Solid-state NMR Spectroscopy - An Introduction

Rene Verel verelr@ethz.ch HCI D117

Outline

General Principles of NMR Spectroscopy

Interactions relevant to NMR Spectroscopy (and their information content)

Differences between solution and solid state NMR

Selected/Special experimental techniques

Courses

PCIV: Magnetic Resonance	B.H. Meier, M.C. Ernst, G. Jeschke	yearly
Structure Determination by NMR	M. Ebert	yearly
Advanced Magnetic Resonance	M.C. Ernst	approx. every third year

Books

M.H. Levitt: "Spin Dynamics: Basics of Nuclear Magnetic Resonance", John Wiley & Sons, 2001 J. Keeler: "Understanding NMR Spectroscopy", John Wiley & Sons, 2005.

M. Duer: "Introduction to solid-state NMR", Blackwell Science Ltd (Oxford), 2004. K. Schmidt-Rohr, H.W. Spiess: "Multidimensional Solid-State NMR and Polymers", Academic Press, 1994.

Many Nuclei have an Inherent Angular Moment (or Spin) which is quantized and characterised by a spin quantum number

$$I = 0, \frac{1}{2}, 1, \frac{3}{2}, ..., 6$$

Associated with the Spin is a Magnetic Moment

$$\vec{\mu} = \gamma \vec{I}$$

The z-component of the spin angular momentum can only assume 21+1 different values.

$$\mu_z = \gamma I_z = \frac{\gamma m h}{2\pi}$$
 with $m = -I, -I + 1, \dots, I - 1, I$

In an external magnetic field along z, this gives an energy

$$E = -\mu_z B_0 = -\frac{\gamma mh}{2\pi} B_0$$

The energy difference or resonance frequency is then

$$\Delta E = -\frac{\gamma h}{2\pi}B_0 \text{ or } \omega = -\gamma B_0$$

The populations of the states is given by a Boltzmann Distribution

$$\frac{N_{1/2}}{N_{-1/2}} = e^{\Delta E/(kT)} \approx 1.0002$$

IA																,	VIIIA	Isotope	Spin Quan-	Magnetic Quan-
н	IIA											IIIA	IVA	VA	VIA	VIIA	He		tum Number	tum Number
Li	Be											В	С	Ν	0	F	Ne		1	m
Na	Ma	IIIR	I\/R	V/R	VIR	VIIR			ł	IR	IIR	AI	Si	Р	S	CI	Ar	¹² C, ¹⁸ O	0	-
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	¹ H. ¹³ C. ¹⁵ N.	1/2	-1/2, +1/2
	04		7.	N II-						0 u 0 u		Jun 1	00				N.	19 _F 31 _P		
RD	Sr	Ŷ	Zſ	IND	IVIO	IC	Ru	RN	Ра	Ag	Ca	IN	Sn	SD	Ie	1	xe	г, г		
Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn	² H, ¹⁴ N	1	-1, 0, +1
Fr	Ra	‡Ac	Rf	На	Sg	Ns	Hs	Mt										⁷ Li, ²³ Na,	3/2	-3/2, -1/2, 1/2, 3/2
									-									³⁷ Cl. ⁸⁷ Ru		
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		170, 25	5/2	-5/2 -3/2 -1/2
			Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		²⁷ Al	5/2	1/2, 3/2, 5/2
	ŀ	=1/2					l>1	/2										⁴⁵ Sc, ⁵¹ V, ⁵⁹ Co	7/2	-7/2,-5/2,-3/2,-1/2, 1/2,3/2,5/2,7/2

Properties of some nucleotides of importance to NMR

Nucleotide	gyromagnetic ratio γ [10 ⁷ rad T ⁻¹ s ⁻¹]	Natural Abundance [%]	^v 0 [MHz] (B ₀ = 9.4 T)	^{V0} [MHz] (<i>B</i> ₀ = 14.1 T)
¹ H	26.7519	99.985	400.0	600.0
¹³ C	6.7283	1.108	100.2	150.9
¹⁵ N	- 2.7126	0.370	40.3	60.8
¹⁹ F	25.1815	100.000	376.3	564.5
³¹ P	10.8394	100.000	161.9	242.9

