
Lecture 9

Electrostatic Nature of Intermolecular
Forces

In Lecture 1 we have introduced the intermolecular van der Waals interaction, which has
a power law of 𝑟−6. In the following 2 lectures we will see how such relations are derived.

We have only 4 fundamental forces in nature: the gravity, the electromagnetism, the
weak interactions and strong interactions. There are no magics about the intermolecular
forces: they all stem from the electromagnetism. In particular, when magnetism can be
ignored, the electrostatics and electrodynamics govern the intermolecular interactions.1 In
this lecture, we will introduce the fundamentals about the intermolecular forces, using the
knowledge from electrostatics. The perspectives of this lecture are:

• Basic derivations of intermolecular interactions

• Understanding the power laws of different interactions

• Comparison between different interactions

9.1 Charge and dipole
In Lecture 8 we have briefly introduced the basic concepts about dipole moments in a di-
electricmedium. Wewill give a formal definition of the dipolemoments here, which serves
as an important recipe for the derivation of intermolecular interactions.

Assume a bodyΩwith charge density distribution 𝜌(𝑟) (containing both free and bound
charges), where 𝑟 is the position in a certain coordinate system. The geometry can be seen
in Figure 9.1. The electrostatic potential 𝜓(𝑥) in vacuum at position 𝑥 is defined as:

𝜓(𝑥) = 14𝜋𝜀0 ∫Ω 𝜌(𝑟)|𝑟 − 𝑥|d3𝑟 (9.1)

We do not always need to evaluate the term |𝑟 − 𝑥|. For instance when we are modeling
the interaction of two molecules separated by a large distance, it is often more desirable to
isolate the parts with 𝑟, i.e. the molecular properties and the 𝑥 part, i.e. the distance part.
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Figure 9.1: Additive calculation of Coulombic potential.

This is done by first moving the coordinate originO near the “center” of Ω, and performing
a Taylor expansion to 1/|𝑟 − 𝑥| (see Figure 9.1):

𝜓(𝑥) = 14𝜋𝜀0 ∫Ω [ 1|O − 𝑥| + 𝑟∇ 1|𝑟 − 𝑥|||𝑟=O + ...] 𝜌(𝑟)d3𝑟
≈ 14𝜋𝜀0 ∫Ω 𝜌(𝑟)|𝑥| d3𝑟⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

Monopole

+ 14𝜋𝜀0 ∫Ω 𝑟 ⋅ 𝑥|𝑥|3 𝜌(𝑟)d3𝑟⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
Dipole

+... (9.2)

As can be seen, by isolating the 𝑟 and 𝑥 terms, we separate the electrostatic potential into
two parts, namely the “Monopole” and “Dipole” contributions. As you may imagine, for
higher order expansion terms, the contributions from “Quadrupole”, “Hexapole” also exist
(as thus known asmultipole expansion of charges2). Here we only study themonopole and
dipole terms. From Equation 9.2, the definition for total charge 𝑞 and dipole moment 𝑢 ofΩ is naturally recovered:

𝑞 = ∫Ω 𝜌(𝑟)d3𝑟 (9.3)

𝑢 = ∫Ω 𝑟𝜌(𝑟)d3𝑟 (9.4)

And as you may observe, 𝜓monopole(𝑥) ∝ |𝑥|−1, which is the Coulomb’s law, while 𝜓dipole(𝑥)
is roughly proportional to |𝑥|−2. This means the dipoles behaves similar to the monopoles,
while with a different power law of distance.

In systemswhere charges are localized on individualmolecules, we can view the dipoles
as two monopoles−𝑞 and+𝑞 separated by vector 𝑟, and the dipole moment 𝑢 is defined as:𝑢 = 𝑞𝑙 (9.5)

pointing from −𝑞 to +𝑞 (see Figure 9.2 left). As an example, the dipole moment of water𝑢w, is the vector sum of the dipole moments of the O-H bonds 𝑢OH.
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Figure 9.2: The dipole. Left: the dipole moment 𝑢 is defined pointing from −𝑞 to +𝑞.
Right: the dipole moment 𝑢w of water, is the sum of the bond dipole moments 𝑢OH.

The unit of dipole is C ⋅ m. In chemistry the alternative unit Debye (D) is also used,
where 1 D ≈ 0.21 𝑒⋅Å. Let’s see some examples of dipole moments:

• The permanent 𝑢 of water is ca. 1.85 D.

• The Transient 𝑢 of a Bohr-atom is 2.54 D.

