
Lecture 8

Physics of Electrostatics

In this lecture, we revise our knowledge of fundamental electrostatics. The formulae pre-
sented here will serve as important recipes for several interfacial phenomena as will be
discussed in the following lectures.

The electrostatic force between two charges 𝑞 and 𝑞′ spaced by vector 𝑟 in a medium is
described by the famous Coulomb’s law:

𝐹𝑞𝑞′ = 14𝜋𝜀0𝜀r 𝑞𝑞′|𝑟|2 𝑒𝑟 (8.1)

where 𝜀0=8.85×10-12 C2⋅J-1⋅m-1 is the vacuum permittivity (also as known as vacuum di-
electric constant), 𝜀𝑟 is the relative permittivity of the medium which has unit of 1, and 𝑒𝑟
is the unit vector along the direction of 𝑟. The electric field created by charge 𝑞 is the force𝐹𝑞𝑞′ divided by 𝑞′: 𝐸𝑞 = 𝐹𝑞𝑞′𝑞′ = 14𝜋𝜀0𝜀𝑟 𝑞|𝑟|2 𝑒𝑟 (8.2)

When themedium is vacuum, 𝜀𝑟 = 1, while in adielectricmaterial, 𝜀𝑟 > 1. Wewill discuss
about the meaning of 𝜀r in a dielectric medium in the next section.

8.1 Electrostatics in a dielectric medium
A dielectric material is an electrical insulator that can be polarized by an applied electric
field. The polarization refers to the process that the positive and negative charges in a ma-
terial is displaced, and thus electric dipoles are created by the applied field.1 The concept
of dipole will be further explained in Lecture 9, while we give a simple view of the electric
dipoles.

Consider the case where a free charge+𝑞 immersed in a dielectric material as shown in
Figure 9.2, The displaced charges create a local field that partially cancels out the external
electric field, and the total electric field inside the dielectric material is screened (reduced).

The magnitude of such electrostatic screening is characterized by 𝜀r: the force between
two charges in a dielectric material reduces to 1/𝜀𝑟 compared with case in the vacuum.
Therefore, the larger 𝜀r is, the more the electric field is screened. For instance, the forces
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Figure 8.1: Scheme of a free charge +𝑞 immersed in a dielectric medium. The dipole
moments around the free charge creates a local field, and screens the electric field created
by the charge.

between two charges in water is strongly screened since 𝜀𝑟 ≈ 80. Therefore the solvated
ions are very weakly bound and can move freely [2].

The vector electric field is the related to the gradient of the electric potential (scalar) 𝜓
through: 𝐸 = −∇𝜓 (8.3)

where ∇ = (𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧) is the vector differential operator. This gives the form of electric
potential 𝜓 of charge 𝑞 as:

𝜓 = 14𝜋𝜀0𝜀𝑟 𝑞𝑟 (8.4)

where 𝑟 = |𝑟|. The scalar property of the electrical potential ensures that the work of
translating a charge from position A to B, is independent of the path that the charge moves
along:

𝑊A→B = ∫𝐵
𝐴 𝐹 ⋅ d𝑟

= ∫𝐵
𝐴 𝑞𝐸 ⋅ d𝑟

= −𝑞∫𝐵
𝐴 ∇𝜓 ⋅ d𝑟

= −𝑞(𝜓B − 𝜓A)
(8.5)
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8.2 Gauss’s law
Aswehave learned from fundamental electrostatics, the electrical potential𝜓(𝑟) is the sum-
mation over all the charge 𝑞𝑖 in the system of interest [1]:

𝜓(𝑟) = ∑𝑖 14𝜋𝜀0 𝑞𝑖|𝑟𝑖 − 𝑟|
= 14𝜋𝜀0 ∫Ω 𝜌tot(𝑟′)|𝑟′ − 𝑟|d3𝑟′ (8.6)

where 𝜌tot is the total charge density. Note Equation 8.6 does not contain 𝜀𝑟, since the 𝜌tot
is the total charge density including both free charge density 𝜌f and bound charge density𝜌b, such that 𝜌tot = 𝜌f + 𝜌b. The definition for the two types of charges are:

• Bound charge
The charges in a dielectric that cannot have macroscopic movement. They corre-
spond to the electric dipoles (and induced dipoles) when the material is polarized.
The external electric field polarizes the dielectric material and causes the positive
and negative charges to displace a short distance.

• Free charge:
The charges that cannot be categorized as bound charge, including free carriers in
conductors, ions in aqueous solution, and charged impurities in semiconductors, etc.
Note the name “free” is only due to historic reason to be contrasted from the bound
charge, and does not essentially mean such charge can move freely in side the mate-
rial (e.g. charged impurities in semiconductors). Free charges are still present even
without external field.

A comparison between the free and bound charge densities of a dielectric material is
illustrated in Figure 8.2. Combine Equations 8.3, 8.6 and the divergence theorem3 in cal-
culus, we can relate the surface integral of the electric field with the total charge density
inside a domain of interest Ω:

∫𝜕Ω 𝐸 ⋅ d𝑆 = 1𝜀0 ∫Ω 𝜌totd𝑉 = 1𝜀0 ∫Ω(𝜌f + 𝜌b)d𝑉 (8.7)

where 𝜕Ω is the boundary (surface) of domain Ω. This is known as the Gauss’s law or the
first Maxwell equation. However this form of Gauss’s law is usually not practical to use,
since 𝜌b also depends on 𝜌f (see Figure 8.2). From Equation 8.2 we know 𝐸 = 𝐸0/𝜀r, where𝐸0 is the electric field created by 𝜌r alone in vacuum. Gauss’s law for 𝐸0 gives ∫𝜕Ω 𝐸0 ⋅d𝑆 =(∫𝜌fd𝑉)/𝜀0, and compare with Equation 8.7 we know:

