
Lecture 6

Growth of Nucleus Under
Supercooling

In Lecture 5 we discussed the thermodynamics of nucleation under supercooling. From
the classical nucleation theory, we know that the nucleus growth is a kinetic process with
an activation energy of Δ𝐺c, and crystals grow faster when Δ𝐺c decreases. So far we have
ignored other kinetic processes including heat andmass transfer. In reality the temperature
and concentration profiles are not uniform during nucleation, and the nucleus growth can
be controlled by heat / mass transfer when such processes are much slower than adding
molecules to the nucleus. In this lecture we will model the growth of a nucleus during
supercooling, based on interfacial transport theory we learned so far. Depending on the
governing process, the growth can be controlled by either kinetics, heat transfer or mass
transfer.

6.1 Kinetic-controlled growth
Within the regime of kinetic-controlled growth, the time scale for the molecule to transfer
from liquid to solid phase, is much longer than the time scale of diffusion and heat transfer
(e.g. slow reaction and perfect mixing). We assume that everywhere in the system, the
temperature 𝑇 (<𝑇m) is uniform. Themolecule vibrates at a frequency of 𝜈 at 𝑇, and creates
an oscillating energy landscape near the nucleus (XL) / solution (L) interface, as shown in
Figure 6.1.

The activation energy from solution (L) to crystal (XL) is 𝐸L→XL, and vice versa. In
the case of supercooling, we have 𝐸L→XL < 𝐸XL→L. Using Boltzmann distribution for the
molecules, the flux in and out of the crystal phase are:

𝐽L→XL = 𝑁𝜈 exp (−𝐸L→XL𝑘B𝑇 ) (6.1)

𝐽XL→L = 𝑁𝜈 exp (−𝐸XL→L𝑘B𝑇 ) (6.2)

where 𝐽 is themolar flux (number of molecules per unit area per unit time) ,𝑁 is the number
of molecules per unit area on the crystal surface. The growth rate of a spherical cluster with
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Figure 6.1: Free energy of a molecule near the nucleus (XL) / solution (L) interface as
a function of the distance 𝑥. In both phases, the free energy has an oscillating landscape
due to the vibration of molecules. The average free energy is higher in the solution than
nucleus, and an energy barrier exists across the interface.

radius 𝑅 is d𝑅/d𝑡 and calculated by:
d𝑅
d𝑡 = Ω(𝐽L→XL − 𝐽XL→L)= 𝑁𝜈Ω exp(−𝐸L→XL𝑘B𝑇 ) [1 − exp( Δ𝐺𝑘B𝑇)]≈ − [𝑁𝜈Ω𝑘B𝑇 exp(−𝐸L→XL𝑘B𝑇 )]Δ𝐺

≈ − [𝑁𝜈Ω𝑘B𝑇 exp(−𝐸L→XL𝑘B𝑇 )] Δ𝐻𝑇m⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
constant

Δ𝑇
(6.3)

whereΩ is the volume of molecule and Δ𝐺 = 𝐸L→XL−𝐸XL→L. Here we assume that Δ𝐺 ≪𝑘B𝑇. If the crystal size is much larger than the molecular dimension, 𝑁 can be regarded as
constant. Therefore Equation 6.1 indicates the growth rate of the nucleus is proportional
to the degree of supercooling Δ𝑇, and is a constant when 𝑇 does not change. In other
words, within the regime of kinetic-controlled growth, the crystalline size can be controlled
easily by time. In fact, this has been used in seeded growth of colloidal particles in which
nanoparticles with narrow size distribution can be obtained.1

6.2 Heat and mass transfer at interface
We shall note that the kinetic-controlled growth is a rather simplified assumption, since
in reality neither the temperature nor concentration profiles are uniform. In reality, the
transport phenomena across the interface also need to be considered. The general equation
for the conservation of heat/mass at the interface between phases A and B is:2[(𝐹 − 𝑏𝑣I)|B − (𝐹 − 𝑏𝑣I)|A] ⋅ 𝑛 = 𝐵s (6.4)