As can be seen, there are two types of dipoles in the system. A permanent dipole exists
in a polar molecule, such as water and ethanol, that electron cloud does not distribution
uniformly in themolecule. On the other hand, in a non-polarmolecule, a transient dipole
moment exists pointing from electron to the nucleus which changes over time. The time-
averaged dipole moment of a non-polar molecule without external field is always 0.

9.2 The electric polarizability
As discussed in Lecture 8, the dipole moment of a dielectric medium changes when an
electric field is applied. Such process is called electric polarization and the dipoles cre-
ated are called induced-dipole moments. The strength of polarization of an individual
molecule is defined as the polarizability, usually named as 𝛼 and defined as:

𝛼 = |𝑢||𝐸| (9.6)

The unit of polarizability is F ⋅m2. It is also alternatively expressed in polarizability vol-
ume 𝛼/(4𝜋𝜖0), with the unit of m3.

Depending the origin of the polarization, the polarizability of a material can be divided
into electronic and dipolar polarizabilities. They are defined as:

1. Electronic polarizability 𝛼0
The electronic polarizability 𝛼0 characterizes howmuch an electron can be displaced
under an electric field. Consider a Bohr hydrogen atommodel, that an electron orbits
a proton with a orbital radius of 𝑟B (Figure 9.3). The strength of the electric field that
binds the electron is electric field that binds the charges is |𝐸| = 𝑒/(4𝜋𝜀0𝑟2B), plug this
into Equation 9.6, we have: 𝛼0 = |𝑢||𝐸| = 4𝜋𝜀0𝑟3B (9.7)
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We can see that 𝛼0 has a real meaning: the characteristic volume the electron cloud.
The electronic polarizability is ubiquitous (i.e. independent of the polarity of the
molecule) and independent of temperature.

rB

u=erB

E=e/(4πε0rB
2)

α0=(4πε0)rB
3

Figure 9.3: Polarizability of a Bohr atom with radius 𝑟B. The polarizability is proportional
to its volume.

2. Dipolar polarizability 𝛼dip
Unlike the electronic polarizabilitywhich is independent of the polarity of themolecule,
the dipolar polarizability 𝛼dip comes from polar molecules. For an ensemble of polar
molecules at thermal equilibrium, the net dipole moment is zero. However under
external electric field, the individual dipole moments tend to align along the E-field
lines, and creates a net induced dipole moment.

We will use a simple statistic mechanics approach to see the origin of such polariz-
ability. The energy of a dipole moment 𝑢 in an external field 𝐸 depends on the angle𝜃 between them:3

𝑤ᵆ−𝐸(𝜃) = −𝑢 ⋅ 𝐸 = −𝑢𝐸 cos(𝜃) (9.8)

where 𝑢 and 𝐸 are the modules of 𝑢 and 𝐸, respectively. This means, if a dipole can
freely rotate, when placing an external field E, it is possible to align the dipole due
to minimization of energy (Figure 9.4). At finite temperature 𝑇, the average dipole �̂�
can be calculated using Boltzmann statistics
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Figure 9.4: (a) Free-rotating dipole u in a uniform electric field E. (b) Scheme for angle
dependent integral.

�̂� = ∫𝜃=𝜋
𝜃=0 𝑢 cos(𝜃) exp(−𝑤ᵆ𝐸𝑘B𝑇)dΩ

∫𝜃=𝜋
𝜃=0 exp(−𝑤ᵆ𝐸𝑘B𝑇)dΩ

= ∫𝜋
0 𝑢 cos(𝜃) exp(𝑢𝐸 cos(𝜃)𝑘B𝑇 )(2𝜋 sin(𝜃))d𝜃

∫𝜋
0 exp(𝑢𝐸 cos(𝜃)𝑘B𝑇 )(2𝜋 sin(𝜃))d𝜃

(9.9)

Let cos(𝜃) = 𝑦, ᵆ𝐸𝑘B𝑇 = 𝛽, we have:
�̂� = 𝑢∫1

−1 𝑦 exp(𝛽𝑦)d𝑦∫1
−1 exp(𝛽𝑦)d𝑦= 𝑢 [𝑒𝛽𝑦(𝛽𝑦 − 1)𝛽2 |||1−1] / [𝑒𝛽𝑦𝛽 |||1−1]= 𝑢 [𝑒𝛽 + 𝑒−𝛽𝑒𝛽 − 𝑒−𝛽 − 1𝛽]

= 𝑢 [coth(𝛽) − 1𝛽]

(9.10)

Finally we define 𝐿(𝛽) = coth(𝛽) − 1𝛽 (which is known as the Langevin function), we plot
the behavior of 𝐿(𝛽) as function of 𝛽 in Fig 9.5. As can be seen, 𝐿(𝛽) is approximated by
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𝛽/3 when 𝛽 ≪ 1. Therefore, we can estimate the polar polarizability as:

𝛼dip = 𝑢𝐿(𝛽)𝐸≈ 13 𝑢𝛽𝐸≈ 13 𝑢2𝑘B𝑇
(9.11)
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Figure 9.5: 𝐿(𝛽) as function of 𝛽. When 𝛽 ≪ 1, it is close to 𝐿(𝛽) = 𝛽/3
In summary, the polarizability of a freely rotating molecule under moderate field, is a

sum of the electronic and dipolar polarizabilities:

𝛼 = 𝛼0 + 𝛼dip = 𝛼0 + 𝑢23𝑘B𝑇 (9.12)

Finally, we give a short introduction about the relation between the electric polarizabil-
ity 𝛼 and the relative permittivity 𝜀r discussed in Lecture 8. The displacement field 𝐷 is
related to the electric field 𝐸 via:

𝐷 = 𝜀r𝜀0𝐸= 𝜀0𝐸 + 𝑃 (9.13)

where 𝑃 is the polarization density of a given domain and defined as 𝑃 = 𝜕𝑢/𝜕𝑉. The 𝐸
and 𝑃 can be regarded as the contribution from free and bound charges, respectively. We
can use the definition of electric polarizability to replace 𝑢 in the polarization density. Note
that in the presence of other molecules, the electric field that polarizes the molecule is dif-
ferent from the external field in Equation 9.12 due to the so-called “local field effect”.4 After
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considering the local field effect, the microscopic quantity 𝛼 is related to the macroscopic
quantity 𝜀r for a molecular solid with:5 𝜀r − 1𝜀r + 2 = 𝑁𝛼3𝜀0 (9.14)

where𝑁 is the number of molecules per unit volume. This relation is knownas theClausius-
Mossotti equation and is very hand to calculate relative permittivities of simple liquids.

9.3 Interplay between the charge components
The charge, dipole and induced dipole are the essential components that we need for com-
pleting the theory of intermolecular interactions. We will discuss all possible mutual inter-
action approaches, which are summarized in Table 9.1. For each type of interaction 𝑤AB,
A and B can be charge (𝑞), dipole (𝑢) or electric polarizability (𝛼).

Table 9.1: Examples of 𝑤AB for every possible interaction type.
A B Example of 𝑤AB𝑞 𝑞 Formation energy of ionic crystals𝑞 𝑢 Solvation energy of ion in water𝑞 𝛼 Anion/cation - 𝜋 interaction energy𝑢 𝑢 Surface tension of polar solvent (non H-bond)𝑢 𝛼 Surface tension between non-polar/polar solvents𝛼 𝛼 London dispersion energy of noble gases

9.3.1 Charge-charge interaction
This is the well-known Coulombic interaction between charges:

𝑤𝑞𝑞(𝑟) = − 𝑞24𝜋𝜀0𝜀r𝑟 (9.15)

Power law: 𝑟−1
Let’s see 2 examples:

1. Na+–Cl- in vacuum. r = 2.76 Å. w = -8.4×10-19 J≈ -200 𝑘B𝑇
2. Na+–Cl- in water, 𝜀w = 78, w ≈ -2.6 𝑘B𝑇.
The above examples show that ionic materials tend to dissolve in highly polar solvent

(high 𝜖r) like water. (This does not explain the 𝐾𝑠𝑝 difference of ionic crystals, though,
which is also relatedwith thehydration energy). Another interesting example of the charge-
charge interaction: the formation energy of ionic crystals. In the fcc lattice of 1:1 ionic
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crystal such as NaCl, if the distance between cation-anion is 𝑟, the total lattice energy is
given by:

𝑤fcc = − 𝑒24𝜋𝜀0 [6𝑟 − 12√2𝑟 + 8√3𝑟 − 6√4𝑟 + 24√5𝑟 + ...]
= −1.748 𝑒24𝜋𝜀0𝑟

(9.16)

The constant 1.748 is called the Madelung constant.6 The total formation energy of
an infinite lattice is comparable with individual ion pairs, which is quite amazing.

9.3.2 Charge-dipole interaction
Due to the angle dependent of dipole in an external field as shown in Figure 9.5, all interac-
tions involving dipoles needs to consider the angle-dependent and angle-averaged energies.