𝜌tot = 1𝜀𝑟𝜌f𝜌b = ( 1𝜀𝑟 − 1)𝜌f (8.8)
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Figure 8.2: Difference between free and bound charge densities. Left: without free charges
(and external field), the electrons move on normal orbitals around the atomic nuclei, and
bound charge density 𝜌b is 0 everywhere. Right, when free charges 𝜌f are present, dipole
moments are induced which creates non-zero spatial distribution of 𝜌b.
By introducing an auxiliary quantity 𝐷 = 𝜀0𝜀r𝐸, called the electrical displacement field, we
can write Gauss’s law with only 𝜌f:

∫𝜕Ω𝐷 ⋅ d𝑆 = ∫Ω 𝜌fd𝑉 (8.9)

and in its differential form: ∇ ⋅ 𝐷 = 𝜌f (8.10)

We can see such treatment buries all information about 𝜌b into 𝜀𝑟. The relation between
the two forms of the Gauss’s law is shown in Figure 8.3:

From now on all the charges we refer to are free charges unless otherwise specified.
Equation 8.10 can also be written in the form of Poisson equation, by replacing 𝐷 with 𝜓:

∇2𝜓 = − 𝜌𝜀0𝜀𝑟 (8.11)

The electrical potential in the system can be uniquely determined from Equation 8.11 by
knowing the distribution of 𝜌 as well as 𝜀𝑟.

At the boundary between two domains 1 and 2, the continuity equations are:

• Potential𝜓1 = 𝜓2
• Tangential electrical field𝐸1 ⋅ 𝜏 = 𝐸2 ⋅ 𝜏 where 𝜏 is the tangent vector of the interface.
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Figure 8.3: The Gauss’s law that considers the explicit distribution of 𝜌b (left) and treating
the dielectric material as 𝜀r (right).

• Normal displacement field𝐷1 ⋅ 𝑛 − 𝐷2 ⋅ 𝑛 = 𝜎1/2 where 𝑛 is normal vector pointing from 1 to 2, and 𝜎1/2 is the
interfacial charge density between 1 and 2 (has unit of C⋅m−2).

8.3 Capacitors
Dielectric materials are widely used to make capacitors. The simplest case is the parallel-
plate capacitor, consists of two parallel conducting plates (A andB) and a dielectricmaterial
with thickness 𝑑 sandwiched between the plates. By transferring an electron from A to B,
the capacitor gains charge on both plates, and the electric potentials𝜓A and𝜓B change (Fig-
ure 8.4). The ratio between the charge transferred,Δ𝑞, with the electric potential differenceΔ𝜓 = 𝜓A − 𝜓B, is the capacitance 𝐶 of the capacitor:

𝐶 = Δ𝑞Δ𝜓 (8.12)

which has unit of F. 𝐶 is also frequently expressed as the capacitance per unit area, and has
the unit of F⋅m-2. The work to put charge 𝑞 into a capacitor is:

𝑊(𝑞) = ∫𝑞
0 Δ𝜓d𝑞′

= ∫𝑞
0

𝑞′𝐶 d𝑞′
= 𝑞22𝐶

(8.13)

We can easily solve 𝐶 using Gauss’s law. In the dielectric, since there is no free charges
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Figure 8.4: Scheme of a parallel-plate capacitor. The distribution of potential 𝜓 is super-
imposed with the scheme.

within the dielectric layer, the Poisson equations become the Laplace equation:

∇2𝜓 = d2𝜓
d𝑥2 = 0 (8.14)

which gives an linear correlation between 𝜓 and 𝑑. The magnitude electrical displacement
field is then 𝐷 = −𝜀0𝜀𝑟d𝜓d𝑥 = 𝜀0𝜀𝑟Δ𝜓/𝑑. Consider a closed box near one of the plate, the
surface charge on the plate is then 𝜎 = 𝐷 = 𝜀0𝜀𝑟Δ𝜓/𝑑. Therefore we get the capacitance
the parallel-plate capacitor as:

𝐶 = Δ𝑞Δ𝜓 = 𝜎𝑆Δ𝜓 = 𝜀0𝜀𝑟𝑑 𝑆 (8.15)

where 𝑆 is the surface are of the plates. Here are some exercises for calculating the capaci-
tance of a capacitor with different geometries that you can try out. The relative permittivity
of the dielectric is 𝜀r in all cases.

• Cylindrical capacitor
The cylindrical capacitor consists two concentric cylinder conductors with radii 𝑟A
and 𝑟B (𝑟B > 𝑟A), respectively (Figure 8.5a). Both cylinders have length of 𝐿. The
capacitance is 𝐶 = 2𝜋𝐿𝜀0𝜀r/ ln(𝑟B/𝑟A)
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Figure 8.5: Capacitors of different geometries: a. cylindrical capacitor and b. spherical
capacitor.

• Spherical capacitor
The spherical capacitor consists two concentric conducting spheres with radii 𝑟A and𝑟B (𝑟B > 𝑟A), respectively (Figure 8.5b). The capacitance is 𝐶 = 4𝜋𝜀0𝜀r/(𝑟−1A − 𝑟−1B )

• Parallel capacitors
2 capacitors 𝐶1 and 𝐶2 are connected parallel to each other. The effective capacitance𝐶eff = 𝐶1 + 𝐶2

• Series capacitors
2 capacitors 𝐶1 and 𝐶2 are connected in series. The effective capacitance 𝐶eff =(1/𝐶1 + 1/𝐶2)−1
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