6.3. HEAT TRANSFER-CONTROLLED GROWTH 51

where 𝐹 is the total heat /mass flux such that 𝐹 = 𝑏𝑣I+𝑓, 𝑣I is the interfacial moving speed,𝑏𝑣I is the convective flux, 𝑓 is the diffusive flux, 𝑛 is the surface norm vector pointing from
A to B, and 𝐵s is the rate of formation per unit area. The variables 𝑏, 𝑓 and 𝐵s depend on
the type of flux:

• Conservation of mass
We have 𝑏 = 𝜌; 𝑓 = 0; 𝐵s = 0 where 𝜌 is the density. The conservation of mass reads:

[𝜌A(𝑣 − 𝑣I) ⋅ 𝑛]A = [𝜌B(𝑣 − 𝑣I) ⋅ 𝑛]B (6.5)

• Conservation of heat
We have 𝑏 = 𝜌�̂�; 𝑓 = −𝑘∇𝑇 = 𝑞; 𝐵s = 0, where �̂� is the enthalpy per unit mass, and𝑘 is the thermal conductivity. The conservation of heat reads:

[𝜌A�̂�A(𝑣 − 𝑣I) + 𝑞]A ⋅ 𝑛 = [𝜌B(𝑣 − 𝑣I) + 𝑞]B ⋅ 𝑛 (6.6)

Combine Equations 6.5 and 6.6, we get:

(𝑞A − 𝑞B) ⋅ 𝑛 = ̂𝜆𝜌A(𝑣 − 𝑣I)A ⋅ 𝑛= ̂𝜆𝜌B(𝑣 − 𝑣I)B ⋅ 𝑛 (6.7)

where ̂𝜆 = �̂�B− �̂�A is the latent heat per unit mass. Use Equations 6.5, 6.6 and 6.7, we can
model the heat and mass transfer through the system.

6.3 Heat transfer-controlled growth
The heat transfer-controlled growth assumes that diffusivity 𝒟 of the molecules are fast
enough that within the time scale of nucleus growth the concentration distribution is con-
stant. For simplicity we model the growth of a small spherical nucleus with radius 𝑅 in
supercooled liquid. We assume (i) liquid and solid has same density, i.e. 𝜌S = 𝜌L = 𝜌 and
(ii) the temperature at interface is the melting point 𝑇I = 𝑇m. Far from the nucleus the
temperature is 𝑇∞ (𝑇∞ < 𝑇m). The geometry of the system is shown in Figure 6.2.

Use the conservation of mass in Equation 6.5, since the velocity in solid 𝑣S = 0, the
liquid phase is also still, i.e. 𝑣L = 0. In other words, no fluid flow is present and the growth
of nucleus is solely due to phase transition. Now let’s solve the heat transfer problem in
solid and liquid phases. The problem can be reduced to a 1D problem since the system
is spherically symmetric. Here pseudo-steady state assumption (PSSA) applies, since the
time to reach heat balance is much faster than the moving of interface. In both phases (not
counting the interface), there are no sources of heat and temperature follows the Laplace
equation: ∇2𝑇 = 𝜕𝜕𝑟(𝑟2𝜕𝑇𝜕𝑟 ) = 0 (6.8)

which can be solved in each phase with different boundary conditions:
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Figure 6.2: Temperature profile of a small nucleus in a supercooled liquid, studied in a
spherical coordinate system. The temperature profile is superimposed with the geometry
of the system.

• Solid phase

The boundary conditions are 𝜕𝑇𝜕𝑟 (𝑟 = 0) = 0 due to symmetry and 𝑇(𝑟 = 𝑅) = 𝑇m,
which gives 𝑇 = 𝑇m everywhere in the solid phase.

• Liquid phase

The boundary conditions are 𝑇(𝑟 = 𝑅) = 𝑇m, 𝑇(𝑟 → ∞) = 𝑇∞ and 𝜕𝑇𝜕𝑟 (𝑟 → ∞) = 0.
The solution is: 𝑇(𝑟, 𝑡) = 𝑇∞ + (𝑇m − 𝑇∞)𝑅(𝑡)𝑟 𝑟 ≥ 𝑅(𝑡) (6.9)

Note 𝑇 is dependent on 𝑡 since the radius 𝑅 increases over time. However using
PSSA we can take “snapshots” of 𝑇(𝑟, 𝑡) and 𝑅(𝑡) and solve Equation 6.9 for each
time frame. A typical temperature profile can be found in Figure 6.2, superimposed
with the geometry of nucleus.