Angle-dependent

According to Equation 9.8, the interaction potential can be calculated by the electric field
generated by the charge 𝐸(𝑟) = 𝑞/(4𝜋𝜀0𝜀r𝑟2) (Figure 9.6):
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Figure 9.6: Geometry of the charge-dipole interaction

𝑤𝑞ᵆ(𝑟, 𝜃) = −𝑢𝐸 cos(𝜃) = −𝑞𝑢 cos(𝜃)4𝜋𝜀0𝜀r𝑟2 (9.17)

Power law: 𝑟−2
As can be seen, the interaction energy is lowest if 𝜃 = 0, i.e. the dipole and the electric

field align. This energy is still considerable for highly polar molecules, for instance:

• Na+ – H2O in vacuum, r = 2.35 Å, 𝑤(𝑟, 𝜃 = 0) = -40 𝑘B𝑇. This will drop below 1 𝑘B𝑇
if it is in aqueous



9.3. INTERPLAY BETWEEN THE CHARGE COMPONENTS 87

Angle-averaged

Let’s use the Boltzmann statistics again:

�̂�𝑞ᵆ(𝑟) = ∫𝜋
0 𝑤𝑞ᵆ(𝑟, 𝜃) exp(−𝑤𝑞ᵆ(𝜃, 𝑟)𝑘B𝑇 )(2𝜋 sin(𝜃))d𝜃

∫𝜋
0 exp(−𝑤𝑞ᵆ(𝜃, 𝑟)𝑘B𝑇 )(2𝜋 sin(𝜃))d𝜃 (9.18)

Replace 𝑤𝑞ᵆ(𝑟, 0) = 𝛽𝑘B𝑇 (the definition of 𝛽 see Equation 9.10), it leads to the final
result: �̂�𝑞ᵆ(𝑟) = −𝑘B𝑇𝛽𝐿(𝛽) (9.19)

again, when 𝛽 ≪ 1, we can use the approximation 𝐿(𝛽) = 𝛽/3:
�̂�𝑞ᵆ(𝑟) ≈ −𝑘B𝑇3 𝛽2 = −13 𝑞2𝑢2(4𝜋𝜖0𝜖r)2𝑟4𝑘B𝑇 (9.20)

this gives the internal energy of the system. In fact, when aligning the dipole, the entropy
effect comes into play, and the free energy is only half of the internal energy (i.e., the factor
1/3 should be replaced by 1/6).

Power law: 𝑟−4. Also note this energy is T-dependent.
9.3.3 Dipole-dipole
Angle-dependent

The dipole-dipole interaction is evenmore complex, as it involves 3 angles. Assume an axis
passing through the center of both dipoles, 𝜃1 and 𝜃2 are the angles between the dipole and
the axis, while 𝜙 is the angle between the two dipoles when looking from the direction of
the axis (Figure 9.7).

θ1

φ

r

Figure 9.7: Geometry for dipole-dipole interaction.
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The interaction energy is given by:

𝑤ᵆᵆ(𝑟, 𝜃1, 𝜃2, 𝜙) = − 𝑢1𝑢24𝜋𝜀0𝜖r𝑟3 [2 cos(𝜃1) cos(𝜃2) − sin(𝜃1) sin(𝜃2) cos(𝜙)] (9.21)

Power law: 𝑟−3
Let’s compare some cases when 𝜙 = 0, i.e. the 2 dipoles are in the same plane. Assume𝑤0 = − 𝑢1𝑢24𝜋𝜀0𝜀r𝑟3
• 𝜃1 = 𝜋/2, 𝜃2 = 𝜋/2, 𝑤 = −𝑤0
• 𝜃1 = 𝜋/2, 𝜃2 = −𝜋/2, 𝑤 = 𝑤0
• 𝜃1 = 0, 𝜃2 = 0, 𝑤 = 2𝑤0
• 𝜃1 = 0, 𝜃2 = 𝜋, 𝑤 = −2𝑤0
In other words, the configuration with lowest energy is when the dipoles are aligned

“head-to-tail”.

Angle-averaged

Use the Boltzmann statistics we find that (when |𝑤ᵆᵆ| ≪ 𝑘B𝑇):
�̂�ᵆᵆ(𝑟) ≈ − 2𝑢21𝑢223(4𝜋𝜀0𝜀r)2𝑘B𝑇𝑟6 (9.22)

and the free energy is half the value.
Power law: 𝑟−6
Herewe find the first 𝑟−6 term that contributes to the total vdW interaction. Historically

it is know as theKeesom energy.
The Keesom energy is much weaker than the charge-charge or charge-dipole interac-

tions:

• 𝑢 = 1.85 D (vacuum), 𝑟 = 3 Å, 𝜀r = 1, 𝑤 ≈ −6.2 𝑘B𝑇 (can we still use the approxima-
tion here?)

