWilhelmy plate. Near the plate the pressure of air 𝑝B is larger
than the liquid pressure 𝑝A due to local curvature, while far from the plate 𝑝A ≈ 𝑝B.

We can use dimension analysis to get rid of 𝜌L and 𝛾L. Since meniscus is an interplay
between gravity and surface tension, we normalize ℎ and 𝑥 with the capillary length 𝑙 (de-
fined as 𝑙 = √ 𝛾L𝜌L𝑔). Using 𝐻 = ℎ/𝑙 and 𝑋 = 𝑥/𝑙 as the normalized height and position, the
dimensionless differential equation for the meniscus is then:

d2𝐻
d𝑋2 = 𝐵𝑜𝐻[1 + (d𝐻d𝑋 )2] 32 (4.6)

where 𝐵𝑜 = 𝜌L𝑔𝜆2𝛾L is the Bond number (ratio between gravity and surface tension). The
boundary conditions are: ⎧⎪⎨⎪⎩

d𝐻
d𝑋 = − cot 𝜃 𝑋 = 0𝐻 = 0 𝑋 → ∞
d𝐻
d𝑋 = 0 𝑋 → ∞ (4.7)

Therefore the meniscus profile can be solved numerically.
Someapproximations can also bemade to get an analytical solution. Sinced𝐻/d𝑋|𝑋=0 =− cot 𝜃, when 𝜃 ∼ 90°, cot 𝜃 ≪ 1. Equation 4.6 therefore reduces to a linear differential

equation:
d2𝐻
d𝑋2 = 𝐵𝑜𝐻 (4.8)

The solution of such equation is:

𝐻(𝑋) = cot 𝜃√𝐵𝑜 exp(−√𝐵𝑜𝑋) | cot 𝜃| ≪ 1 (4.9)

which has the shape of exponential decay.
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4.3 The coffee ring effect
Another interesting effect involving the interfacial fluid mechanics is the coffee ring effect.
The coffee ring effect refers to the formation of ring-like pattern after the evaporation of
a colloidal solution, which is typically observed in the stain from coffee. The coffee ring
effect is associated with behavior of the contact line in an evaporating colloidal solution
droplet. During the evaporation process of a pure liquid droplet, the contact angle 𝜃 re-
mains at the receding angle 𝜃rec. However, 𝜃 of an evaporating colloidal solution droplet
shows dependency with time 𝑡, as shown in Figure 4.6.
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Figure 4.6: The coffee ring effect. The image shows a typical ring-like pattern when evap-
orating a colloidal solution. The contact angle of a droplet during evaporation is different
between a pure liquid (contact angle remains constant) and a colloidal solution (contact
angle changes with time). The lines in gray scale indicate the boundary of liquid during
evaporation.

When the colloidal solution evaporates, particles get deposited along the contact line,
which makes an energy barrier for the contact line to move inwards. This results in a phe-
nomenon called “contact line pinning” and the contact angle reduces. When 𝜃 reduce be-
low a certain angle 𝜃locrec, the energy barrier is overcome, and the contact line shrinks again.
Therefore 𝜃 reverts to 𝜃rec and another cycle of contact line pinning starts. After several cy-
cles of pinning-releasing process, the deposited colloidal particles form a series of ring-like
patterns.

The coffee ring effect can be seen as a transport problem involving 3 phase interfaces.
The evaporation of a droplet can be seen as the time-dependent diffusion of (gaseous) sol-
vent molecules, following Fick’s second law:

𝜕𝑐𝜕𝑡 = 𝒟∇2𝑐 (4.10)

where 𝒟 is diffusivity of water in air. The concentration profile can be solved assuming
that the concentration near the droplet surface is the saturated vapor concentration, and
far from the droplet 𝑐 = 0. Here we will use the pseudo-steady state assumption (PSSA) to
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get the concentration profile. From dimension analysis, the diffusion length scale is close
to the radius of the droplet 𝑅 and the characteristic time scale for vapor diffusion is:

𝑡D ∼ 𝑅2𝒟 (4.11)

We could also estimate the volume change of droplet, using the mass flux from Fick’s first
law: 𝜌Ld𝑉d𝑡 = 𝐽 ⋅ 𝐴

𝑚L
𝑅3𝑡V ∼ 𝒟Δ𝑐𝑅 𝑅2 (4.12)

where 𝑚L = 𝜌L/𝑀 is the concentration of molecules in the liquid. 𝑡V is the characteristic
time for the change of droplet volume. Compare Equations 4.11 and 4.12 we get the ratio
between 𝑡D and 𝑡V: 𝑡D𝑡V ∼ Δ𝑐𝑚L

≪ 1 (4.13)

This means the time scale for the volume to change, 𝑡v is much longer than the vapor
molecules to diffuse, 𝑡D. Therefore we can assume that ∇2𝑐 = 0 in the vapor phase when
studying the shape of the droplet. From the pseudo-steady profile of 𝑐 in vapor, we can get
the flux 𝐽 at the droplet interface to solve the equation for droplet shape change. An ex-
ample of the 𝑐 and 𝐽 profiles near a droplet using finite element analysis software is shown
in Figure 4.7. The result of numerical simulations indicate that the diffusion flux is much
larger near the three-phase contact edge, therefore a flow inside the droplet is induced.
It turns out that a strong flux near the solid-liquid interface moves from the center to the
edge. When colloidal particles are present in the solution, they are brought to the edge by
such flow and deposited at the contact line. The deposited particles serve as a hydrophilic
pattern which reduces the local receding angle 𝜃locrec. Therefore the contact line is pinned
until 𝜃 becomes lower than 𝜃locrec on the colloidal particles. When the contact line shrinks,
the contact angle becomes 𝜃rec again. The process leaves a ring-like pattern of deposited
colloidal particles on the solid surface, which is the coffee ring effect. In practical appli-
cations, the coffee ring is usually undesired when producing uniform colloidal film. The
topic of engineering the coffee ring effect can be found in References [8–10].
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Figure 4.7: Example of the solution for 𝑐 (upper) and 𝐽 (lower) near an evaporating droplet
using FEMsoftware. The 2D color plots are normalized. For the diffusionflux, the intensity
is shown using 2D color plot, while the arrows indicate both the intensity and direction of
the flux. We can observe the singularity of diffusion flux near the contact line. As a result
the flux inside the droplet brings the particles to the boundary line, which is the origin of
the coffee-ring effect.
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