1 ODE Stability Region

The second order Heun method reads

$$
\begin{align*}
& k_{1}=f\left(t_{n}, y_{n}\right) \\
& k_{2}=f\left(t_{n}+h, y_{n}+h k_{1}\right) \tag{1}\\
& y_{n+1}=y_{n}+\frac{h}{2}\left(k_{1}+k_{2}\right)
\end{align*}
$$

1. Find the stability interval for the second order Heun method (by hand).

- Use the Dahlquist test equation

$$
f(t, y)=\lambda y(t)
$$

- Find an expression of the form abs (...) < 1 that guarantees stability if it is fulfilled

2. Try to use the definition of the absolute value of a complex number to find an expression that does not contain the absolute value operator so that you can use the function draw_stabfunc (given online) to plot the stability region.

- The easiest approach is to substitute a complex number w for $h \lambda$, defined as $w=a+i b$, and then applying the definition of absolute value:

$$
\begin{aligned}
& w=h \lambda=a+i b \\
& a=\operatorname{Re}(w)=\operatorname{Re}(h \lambda) \\
& b=\operatorname{Im}(w)=\operatorname{Im}(h \lambda) \\
& |w|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

- Note that for this, you will have to multiply out the square of w (remember that $i^{2}=-1$). Before you resolve the absolute value bring the complex number into the standard form $c+i d$

2 Stiff ODEs

Consider a batch reactor with second order reactions

$$
\begin{align*}
& \frac{d A}{d t}=-2 k_{1} A^{2} \tag{2}\\
& \frac{d B}{d t}=k_{1} A^{2}-2 k_{2} B^{2}
\end{align*}
$$

1. Solve the batch reactor and plot the solutions

- Use $k_{1}=1000 ; k_{2}=0.1 ; y_{0}=[1,0.1]$ and $\mathrm{tSpan}=[0,1]$
- Do you expect the system to be stiff? Use the linearization method to check the stiffness ratio at $\mathrm{y}=$ y_{0} (by hand) by calculating the eigenvalues of the Jacobain of the system.
- Remember that the eigenvalues of a matrix can be calculated by solving $\operatorname{det}(\mathbf{J}-\lambda \mathbf{I})=0$ for λ
- The determinant of a 2×2 matrix is

$$
\operatorname{det}\left(\begin{array}{ll}
j_{11} & j_{12} \\
j_{21} & j_{22}
\end{array}\right)=j_{11} j_{22}-j_{21} j_{12}
$$

- Use ode45 to solve the system and plot the solutions. Is it stiff? Looking at the Jacobian, can you say why? Note how y changes and how it changes the Jacobian and its eigenvalues.

3 Stiff ODE 2

We consider the Van der Pol ODE

$$
\begin{equation*}
\ddot{y}(t)=\mu\left(1-y^{2}(t)\right) \dot{y}(t)-y(t) \tag{3}
\end{equation*}
$$

with $\mu=1000$ and $\mathrm{t} \in[0,3000]$ with the following initial values

$$
\begin{equation*}
y(0)=2, \quad \dot{y}(0)=0 \tag{4}
\end{equation*}
$$

1. Run StiffVanDerPol.m which solves the IVP numerically using Matlab's ode45 and ode23s. Note: The computation with ode45 can take a few minutes.
2. Based on the resulting plots, can you explain the large difference in run time?
