ETH zürich

From spectator species to catalytically active site

Jeroen A. van Bokhoven

ETH Zurich, Paul Scherrer Institute Villigen

What does a catalyst do?

A catalyst breaks bonds ...

What is an active site?

...

Catalysis: time and length scales

In situ spectroscopy

- Catalyst structure is a function of its environment
- Only structure measured under reaction conditions can give insight into activity
- Conversion changes the gas environment

Shiran Zhang; Luan Nguyen; Yuan Zhu; Sihui Zhan; Chia-Kuang (Frank) Tsung; Franklin (Feng) Tao; *Acc. Chem. Res.* **2013**, 46, 1731-1739.

What about a plug-flow reactor?

Catalyst structure is not necessarily the same everywhere in a reactor!!

Some definitions

• In situ:

measuring under specific conditions, such as during heating, during synthesis, and under catalytic conditions

Operando:

measuring catalyst structure and its performance simultaneously

Operando is more narrowly defined

Shining light on catalysts

Catalyst characterization:

UVvis, infrared, XRD, TGA, TPD-MS, TPR/O, NMR, XPS, XSW, XAS, XES

Comparison: XPS, XRD, XAS

- Yields electronic information
- Surface sensitive
- In-situ application difficult
- Needs UHV

- Yields structural information
- Bulk technique
- In-situ applications realizable
- Needs long range order to work

- Yields electronic and structural information
- In-situ application easy to realize
- Needs a synchrotron
- Data interpretation difficult

X-ray Absorption Spectroscopy

XANES: geometry

oxidation state density of states

-

EXAFS: local structure

(particles size)

in situ / operando conditions

Coordination number	6.8	
Au-Au distance	2.76	Å
Δ DW F	0.0058	
C3	9 E-6	
C4	3E-6	

does the structure measured under reaction conditions relate to catalysis?

Catalyst structure is not necessarily the same everywhere in a reactor!!

Grundwaldt (2007); van Bokhoven (2010)

Spectator species

- Spectator problem: Most abundant is not most active
- Transient methods select for changing (active) species

Atsushi Urakawa , Thomas Bürgi , Alfons Baiker Chemical Engineering Science, **63** (2008) 4902 - 4909

06.12.16

ingredients

- catalyst structure adapts to gas environment
- catalytic conversion changes gas environment
- in situ / operando measurement is essential
- active sites may be minority species

Measure catalyst structure operando
Time-resolved change to jump in gas environment

Role of ceria in catalysis

Ceria is an effective dopant in catalysis

- TWC, soot oxidation, FCC additive, oxidation and hydrogenation reactions
- Oxygen storage capacity
- Ce⁴⁺ / Ce³⁺ redox activity often associated with presence of Ce³⁺

$$2Ce^{4+} + O^{2-} + CO \rightarrow 2Ce^{3+} + V_o + CO_2$$

Oxygen storage capacity

- Amount of oxygen that can be released at specific temperature
- High capacity often associated with high catalytic activity (?)

Questions addressed here:

Ce³⁺

- what is its role in catalysis?
- How does it look like?
- Where is it?

one nm Pt on polyhedral ceria particles

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

- Solenoid valves
- Plug flow reactor
- Thermo couple
- Hot air blower

Fast gas switches:

0.5% CO vs. 0.5% CO + 4.5% O₂

Excess O₂

Balanced with He

total flow: 50 ml/min (low conversion)

Time-resolved X-ray emission

Sub-second time resolution (Spectra recorded in a single shot) in situ

Ratio Ce^{III} / Ce^{IV}

Ce^{III} after switch from $CO + O_2$ to CO

Steady state and transient rates are really very similar....

$$2Ce^{4+} + O^{2-} + CO \rightarrow 2Ce^{3+} + V_o + CO_2$$

Angew. Chem. Int. Ed. **54** (2015) 8728-8731

Oxygen storage capacity

It is the rate of oxygen release that matters

Not the total storage capacity

Structural depth profiling

In situ XPS at the synchrotron

The photoemission process

 $KE = hv - BE - \Phi$ for a solid

KE = hv - IP for a gas

Φ : photoelectric workfunction (4-6 eV)

Electron inelastic mean free path

At close to normal detection angles 95% of the signal comes from atoms within 3λ of the surface

