
Responsible TA:
Asbjörn Rasmussen
asbjoern.rasmussen@chem.ethz.ch

Statistical and Numerical Methods
Exercise 4, HS24

15/10/2024

1 Systems of Nonlinear Equations (core)

The steady state concentrations of a CSTR with two second order reactions taking place reads

0 = (xin1 − x1) + τ(−k1x1x2)

0 = (xin2 − x2) + τ(−k1x1x2 − k2x2x3)

0 = −x3 + τ(k1x1x2 − k2x2x3)

0 = −x4 + τ(k2x2x3)

(1)

1. Write down the analytical Jacobian matrix for the system of equations (1).

2. Implement the basic Newton method.

• The multi-dimensional Newton iteration formula reads

xk+1 = xk − J−1(xk)f(xk)

• Your function file header should read something like function [x, info] = newtonMethod(f,

J, x0, tol) where f is a function handle to the function you want to solve, J is a function handle
that returns the Jacobian matrix, x0 is an initial guess and tol is a vector of tolerances for stopping
criteria (relative, absolute errors and number of iterations).

• As in with the secant method, use a while loop to find the solution.

• Suggest stopping criteria and failure checks. When can the Newton method fail in general?

• Use left division \ to solve the linear system at every iteration (do not use inv(J)!)

• Let info be a struct you can use to return additional information, like reason of termination and
number of steps needed.

3. Use your Newton algorithm to solve the steady state CSTR numerically.

• Create a main file and two function files; one that calculates the CSTR equations (1) as functions of
x, and one that calculates the analytical Jacobian as a function of x.

• Use k1 = 0.5, k2 = 10, xin1 = 1.0, xin2 = 1.5 and τ = 5

• What is the total conversion of A (x1) to D (x4)?

• Compare your result to what fsolve() finds. Try different starting guesses. Can you find more than
one solution?

4. (Optional) Find online (same place where you found the exercise sheet) the function jacobianest. It is
part of a user-made toolbox for estimating derivatives numerically, the DERIVEST suite which can be
found on the MatlabCentral.

• Modify your Newton algorithm so that it uses jacobianest to approximate the Jacobian if the
input J is empty (use isempty(J) to check). To provide an empty input, use [] in the call.

• How many steps are required with the analytical Jacobian for this specific case compared to the
numerical Jacobian? Which algorithm takes longer?

1



2 Concentration evolution via ODE (core)

A decaying radioactive element changes its concentration according to the ODE:

dy

dt
= −ky (2)

The analytical solution reads:
y(t) = y0 exp(−kt) (3)

1. (Optional) Plot the behavior of the radioactive decay problem as a vector field in the y vs t plane

• Find online the function vector field.m. It plots the solutions and derivatives of first order initial
value problems (IVPs) for different initial conditions

• Plot the vector field for different initial values between 0 and 1, time between 0 and 10 and k = 1.
Can you see what a solver has to do?

• Is it possible to switch from one trajectory in the vector field to another? What follows for the
uniqueness of the solutions?

2. The forward Euler method reads for this problem

yn+1 = yn + h ∗ f(tn, yn) = yn − h ∗ k ∗ yn (4)

• First define a function defining the successor of yn with a header like function ynp = For-
ward stepper(k, yn, h)

• Use the conditions y0 = 1, k = 1 and h = 0.1 to solve the radioactive decay problem from
t0 = 0 to tEnd = 10 by defining an integrating function of the form function [T,Y] = step-
per integrate(@stepper,k,t0,tEnd,y0,h)

3. The backward Euler method uses the following step formula

yn+1 = yn + h ∗ f(tn+1, yn+1) (5)

• Rearrange this equation so that you can define a function defining the successor of yn with a header
like function ynp = Backward stepper(k, yn, h)

• Use the prior defined integration function to solve the problem with the backward method.

4. Plot the obtained solutions comparing them to the analytical solution. Use the subplot method to produce
two subplots in a single figure. What happens if you increase the step size h? What happens if you
increase the step size above 2?

3 High order ODEs (core)

Convert the following fourth order initial value problem

y(4)(t) = cos(ÿ(t)) + ẏ(t)e−5t (6)

with initial conditions

y(t0) = 0, ẏ(t0) = 3, ÿ(t0) = −1, ÿ(t0) = −1,
...
y (t0) = 0 (7)

into a first order initial value problem.

2


	Systems of Nonlinear Equations (core)
	Concentration evolution via ODE (core)
	High order ODEs (core)