At the interface (𝑟 = 𝑅(𝑡)), the conservation of heat follows:
𝑘Ld𝑇d𝑟 |𝑟=𝑅(𝑡) = − ̂𝜆𝜌d𝑅d𝑡 = − ̂𝜆𝜌(𝑣I ⋅ 𝑒r) (6.10)

where d𝑅/d𝑡 equals the interfacial moving speed 𝑣I ⋅ 𝑒𝑟. The contribution from heat con-
duction in solid is 𝑞s = 𝑘sd𝑇/d𝑟 = 0 since 𝑇 is constant. Combine with Equation 6.9 we
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know d𝑅/d𝑡 = 𝑘L̂𝜆𝜌 Δ𝑇𝑅 , where Δ𝑇 = 𝑇m − 𝑇∞, and the size of the nucleus is given by:
𝑅(𝑡) = √𝑅20 + 2𝑘LΔ𝑇̂𝜆𝜌 𝑡 (6.11)

where𝑅0 is the radius of nucleus at 𝑡 = 0. As expected, the growth rate become faster whenΔ𝑇 increases (more supercooling). However unlike kinetic-controlled process where d𝑅/d𝑡
is constant, the growth rate in heat transfer-controlled process decreases with larger 𝑅.
6.4 Mass transfer-controlled growth
In the heat transfer-controlled growth, we assume the interfacial temperature is the melt-
ing point, i.e. 𝑇I = 𝑇m, this holds for a pure liquid or azeotrope mixture. However it is
usually not the case for nucleation in a solution, due to the different solubility in liquid and
solid phases. As shown in Figure 6.3, the 𝑇 − 𝑐 profiles for solid and liquid phases are dif-
ferent. Using the level rule of binary phase diagram,3 we can see that when the interfacial
temperature 𝑇S/L < 𝑇m, the concentration in solid and liquid phases 𝑐S and 𝑐L are different.
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Figure 6.3: Phase diagram (temperature-concentration profile) of a solid-liquid system
near 𝑐 = 0. When the interfacial temperature 𝑇S/L is smaller than 𝑇m, the concentration in
solid and liquid phases are different.

As a result the interfacial temperature changes with time, and the problem is more
complicated than the heat transfer-controlled growth. Here we will briefly discuss how
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such problem can be solved self-consistently. Under the PSSA assumption, neglecting fluid
velocities 𝑣S and 𝑣L, the conservation of species at the interface gives:

−𝒟L(𝜕𝑐𝜕𝑟)|𝑟=𝑅(𝑡) +𝒟s(𝜕𝑐𝜕𝑟)|𝑟=𝑅(𝑡) = [𝑐L − 𝑐s](d𝑅(𝑡)d𝑡 ) (6.12)

where 𝒟L and 𝒟S are the mass diffusivities of liquid and solid phases, respectively. The
conservation of heat is the same as in the heat transfer-controlled growth:

− 𝑘L𝜕𝑇L𝜕𝑟 |𝑟=𝑅 + 𝑘S𝜕𝑇S𝜕𝑟 |𝑟=𝑅 = ̂𝜆𝑅d𝑅d𝑡 (6.13)

In total we have 4 variables that are dependent on both 𝑟 and 𝑡: 𝑐L, 𝑐s, 𝑇L, 𝑇s, and 1 variable
dependent on 𝑡: 𝑅. Starting from the initial concentration profile at 𝑡 = 0, we can solve
the time-dependent differential equations numerically. In fact, mass and heat transfer-
controlled growth models can be described in a same manner. Similar to the idea of mass
diffusivity 𝒟, we can define a heat diffusivity 𝛼 = 𝑘/(𝜌𝑐p), where 𝑐𝑝 is the heat capacity
of the material, which also has unit of [length2]/[time]. At same length scale 𝐿, mass dif-
fusion has time scale of 𝐿2/𝒟 and heat diffusion has time scale of 𝐿2/𝛼. Therefore we can
distinguish which transport phenomenon is dominating by:

• 𝛼 ≫ 𝒟: growth is controlled by mass transfer
• 𝒟 ≫ 𝛼: growth is controlled by heat transfer
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