Properties of some nucleotides of importance to NMR

Nucleotide	gyromagnetic ratio γ [10 ⁷ rad T ⁻¹ s ⁻¹]	Natural Abundance [%]	^v 0 [MHz] (B ₀ = 9.4 T)	^v 0 [MHz] (<i>B</i> ₀ = 14.1 T)
¹ H	26.7519	99.985	400.0	600.0
¹³ C	6.7283	1.108	100.2	150.9
¹⁵ N	- 2.7126	0.370	40.3	60.8
¹⁹ F	25.1815	100.000	376.3	564.5
³¹ P	10.8394	100.000	161.9	242.9

NMR Interactions

Zeeman Interaction	10 ⁶ -10 ⁹ Hz
Rf Field Under experimental control for Spin rotations	10 ⁰ -10 ⁵ Hz
Chemical Shift Interaction Reports on local electronic environment	10 ² -10 ⁴ Hz
Magnetic Dipole-Dipole Interaction Reports on the distance between two coupled spins.	10 ² -10 ⁵ Hz
Scalar J-Coupling Reports on chemical bonds between two spins.	10 ⁰ -10 ² Hz
Quadrupole Coupling Reports on the electric field gradient around the nucleus.	10 ⁰ -10 ⁷ Hz

Only for I > 1/2

Page 7

The chemical shift, dipolar and quadrupole can be described by second rank tensors.

$$\mathbf{A}_{PAS}^{(k, n)} = \begin{bmatrix} A_{11} & 0 & 0 \\ 0 & A_{22} & 0 \\ 0 & 0 & A_{33} \end{bmatrix}$$

The general form of the Hamiltonian is given by

$$\hat{H}^{(k,n)} = \vec{\hat{l}_k} \cdot A^{(k,n)} \cdot \vec{\hat{l}_n}$$

High Field Approximation (example Chemical Shift)

$$\hat{H}_{CS}^{(k)} = \hat{\hat{l}}_{k} \cdot (-\gamma_{k}) \sigma^{(k)} \cdot \overline{B}_{0}^{\lambda}$$

$$= (-\gamma_{k})(\hat{l}_{kx}, \hat{l}_{ky}, \hat{l}_{kz}) \cdot \begin{bmatrix} \sigma_{xx} \sigma_{xy} \sigma_{xz} \\ \sigma_{yx} \sigma_{yy} \sigma_{yz} \\ \sigma_{zx} \sigma_{zy} \sigma_{zz} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ B_{0} \end{bmatrix}$$

$$= \sigma_{xz} \omega_{0}^{(k)} \hat{l}_{kx} + \sigma_{yz} \omega_{0}^{(k)} \hat{l}_{ky} + \sigma_{zz} \omega_{0}^{(k)} \hat{l}_{kz}$$
Orientation dependent

The Zeeman interaction is given by (See slide 2)

$$\hat{H}_{Z}^{(k)} = -\gamma \hat{I}_{kz} B_0 = \omega_0^{(k)} \hat{I}_{kz}$$

The Chemical Shift (with high field approximation)

$$\hat{H}_{CS}^{(k)} = \sigma_{zz}\omega_0^{(k)}\hat{l}_{kz}$$

The total Hamiltonian is:
$$\hat{H}^{(k)} = \hat{H}_{Z}^{(k)} + \hat{H}_{CS}^{(k)} = (1 + \sigma_{zz})\omega_0^{(k)}\hat{l}_{kz}$$
Parts per Million (ppm) !
$$(1 + \sigma_{zz}(\alpha_1, \beta_1, \gamma_1))\omega_0^{(k)}$$

$$(1 + \sigma_{zz}(\alpha_2, \beta_2, \gamma_2))\omega_0^{(k)}$$

Orientation dependency of the signal

Magic Angle Spinning (MAS)