Structural depth profiling

In situ XPS at the synchrotron

Measure concentration and depth profile of Ce^{III} under oxygen respectively hydrogen

$$E_{kin} = hv - E_{bin}$$

Determines the probing depth Set by the synchrotron

NEAR AMBIENT PRESSURE XPS ENDSTATION AT SLS

- Near ambient pressure photoelectron spectroscopy endstation
- Operation from UV to tender X-ray (7 keV)
- Use of novel pre-lens (VG SCIENTA) for combined high pressure and high kinetic energy measurement

PHOENIX beam lines
Thomas Huthwelker
Markus Ammann

Ce 3d XPS sensitive to cerium oxidation state

Pt/CeO₂ in 1 mbar H₂

Spectrum measured at low kinetic energy surface sensitive

H₂ and Pt needed to reduce ceria Ce^{III} more at the surface

Blue squares: Pt/CeO₂ in O₂

CeO₂ in 1 mbar H₂ respectively 1mbar O₂

Quantification needs a model

Best fit with data: only Ce^{III} within the outermost 5-10 Å

Ce L₃ High energy resolution fluorescence detected XAS

NASA pictures before and after upgrade of HUBBLE

Structure of Ce³⁺?

"HERFD"

Safonova, O. V., Tromp, M., van Bokhoven, J. A., de Groot, F. M. F., Evans, J., Glatzel, P. J. Phys. Chem B. 110 (2006) 16162-16164

Polyhedral CeO₂ nanoparticles: Size-dependant geometrical and electronic structure

Paun, C., Safonova. O. V., Szlachetko, J., Abdala, P. M., Nachtegaal, M., Sa, J., Kleymenov, E., Cervellino, A., Krumeich, F., van Bokhoven, J. A. *J. Phys. Chem. C* 116 (2012) 7312-7317

Electronic and geometric structure of Ce3+ forming under reducing conditions in shaped ceria nanoparticles promoted by platinum Safonova, O. V., Guda, A., Paun, C., Smolentsev, N., Abdala, P., Smolentsev, G., Nachtegaal, M., Szlachetko, J., Soldatov, M., Soldatov, A., van Bokhoven, J. A.

J. Phys. Chem. C. 118 (2014) 1974-1982

Shaped ceria particles

Pt/CeO₂

Polyhedral CeO₂ nanoparticles: Size-dependant geometrical and electronic structure Paun et al. *J. Phys. Chem. C* 116 (2012) 7312-7317

In situ hydrogen reduction at 150°C

difference between spectrum CeO₂ and CeO_{2-δ}

Isolation of Ce³⁺ spectrum: deduction of its structure

Take-home message I

Ce^{III} that is observed in an in situ / operando experiment is a spectator *for carbon monoxide oxidation*

Ce^{III} that participates in the reaction is too short-lived to see

Take-home message II

Knowledge of rate-limiting step essential

Measuring in the time domain brings significant advantages

Intermediate conclusions

- Ce^{III} actively participates in the catalytic cycle
- Transient methods enable distinguishing spectator species from active ones
- Ce^{III} remains at the surface

Platinum on inert support

How does the platinum structure relate to activity in a plug-flow reactor?

conversion vs temperature

At constant CO space velocity, except for 0.25

two reaction regimes

Active phases in carbon monoxide oxidation

What about real catalytic particles in a real reactor?

Pt L₃-edge XANES

- Excitation from $2p_{3/2}$ to d-band
- Spectrum gives information on oxidation state and adsorbates

Pt L₃-edge XANES under different atmospheres

Safonova et al., The Journal of Physical Chemistry B **2006** 110 (33), 16162-16164

Measuring FAST XAS

Quick EXAFS = QEXAFS

QEXAFS of platinum in transient conditions

- Catalyst: Pt/Al₂O₃
- System at high T (520 K)
- Switch from CO to CO + $O_2 \rightarrow$ from CO covered to catalytic conversion

Questions

Catalyst response to the switch

From CO-covered to performing CO oxidation from CO poisoned to highly active

Catalyst structure is not necessarily the same everywhere in a reactor!!

Mass spectrometry results

Normalized whiteline intensity

- Whiteline intensity changes during switch
- Small decrease, followed by large and rapid increase

a) _{1.6}

CO+O₂

CO

Safonova et al., The Journal of Physical Chemistry B 2006 110 (33), 16162-16164

Principal component analysis

- First PC: oxidized / reduced transition
- Second PC: presence / absence of intermediate

There is a transient state....

Isolation of the intermediate structure

There is a transient state....
... and it is an empty surface

Can we kinetically describe these data?

- Concentrations obtained from linear combination fit
- General behavior as expected

Can we kinetically describe these data?

