Infrared spectroscopy

Instrumentation Techniques Examples

Dr. Davide Ferri Paul Scherrer Institut 2056 310 27 81 davide.ferri@psi.ch

Double beam spectrometer

Fourier transform spectrometer

Dispersive vs. FT

FT-IR spectrometer has significant advantages over dispersive one

Multiplex (Fellgett) advantage

All source wavelengths are measured simultaneously

Throughput (Jacquinot) advantage

For the same resolution, the energy throughput in an interferometer can be higher \rightarrow the same S/N as a dispersive-IR in a much shorter time

Precision (Connes) advantage

The wavenumber scale of an interferometer is derived from a HeNe laser that acts as an internal reference for each scan

Sampling techniques

TIRS: transmission infrared spectroscopy

IRES: infrared emission spectroscopy

PA-IRS: photoacoustic infrared spectroscopy

VCD: vibrational circular dichroism

ATR-IRS: attenuated total reflection infrared spectroscopy

IRRAS: infrared reflectionabsorption spectroscopy

PM-IRRAS: polarizationmodulation IRRAS

DRIFTS: diffuse reflectance infrared Fourier transform spectroscopy

Straight' IR light absorption

- Popular for detections of gas and liquid samples
- Solids have to be diluted or shaped in a very thin film
- Quantification is more straightforward than other IR techniques

In heterogeneous catalysis

- Popular for *in situ* investigations
- Typically a very thin self-supporting catalyst disk is used
- Powder sample dispersed on transparent grid (W)
- Mass transfer can be an issue

IR transparent window

Gas samples

Temperaturecontrolled cell [ca. 200 – 500 K]

In situ cells for heterogeneous catalysis studies

FIG. 1. In situ high-pressure and temperature IR cell. 1: CaF_2 window; 2: KBr rod (1); 3: KBr rod (2); 4: catalyst disk; 5: Viton O-ring; 6: cooling water inlet; 7: cooling water outlet; 8: gas inlet; 9: gas outlet; 10: thermocouple; 11: swagelok fitting; 12: heater; 13: asbestos molding; 14: Teflon[®] window holder.

Arakawa et al. Appl. Spec., 40, 884 (1986)

heating up to 500°C pressure up to 10 MPa

FIG. 1. The high-temperature IR cell: 1, gas inlet; 2, electrical connection; 3, insulating material; 4, Viton O-ring; 5, thermocouple; 6, gas outlet; 7, heating element; 8, ceramic; 9, nut and bolt; 10, Vycor tubing; 11, CaF_2 window; 12, Al_2O_3 tubing; 13, sample; 14, stainless steel sample holder.

Mawhinney et al., Langmuir 15 (1999) 4617; Basu et al., Rev. Sci. Instrum. 59 (1988) 1321

In situ cells

Rasmussen et al., PCCP 14 (2012) 2171

Solid samples

Large solid particles generally absorb too much IR light, therefore particles should be small and also special preparations are often necessary.

Most popular sample preparation methods (for mid-IR):

Alkali halide disk method

- Typically solid samples are diluted in KBr and ground
- Then pressurized to form a disk

Mull method

- Most common one is Nujol (liquid paraffin)
- Samples are ground and suspended in one or two drops of a mulling agent
- Followed by further grinding until a smooth paste is obtained

Film method

By solvent casting or melt casting

Quantification: most straightforward than other techniques

Lambert-Beer law

T: transmittance, **A**: absorbance, ϵ : molar absorption (extinction) coefficient, **c**: concentration, **d**: path length

Common window materials

Material	Useful range / cm ⁻¹	Refractive index	Properties
NaCl	40'000-600	1.52	Soluble in water; slightly soluble in alcohol; low cost
KBr	43'500-400	1.54	Soluble in water; slightly soluble in alcohol; hygroscopic
CaF ₂	77'000-900	1.40	Insoluble in water; chemically resistant; mechanically strong
BaF ₂	66'666-800	1.45	Low water solubility; soluble in acids and NH ₄ Cl
CsI	42'000-200	1.74	Soluble in water and alcohol; hygroscopic
ZnSe	20'000-500	2.43	Soluble in strong acid

Reflection based techniques

Aim for heterogeneous catalysis studies

study events occurring at interfaces and maximize signals related to catalysts and active species on surfaces, especially during reactions

Specular vs. diffuse reflection

Specular reflection (smooth surface)

Surface smoothness like mirror = reflection and incident angles are equal

Diffuse reflection (rough surface)

Incident light is reflected to a number of directions due to surface roughness

Very popular for *in situ* measurements of physicochemical processes at **gas**solid interfaces using realistic **powder catalysts**