Tensor Characterization

$$\delta_{11}, \delta_{22}, \delta_{33}$$

$$\delta_{iso} = \frac{1}{3} (\delta_{11} + \delta_{22} + \delta_{33})$$

Single Crystal Rotation Plots

x-ray crystal structure of calcite (CaCO₃)

¹³C single crystal NMR rotation plot of calcite

Chemical Shift Tensors : Effect of Symmetry

View of trop₃P along the threefold symmetry axis

202 MHz ^{31}P NMR spectrum on a static sample showing the axial tensor, $\sigma_{11}{=}\sigma_{22}{=}{-}24.0$ and $\sigma_{33}{=}{-}43.0$ ppm

✤1-¹³C-Alanine

René Verel - ETH

Information vs. Resolution

Structural Information: Protonation State from the isotropic chemical shift of ¹⁵N

Model Compound unprotonated / protonated

Structural Information from ²⁹Si Chemical Shifts Si⁽⁴⁾ Si⁽³⁾ Θ Θ Si⁽²⁾ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Si⁽¹⁾ Si⁽⁰⁾ 0.0 -100.0 -200.0 ppm

René Verel - ETH

Structural Information from ²⁹Si Chemical Shifts

✤Effect of ²⁷Al neighbours on ²⁹Si Chemical Shifts

René Verel - ETH

²⁹Si MAS NMR of Potassium Silicate Glasses

Detection and Quantification of Q² sites in three membered rings

²⁹Si MAS NMR of Treated Zeolites

²⁹Si MAS NMR of Treated Zeolites

NMR Interactions - Dipole

The representation of the dipolar tensor is given by:

$$\mathcal{D}_{PAS}^{(k, n)} = -2\frac{\mu_0 \gamma_k \gamma_n h}{4\pi r_{kn}^3 2\pi} \begin{bmatrix} -\frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The dipolar Hamiltonian is given by

$$\hat{H}^{(k,n)} = \hat{\hat{l}}_k \cdot D^{(k,n)} \cdot \hat{\hat{l}}_n$$
$$= -\frac{\mu_0}{4\pi} \frac{\gamma_k \gamma_n}{r_{kn}^3} \frac{h}{2\pi} (\hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F})$$

$$\hat{A} = 2\hat{I}_{kz}\hat{I}_{nz}\frac{(3\cos^{2}\theta - 1)}{2} \qquad \hat{D} = (\hat{I}_{k}^{-}\hat{I}_{nz} + \hat{I}_{kz}\hat{I}_{n}^{-})\frac{(3\sin\theta\cos\theta e^{i\phi})}{2}$$
$$\hat{B} = -\frac{1}{2}(\hat{I}_{k}^{+}\hat{I}_{n}^{-} + \hat{I}_{k}^{-}\hat{I}_{n}^{+})\frac{(3\cos^{2}\theta - 1)}{2} \qquad \hat{E} = \frac{1}{2}(\hat{I}_{k}^{+}\hat{I}_{n}^{+})\frac{(3\sin^{2}\theta e^{-2i\phi})}{2}$$
$$\hat{C} = (\hat{I}_{k}^{+}\hat{I}_{nz} + \hat{I}_{kz}\hat{I}_{n}^{+})\frac{(3\sin\theta\cos\theta e^{-i\phi})}{2} \qquad \hat{F} = \frac{1}{2}(\hat{I}_{k}^{-}\hat{I}_{n}^{-})\frac{(3\sin^{2}\theta e^{2i\phi})}{2}$$

NMR Interactions - Dipole

Orientation Dependency of the Dipole Interaction

Dipolar Recoupling

* MAS makes the dipolar coupling time dependent with an average value of zero

✤ Rf(-pulses) can interfere and cause a non-zero average of the dipolar coupling.

Rotational Echo DOuble Resonance (REDOR).

Recoupling of the heteronuclear dipolar coupling under MAS.

