

Temperature Programmed Techniques

Dr. Davide Ferri Paul Scherrer Institut 2056 310 27 81 davide.ferri@psi.ch

Definitions

- Temperature programmed desorption (TPD), or thermal desorption spectroscopy (TDS)
- Temperature programmed reduction (TPR)
- Temperature programmed reaction (TPR)
- Temperature programmed oxidation (TPO)

Temperature programmed reaction spectroscopy (TPRS)

Definitions

TPD

A solid is first exposed to an adsorbate gas under well-defined conditions (temperature and pressure) and then heated under inert conditions with a temperature program

TPX but TPD

Solid and reactants in contact during temperature programmed experiment

Information

- T_{red}, T_{des}, T_{ox}, T_{react}
- Adsorption site strength, quality and quantity
- Bond strength, solid-adsorbate
- Surface coverage
- Quantification of desorption

temperature

Adsorption enthalpy + pre-exponential factor for desorption

Advantages

- Experimentally simple
- Inexpensive
- Access to powders and single crystals

Disadvantages

 Complex determination of activation energies and pre-exponential factors

Temperature programmed techniques

Equipment

Thermal conductivity

gas	λ×10 ⁻³ [W/(cmK)]
air	0.277
NH_3	0.270
Ar	0.190
CO_2	0.183
CO	0.267
He	1.574
H_2	1.972
CH_4	0.374
N_2	0.275
O ₂	0.285
H_2O	0.195

Reactant and carrier gases

TPR: 5 vol.% H_2 /Ar (or He) TPO: 5 vol.% O_2 /He

Reduction of a bulk metal oxide

 $MO_n + nH_2 \rightarrow M + nH_2O$

From thermodynamics:

 $\Delta \mathrm{G} = \Delta \mathrm{G}^{0} + n \mathrm{RT} \ln(\mathrm{p}_{\mathrm{H2O}}/\mathrm{p}_{\mathrm{H2}}) < 0$

If H₂ is the reducing agent,

 $\Delta G = nRT \ln[(p_{H2O}/p_{H2})/(p_{H2O}/p_{H2})_{eq}]$

then $\Delta G < 0$, if

 $p_{H2O}/p_{H2} < (p_{H2O}/p_{H2})_{eq}$

Reduction of a bulk metal oxide

thermodynamic data f	for reduction (400°C)
----------------------	-----------------------

metal	oxide	(p _{H2O} /p _{H2}) _{eq}
Ti	TiO ₂	4×10 ⁻¹⁶
	TiO	2×10 ⁻⁹
V	V_2O_5	6×10 ⁻⁴
	VŌ	2×10 ⁻¹¹
Cr	Cr_2O_3	3×10 ⁻⁹
Mn	MnO ₂	10
	MnO	2×10 ⁻¹⁰
Fe	Fe ₂ O ₃	0.7
	FeŌ	0.1
Со	CoO	50
Ni	NiO	500
Cu	CuO	2×10 ⁸
	Cu ₂ O	2×10 ⁶
Мо	MoO_3	40
	MoO ₂	0.02
Ru	RuO_2	10 ¹²
Rh	RhO	10 ¹³
Pd	PdO	10 ¹⁴
Ag	Ag ₂ O	3×10 ¹⁷
lr	IrO ₂	10 ¹³

BUT!

reduction of a supported MO_x can produce completely different TPR patterns

Reduction mechanisms

Rate of reduction of $MO_n + nH_2 \rightarrow M + nH_2O$

 $- d[MO_n]/dt = k_{red}[H_2]^p f([MO_n])$

- k_{red} , rate constant of reduction reaction
- p, reaction order in H_2
- t, time

If α is the degree of reduction, if p=0 (excess H₂), if linear T-ramp (dT = β dt) and using Arrhenius equation

 $d\alpha/dT = v/\beta e^{-Ered/RT} f(1-\alpha)$

- v, pre-exponential factor
- β , heating rate
- E_{red} , activation energy of reduction reaction

Reduction mechanisms

shrinking core $f(\alpha) = 3 \ (1-\alpha)^{1/3}$ nucleation and growth $f(\alpha) = (1-\alpha)[-\ln(1-\alpha)]^{2/3}$

Activation energy of reduction

$$\ln(\beta/T_{max}^{2}) = -E_{red}/RT_{max} + \ln(vR/E_{red}) + K$$

if $f(1-\alpha)$ and $\alpha(T_{max})$ independent of β .

Reduction of a bulk metal oxide

...a somewhat different phase diagram

Effect of exp. conditions

H₂O concentration, mol % 1.0 2.0 2.0 2.0 6 5 TPR Fe₂O₃ 5.8%H₂+Ar 25 mg, 5°C/min H₂O concentration, mol % 1.0 2.0 2.0 2.0 % H2O B2 **B1** 0.6 1.5 1.2 10 9 ۶ 0 200 600 800 0 400 1000 temperature, °C

B2

TPR Fe₂O₃

5.8%H2+Ar 5 mg, 5°C/min

% H₂O 0 0.6

1.2

2.0

1.5

- TPR profile dependent on exp. Conditions
 - sample amount, H₂ conc., H₂O, T ramp...
- Effect of fed water on p_{H2O}/p_{H2} ?

Evidence of mechanism from XRD

- Effect of fed water on p_{H2O}/p_{H2}
 - High ratio, three step mechanism
 - Low ratio, two step mechanism

J. Zielinski et al., Appl. Catal. A: General 381 (2010) 191

Evidence of mechanism from XRD

J. Zielinski et al., Appl. Catal. A: General 381 (2010) 191

Supported oxides and bimetallic catalysts

Reduction mechanisms, PrCoO₃

Reduction of 0.5 wt.% Pd/LaCoO₃: H₂-TPR XRD

Chiarello et al., J. Catal. 252 (2007) 127 + 252 (2007) 137

Reduction of 0.5 wt.% Pd/LaCoO₃: H₂-TPR XANES

Reduction of Pd-containing perovskites

2 wt.% Pd/LaFeO₃

 $LaFe_{0.95}Pd_{0.05}O_3$

Reduction of Pd-containing perovskites

2 wt.% Pd/LaFeO₃

 $\mathsf{LaFe}_{0.95}\mathsf{Pd}_{0.05}\mathsf{O}_3$

¹⁰ vol.% H₂/He, 10°C/min, 50 ml/min Eyssler et al., J. Phys. Chem. C 114 (2010) 4584

Reduction of CeO₂-based catalysts

Boaro et al., Catal. Today 77 (2003) 407

Temperature programmed desorption

Oxygen mobility in perovskite-type oxides – O₂-TPD

- surface oxygen (α): suprafacial catalysis
- lattice oxygen (β): intrafacial catalysis

Temperature programmed desorption

Distribution of acid sites – NH₃-TPD

- which sites are present?
- how strong are the sites?
- which sites are catalytic relevant?
- site structure? $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$ 100 NH₃ ads. at given T NH₃ desorption upon heating 75 NO_X conversion (%) desorption rate (a.u.) 50 25 500 300 400 600 700 800 temperature (K)