• 𝑢 = 1.85 D (water), 𝑟 = 3 Å, 𝜀r = 78, 𝑤 ≈ −0.001 𝑘B𝑇
9.3.4 Charge-induced dipole interaction
The interaction of charge and induced dipole also follows the rules of dipole-field interac-
tion. The internal energy is given by:
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𝑤𝑞𝛼(𝑟) = −𝑢ind𝐸(𝑟) = −𝛼𝐸2
= − 𝑞2𝛼(4𝜋𝜀0𝜀𝑟)2𝑟4
= −𝑞2(𝛼0 + ᵆ23𝑘B𝑇)(4𝜋𝜀0𝜀𝑟)2𝑟4

(9.23)

again, the free energy is half the value, since entropy effect is involved in “creating” the
dipole. Let’s see an example of the strength of such interaction:

• Monovalent ion (Li+, Na+, etc) in EtOH, 𝑢 = 1.7 D, 𝜀r = 24𝛼0/(4𝜋𝜀0) = 5.1 × 10−30 m3, 𝑟 = 3 Å, 𝑤𝑞𝛼 = −0.338 𝑘B𝑇.
• The charge-dipole interaction under the same condition: 𝑤𝑞ᵆ = −0.138 𝑘B𝑇.
Power law: 𝑟−4.

9.3.5 Dipole-induced dipole interaction
Angle-dependent

The dipole-induced dipole interaction can be derived by replacing the 𝐸(𝑟) by the field

generated by a dipole 𝐸(𝑟, 𝜃) = 𝑢√1 + 3 cos2(𝜃)4𝜋𝜀0𝜀r𝑟3 :

𝑤ᵆ𝛼(𝑟, 𝜃) = −𝑢21(𝛼02 + ᵆ223𝑘B𝑇)(1 + 3 cos2(𝜃))(4𝜋𝜀0𝜀r)2𝑟6 (9.24)

Power law: 𝑟−6 Again, the free energy is half of the value here.
Angle-averaged

We perform the Boltzmann statistics again:

�̂�(𝑟) = −2𝑢21(𝛼02 + ᵆ223𝑘B𝑇)(4𝜋𝜀0𝜀r)2𝑟6 (9.25)

/Power law: 𝑟−6. This is the second 𝑟−6 term which is called the Debye energy.

9.3.6 Induced dipole-induced dipole interaction
The induced dipole-induced dipole interaction seems a bit strange. What’s inducing the
dipole from nowhere? Before diving into this question, let’s first see some mathematical
tricks:

We recognize, that in the previous equations with power laws, the following rule seems
valid for polarization-dependent interactions:
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• 𝑞: associate with 𝑟−1
• 𝑢: associate with 𝑟−3
• 𝛼: associate with 𝑟−3
How about unifying the equations into one? Consider 2 molecules with permanent

charge 𝑞𝑖, dipole moment 𝑢𝑖 and electronic polarizability 𝛼0,𝑖, and the following equation:
𝑤 = − 2∏𝑖=1 1(4𝜋𝜀0𝜀r)2 [ 𝑞2𝑖√6𝑘B𝑇𝑟 + √2𝑢2𝑖√3𝑘B𝑇𝑟3 + √6𝑘B𝑇𝛼0,𝑖𝑟3 ] (9.26)

Apart from the Coulombic terms involving 𝑞1𝑞2, we recognize several familiar terms in
the final product (as average internal energy, for free energy add 1/2 to each of them):

• charge-dipole

𝑤𝑞ᵆ = − 𝑞21𝑢22 + 𝑞22𝑢213𝑘B𝑇(4𝜋𝜀0𝜀r)2𝑟4 (9.27)

• dipole-dipole (Keesom energy)

𝑤ᵆᵆ = − 2𝑢21𝑢223𝑘B𝑇(4𝜋𝜀0𝜀r)2𝑟6 (9.28)

• charge-electronic polarizability

𝑤𝑞𝛼0 = −𝑞21𝛼02 + 𝑞22𝛼01(4𝜋𝜀0𝜀r)2𝑟4 (9.29)

• dipole-electronic polarizability (Debye energy)

𝑤𝑞𝛼0 = −2(𝑢21𝛼02 + 𝑢22𝛼01)(4𝜋𝜀0𝜀r)2𝑟6 (9.30)

Naturally, a final part containing both the electronic polarizability will occur:

𝑤𝛼0𝛼0 = −6𝑘B𝑇𝛼01𝛼02(4𝜋𝜀0𝜀r)2𝑟6 (9.31)

This is part of the actual dispersion energy, and we will discuss about it in Lecture 10.
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