Alternating experiments *with* pulses on ¹⁵N channel (recoupling of dipolar interaction) and *without* pulses on ¹⁵N channel (reference experiment)

See: T. Gullion, J. Schaefer, J. Magn. Reson., 81 (1989) 196.

René Verel - ETH

Rotational Echo DOuble Resonance (REDOR).

Recoupling of the heteronuclear dipolar coupling under MAS.

Alternating experiments *with* pulses on ¹⁵N channel (recoupling of dipolar interaction) and *without* pulses on ¹⁵N channel (reference experiment)

See: T. Gullion, J. Schaefer, J. Magn. Reson., 81 (1989) 196.

René Verel - ETH

REDOR Example: Glycine.

✤ 10% ¹³CO-¹⁵N-Glycine in 90% nat. ab. Glycine.

Heteronuclear Dipolar Recoupling

Distance based proximity filter using Cross Polarization

Homonuclear Dipolar Recoupling

Structure determination through 2D correlations

- For I>1/2, nuclei have a non-spherical charge distribution in the nucleus and this gives rise to a quadrupole moment
- The Quadrupole moment interacts with the electric field gradient
- Quadrupolar Hamiltonian is given by:

$$\hat{H}^{(k)} = \frac{eQ2\pi}{2I(2I-1)h} \vec{\hat{I}_k} \cdot \vec{V} \cdot \vec{\hat{I}_k}$$

The Quadrupole Coupling Constant, $C_Q = \frac{eQV_{zz}}{2I(2I-1)h}$ depends on the system

Going through the mathematics and applying the secular approximation we get a frequency caused by the quarupole interaction

$$\omega_{Q} = \frac{3eQV_{zz}}{4I(2I-1)h^{2}} (3\cos^{2}\theta - 1 + \eta_{Q}\sin^{2}\theta\cos^{2}\gamma)$$

Often the Quadrupolar Interaction is big and the first order approximation is not good enough
 First Order Term

$$\omega_{\mathbf{Q}}^{(1)} = \frac{3\mathsf{e}\mathsf{Q}\mathsf{V}_{zz}}{4\mathsf{I}(2\mathsf{I}-1)\mathsf{h}^2} (3\cos^2\theta - 1 + \eta_{\mathbf{Q}}\sin^2\theta\cos 2\gamma)$$

Second Order Term

$$\omega_{Q}^{(2)} \propto \frac{\left(\frac{3eQV_{zz}}{4I(2I-1)h}\right)^{2}}{\omega_{0}} (A + Bd_{00}^{(2)}(\theta) + Cd_{00}^{(4)}(\theta))$$
$$d_{00}^{(2)}(\theta) \propto 3\cos^{2}\theta - 1$$
$$d_{00}^{(4)}(\theta) \propto 35\cos^{4}\theta - 30\cos^{2}\theta + 3$$

The Second Order Term:

Scales with the inverse of the Larmor Frequency (and therefore with B₀) Contains an orientation independent term (A) Contains a second rank term (B) Contains a fourth rank term (C)

Titanocene dichloride

Static powder QCPMG experiment at $B_0=11.7 T (^{1}H 500 MHz)$

 C_Q = 22.18 (+/- 0.03) MHz η_Q = 0.612 (+/- 0.003)

Magic Angle Spinning of Quadrupoles with second order effects

Second order Quadrupole and Magnetic Field Strength

Quadrupole Interaction: High Resolution

Is it possible to get high resolution Spectra of Quadrupoles?

Well, yes: 1. Go to very high field

- 2. Rotate around two axes simultanously (DOR)
- 3. Rotate around two axes consecutively (DAS)
- 4. Use the different but related 2nd order shifts of the ST and CT (MQMAS and STMAS)

Quadrupole Interaction: MQMAS

Correlation between Triple Quantum and Single Quantum Coherence in a 2D experiment

Quadrupole Interaction: MQMAS

 2^{7} Al MQMAS on differently prepared Sr/Al mixed oxides with Sr/Al = 1.25.

No Calcination

Calcination at 1000 °C

precursor

0