# **UV-Vis spectroscopy**

Dr. Davide Ferri Paul Scherrer Institut 2056 310 27 81 davide.ferri@psi.ch



# **UV-vis spectroscopy**

- Use of ultraviolet and visible radiation
- Electron excitation to excited electronic level (electronic transitions)
- Identifies functional groups (-(C=C)<sub>n</sub>-, -C=O, -C=N, etc.)
- Access to molecular structure and oxidation state

#### pros

- economic
- non-invasive (fiber optics!)
- versatile (e.g. solid, liquid, gas)
- extremely sensitive (concentration)
- fast acquisition (but S/N!)

#### cons

- no atomic resolution
- broad signals (spectral resolution, multiple overlapping components)





#### **Electronic transitions**



 $\sigma \rightarrow \sigma^*$ high *E*, low  $\lambda$  (<200 nm)

*n*→σ\* 150-250 nm, weak n→π\* **200-700 nm**, weak

 $\pi \rightarrow \pi^*$  **200-700 nm**, intense

Condition to absorb light (200-800 nm):

 $\pi$  and/or *n* orbitals

**CHROMOPHORE** 



# The UV spectrum

#### Conjugation effect







If a colour is absorbed by white light, what the eye detects by mixing all other wavelengths is its complementary colour

UV-vis spectra of transition metal complexes originate from

Electronic *d*-*d* transitions









- Yellow light is absorbed and the Cu<sup>2+</sup> solution is coloured in blue (ca. 800 nm)
- The greater  $\Delta$ , the greater the *E* needed to promote the e<sup>-</sup>, and the shorter  $\lambda$
- $\Delta$  depends on the nature of ligand,  $\Delta_{NH3} > \Delta_{H2O}$

TM(H<sub>2</sub>O)<sub>6</sub><sup>n+</sup>



*d***-***d* **transitions:** factors governing magnitude of Δ

#### Oxidation state of metal ion

•  $\Delta$  increases with increasing ionic charge on metal ion

#### Nature of metal ion

•  $\Delta$  increases in the order 3d < 4d < 5d

#### Number and geometry of ligands

#### Nature of ligands

spectrochemical series

 $\begin{array}{l} \mathsf{I}^{-} < \mathsf{Br}^{-} < \mathsf{S}^{2^{-}} < \mathsf{SCN}^{-} < \mathsf{CI}^{-} < \mathsf{NO}_{3}^{-} < \mathsf{N}_{3}^{-} < \mathsf{F}^{-} < \mathsf{OH}^{-} < \\ \mathsf{C}_{2}\mathsf{O}_{4}^{2^{-}} < \mathsf{H}_{2}\mathsf{O} < \mathsf{NCS}^{-} < \mathsf{CH}_{3}\mathsf{CN} < \mathsf{py} < \mathsf{NH}_{3} < \mathsf{en} < \\ \mathsf{bipy} < \mathsf{phen} < \mathsf{NO}_{2}^{-} < \mathsf{PPh}_{3} < \mathsf{CN}^{-} < \mathsf{CO} \end{array}$ 

UV-vis spectra of transition metal complexes originate from

Electronic d-d transitions



Charge transfer

Charge transfer complex

- no selection rules  $\rightarrow$  intense colours ( $\epsilon$ =50'000 Lmol<sup>-1</sup>cm<sup>-1</sup>, strong)
- Association of 2 or more molecules in which a fraction of electronic charge is transferred between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for the molecular complex
- **Electron donor**: source molecule
- **Electron acceptor**: receiving species
- CT much weaker than covalent forces
- Ligand field theory (LFT), based on MO
  - Metal-to-ligand transfer (MLCT)
  - Ligand-to-metal transfer (LMCT)



#### Ligand field theory (LFT)

- LMCT
  - ligand with high energy lone pair
  - or, metal with low lying empty orbitals
  - high oxidation state (laso d<sup>0</sup>)
  - M-L strengthened

#### MLCT

- Iigands with low lying  $\pi^*$  orbitals (CO, CN<sup>-</sup>, SCN<sup>-</sup>)
- Iow oxidation state (high energy d orbitals)
- M-L strengthened,  $\pi$  bond of L weakened



CO adsorption on precious metals





### **Metal colloids**

#### Analysis of metals

- Localized plasmon resonance
  - When

wavelength larger than metal particle

What

collective excitations of conduction electrons (plasmons)

- limit: ca. 20-30 nm
- $\lambda$  position depends on nature of metal





### Instrumentation

#### Dispersive instruments

Measurement geometry:

- transmission
- diffuse reflectance



double beam spectrometer



# In situ instrumentation



 $\rightarrow$  different parts of spectrum do not represent same reaction time!!!

Weckhuysen, Chem. Commun. (2002) 97



### **Examples**

#### Determination of oxidation state: 0.1 wt% Cr<sup>n+</sup>/Al<sub>2</sub>O<sub>3</sub>

| Compound                                                        | Coordination geometry<br>and oxidation state | Absorption bands (nm) <sup>a</sup>                     | Color      |
|-----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|------------|
| $K_2CrO_4$ (solution)                                           | $T_d$ , $Cr^{6+}$                            | 440 (sh, vw), 370 (s), 275 (s)                         | Yellow     |
| K <sub>2</sub> CrO <sub>4</sub> (solid)                         | $T_d$ , $Cr^{6+}$                            | 459 (s), 340 (s), 265 (s), 229 (s)                     | Yellow     |
| K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> (solution)        | $T_d$ , $Cr^{6+}$                            | 440 (w), 352 (s), 255 (s)                              | Orange     |
| K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> (solid)           | $T_d$ , $Cr^{6+}$                            | 526 (s, br), 332 (s), 262 (s), 229 (s)                 | Orange-red |
| Cr(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O (solution) | $O_h$ , $Cr^{3+}$                            | 575 (s), 410 (s), 303 (s)                              | Green      |
| Cr(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O (solid)    | Dist O <sub>h</sub> , Cr <sup>3+</sup>       | 575 (s), 410 (s), 304 (s), 263 (sh)                    | Green      |
| $Cr(H_2O)_6^{2+}$ (solution)                                    | $O_h, Cr^{2+}$                               | 769 (s)                                                | Blue       |
| $K_2CrCl_4$ (solid)                                             | Distorted T <sub>d</sub> , Cr <sup>2+</sup>  | 1430 (s)                                               | Blue       |
| Cr <sub>2</sub> O <sub>3</sub> (solid)                          | Distorted O <sub>h</sub> , Cr <sup>3+</sup>  | 714 (sh), 645 (sh), 595 (s), 461 (s), 351 (s), 274 (s) | Green      |

<sup>a</sup>s: strong; m: medium; w: weak; vw: very weak; sh: shoulder; br: broad.



Weckhuysen et al., Catal. Today 49 (1999) 441





Weckhuysen et al., Chem. Commun. 49 (2013) 1518

# **Examples**

UV-vis probe in a pilot-scale reactor



