1 Solving ODE with four methods

A decaying radioactive element changes its concentration according to the following ODE:

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y)=-\lambda y \tag{1}
\end{equation*}
$$

The analytical solution reads

$$
\begin{equation*}
y(t)=y_{0} \exp (-\lambda t) \tag{2}
\end{equation*}
$$

We have already implement the forward and backward Euler methods :

- The forward Euler method reads :

$$
y_{n+1}=y_{n}+h \cdot f\left(t_{n}, y_{n}\right)
$$

- The backward Euler algorithm uses the following step formula :

$$
y_{n+1}=y_{n}+h \cdot f\left(t_{n+1}, y_{n+1}\right)
$$

Butcher tableaus for explicit Runge-Kutta methods can be read as :

$$
\begin{array}{l|llllll}
& & & & & & k_{1}=f\left(t_{n}, y_{n}\right) \\
0 & & & & & & \begin{array}{l}
k_{2}=f\left(t_{n}+h c_{2}, y_{n}+h a_{21} k_{1}\right) \\
c_{2}
\end{array} \\
a_{21} & & & & & k_{3}=f\left(t_{n}+h c_{3}, y_{n}+h\left(a_{31} k_{1}+a_{32} k_{2}\right)\right) \\
c_{3} & a_{31} & a_{32} & & & & \vdots \\
\vdots & \vdots & \vdots & \ddots & & & \\
c_{m} & a_{m 1} & a_{m 2} & \cdots & a_{m m-1} & & k_{m}=f\left(t_{n}+h c_{m}, y_{n}+h\left(\sum_{i=1}^{m-1} a_{m i} k_{i}\right)\right) \\
\hline & b_{1} & b_{2} & \cdots & b_{m-1} & b_{m} & \\
& & & & & & y_{n+1}=y_{n}+h\left(\sum_{j=1}^{m} b_{j} k_{j}\right)
\end{array}
$$

Solve the radioactive decay problem (1) using the 2 nd order Heun method and $<$ the» 4 th order RK method using the conditions $y_{0}=1, \lambda=1$ and $h=0.1$ from $t_{0}=0$ to $t_{E n d}=10$.

- Define four new functions such as
function $[t, y]=$ eulerForward ($\mathrm{f}, \mathrm{t} 0, \mathrm{tend}, \mathrm{y} 0, \mathrm{~h}$)
function $[t, y]=$ eulerBackward (f,t0,tend, $y 0, h$)
function $[t, y]=H e u n 2(f, t 0, t e n d, y 0, h)$
function $[t, y]=R K 4(f, t 0, t e n d, y 0, h)$
to be called in your main code.
- Note that you cannot just put the backward Euler formula into Matlab! Use fsolve to solve for y_{n+1} with the same conditions as for the forward Euler.
- You might want to use these to avoid spamming you command line

```
options = optimset('display','off');
y(i+1)= fsolve( ........, options);
```

- The Butcher tableaus for the methods are :

$$
\begin{aligned}
& 0 \\
& \begin{array}{r|cl}
0 & & \\
\text { Heun2: } & 1 & \\
\hline & 1 / 2 & 1 / 2
\end{array}
\end{aligned}
$$

- As shown in the slides, discretize your integration steps until $t_{E n d}+h$ and interpolate the final value between $t_{E n d}$ and $t_{E n d}+h$.
- Compare the orders of accuracy for the four methods (Forward and Backward Euler, 2nd order and 4th order RK) plotting the global truncation errors of the last element defined as $e_{n}=y\left(t_{n}\right)-y_{n}$ against h with $h=l o g s p a c e(-4,0,8)$ in a double logarithmic plot plot (loglog). Note that a method has order of accuracy p if $e_{n}=C \cdot h^{p}$.

2 Van der Waals equation

The van der Waals equation for some non-ideal gas reads :

$$
\begin{equation*}
P=\frac{2.4}{V-\frac{1}{3}}-\frac{3}{V^{2}} \tag{3}
\end{equation*}
$$

The analytical derivative reads

$$
\begin{equation*}
\frac{d P}{d V}=\frac{6}{V^{3}}-\frac{2.4}{\left(V-\frac{1}{3}\right)^{2}} \tag{4}
\end{equation*}
$$

- Plot the van der Waals equation for 1000 points between $\mathrm{V}=0.34$ and $\mathrm{V}=4$
- Try to approximate the equation by solving the ODE
- Use ode45, tSpan $=[0.34,4] ;$ and $y 0=P(0.34)$;
- Note that the ODE does not depend on the solution, but only the independent variable (i.e. the first input into your odefun!)
- Plot the solution of the ODE together with the analytical solution and zoom in to ylim ([0, 2]). What do you observe?
- Try the same with ode15s. What do you observe when you zoom in?
- Plot $\mathrm{dP} / \mathrm{dV}$ against V in the range we considered. What might be the problem with the solvers, considering what they have to do in the slope field?
- Tighten the tolerances using
options = odeset(AbsTol, newAbsTol, RelTol, newRelTol);
[t,y] = ode45 (....... options);
The defaults are $1 \mathrm{e}-3$ (relative) and $1 \mathrm{e}-6$ (absolute).
Plot the solutions again and zoom in to $y \lim ([0,2])$.

3 Runge Method

Compute the stability function of the Runge method (also known as the explicit midpoint method (EM)).