Model 1: $A \rightarrow B \rightarrow C$

Model 2:

Desorption of CO: CO_{ads} → CO + *

CO covered

• Adsorption of $O_2: O_2 \rightarrow 2 O_{ads}$

Intermediate Oxide

46

• Surface reaction: $O_{ads} + CO_{ads} \rightarrow CO_2 + 2*$

Can we kinetically describe these data?

- Basic model clearly insufficient
- Observed kinetics: initially slow, then accelerated

Kinetic model

- Desorption of CO: $CO_{ads} \rightarrow CO + *$
- Adsorption of O_2 : $2 * + O_2 \rightarrow 2 O_{ads} \rightarrow oxide$
- Surface reaction: $O_{ads} + CO_{ads} \rightarrow CO_2 + 2*$

- Assumptions:
 - Fast desorption of CO₂
 - No readsorption of CO

$$\frac{d\theta_{\text{CO}}}{dt} = -k_1 * \theta_{\text{CO}} - k_3 * \theta_{\text{CO}} * \theta_{\text{O}}$$

$$\frac{d\theta_0}{dt} = 2 * k_2 * c_{02} \theta_{\text{free}}^2 - k_3 * \theta_{\text{CO}} * \theta_0$$

$$\frac{d\theta_{\text{free}}}{dt} = k_1 * \theta_{\text{CO}} + 2 * k_3 * \theta_{\text{CO}} * \theta_0 - 2 * k_2 * c_{0_2} \theta_{\text{free}}^2$$

(Near) quantitative description of data

- Clear improvement on previous fit
- Captures the characteristics of the observed behavior

CO desorbs

Free site enables reacting with oxygen More free sites form, until surface oxidizes

$k_{ m des,CO}$	k _{ads,oxygen}	k _{surface}
0.04 s ⁻¹	12.5 s ⁻¹	1.4 s ⁻¹

Extension to the reactor level

- XANES data so far reflects single point in the reactor
- Mass spectrometry gives integral view
- → Make a model that explains both

Reactor model

- 1D reactor
- Consider only catalyst bed
- Simulation time 20 s
- We consider:
 - Adsorption and desorption
 - Reaction
 - Forced flow
- We neglect:
 - Diffusion
 - Radial distribution
 - Temperature effects

20 points through reactor → 4 points per mm Time resolution: 500 Hz

Gas flow

06.12.16

51

Reaction steps

- Adsorption of CO: CO + * → CO_{ads}
- Desorption of CO: CO_{ads} → CO + *
- Adsorption of $O_2: O_2 \rightarrow 2 O_{ads}$
- Desorption of O_2 : 2 $O_{ads} \rightarrow O_2$
- Surface reaction: $O_{ads} + CO_{ads} \rightarrow CO_2 + 2*$
- Chemisorbed to surface oxide: $O_{ads} \rightarrow PtO_x$
- Reaction on oxidized surface: $PtO_x + CO \rightarrow CO_2$

In short:

- CO must desorb for O₂ to react
- Number of free sites increases as CO reacts to O*
- O* may react to form surface oxide
- CO may react with surface oxide

Simulation results – reactor exhaust

- Initial peak in O₂ reproduced
- Late decrease in CO₂ reproduced

Reactor exhaust

- Initial peak in O₂ reproduced
- Maximum in CO₂ reproduced

Surface and concentrations at t=0 s and t= 4 s

Surface and concentrations at t= 4.5 s and t= 5 s

Surface and concentrations at t=6 s and t= 20 s

Reactor overview

CO₂ Production through the reactor

 Most CO₂ produced in region with all surface species present

CO covered

Free surface

Oxide

Surface Oxygen x 20

06.12.16 Urs Hartfelder

CO₂ production by mechanism

- Both mechanisms contribute similarly
- Time course different

Conclusions reactor simulations

- XAS result fitted to reactor model
- Qualitative prediction of MS results
- Transition region key for reaction

Minority of the catalyst does the majority of the work...

Minority of the catalyst does the majority of the work...

Most of the catalyst does not contribute to the work...

How to get more of the highly active phases ... ??

The T-reactor

- T-shaped reactor to maximize mixing zone -Increase amount of the more active catalyst
- *Either* CO + O₂ from both sides
- Or CO from left
- O₂ from right

- Counter flow leads to dramatic increase in activity
- Light-off shifted to much lower temperatures

Higher conversion in counter flow Ignition at lower temperature

Conclusion

- From spectators to active sites
- From structure to predicting reactor performance

By reactor engineering, one can improve performance

CATALYSIS GROUP