The praying mantis (very popular, highly efficient light collection)

In situ DRIFTS cell

qualitative analysis

Very sensitive to surface species due to the diffuse reflective nature of the method; the detected light can be multiply reflected at powder surfaces

quantitative analysis

It can be very complicated; the spectra are largely influenced by a number of experimental parameters such as shape and size of particles, refractive index of particles, absorption characteristics of particles, and porosity of the powder bed

A popular quantitative analysis method is using Kubelka-Munk (K-M) function to transform reflectance to a kind of absorbance (K-M) unit

Kubelka-Munk function
$$f(R) = \frac{(1-R)^2}{2R} = \frac{k}{s}$$

k: molar absorption coefficient, *k*=2.303 α c, α : absorptivity, *c*: concentration, σ : diffusion (scattering) coefficient

There is a solid (approximated) theory behind and the K-M function is widely used; however its applicability and accuracy for highly absorbing and non-absorbing samples is questionable

recent discussion on this topic: Sirita et al., Anal. Chem. 79 (2007) 3912

Sirita et al., Anal. Chem. 79 (2007) 3912

Meunier, Chem. Soc. Rev. 39 (2010) 4602

Model system investigation

- single crystals
- well-defined nano-particles

The surface selection rule

Fig. 1. (a) The lines of force and the electrical "image" resulting from a positive charge over the surface of a conductor (the metal surface is the upper line above the hatched area). (b) The changes during the vibration of a dipole parallel to the surface of the metal; the "image" dipole change is in the opposite direction to the original. (c) The changes during the vibration of a dipole perpendicular to the surface; the "image" dipole change is in the same direction as the original.

The surface selection rule

Carboxylate groups

The surface selection rule

Also valid for small (nm) metal particles?

Greenler et al. Surf. Sci. 118 (1982) 415

Also RAIRS; specular/external reflection method

Haq et al., J. Phys. Chem. 100 (1996) 16957; Preuss et al., Phys. Rev. B 73 (2006) 155413

Adsorption of ethylene

√/cm-1

Vibrational assignments of ethylidyne

Mode	$Pt(111) (cm^{-1})$		Co ₃ (CO) ₉ CCH ₃ (cm ⁻¹) [8]
	FT-RAIRS [this work]	EELS [5]	
$\nu_{\rm s}(\rm CH_3)$	2884	2895	2882
$\delta_{as}(CH_3)$	Not allowed	1420 (impact)	1432
$\delta_{s}(CH_{3})$	1341	1350	1359
VC-C	1124	1130	1161
$\rho(CH_3)$	Not allowed	980 (impact)	1006
ν_{C-Pt}	Below detector cut off	435	~ 600

Also RAIRS; specular/external reflection method

Phase-modulation IRRAS (PM-IRRAS)

Generation of 2 polarizations (photoelastic modulator)

- excellent gas-phase compensation
- non-UHV experiments possible
- highly sensitive, time-resolved studies possible

Attenuated total reflection infrared spectroscopy

The most rapidly developing IR method over the last years in bioscience, organic-, inorganic chemistry, and catalysis

occurs

Total internal reflection (attenuated total reflection)

Calculate the critical angle at ZnSe/air interface n(ZnSe) = 2.4, n(air) = 1.0

How does it work?

Light travels through a waveguide

Assuming that n_1 and n_2 are constant, how much difference do you expect in the penetration depth at 400 and 4000 cm⁻¹?

 θ : angle of incidence

$$\lambda_1 = \frac{\lambda}{n_1} \qquad n_{21} = \frac{n_2}{n_1}$$

 d_p : penetration depth; defined as the distance from interface where the electric field has decayed to 1/e of its value E₀ at the interface

Very powerful method for investigations of (catalytic) solid-liquid interfaces

Common window materials

Material	Useful range / cm ⁻¹	Refractive index	Properties
ZnSe	20 000-700	2.43	Soluble in strong acid; usable up to ca. 573 K
Ge	5000-900	4.02	Good chemical resistance; hard and brittle; becomes opaque at 400 K
Si	9400-1500; 350-FIR	3.42	Excellent chemical resistance; hard; usable up to ca. 573 K
KRS-5 (Thallium bromoiodide)	14 000-330	2.45	Toxic; slightly soluble in water and soluble in base; usable up to ca. 473 K

Stable films needed for in situ investigations

Quantification

Similar to Lambert-Beer law but replacing d by wavelength dependent thickness, i.e. effective thickness d_e (Harrick)

$$A = -\log(T) = -\log(\frac{I}{I_0}) = \varepsilon c d_e$$
$$d_e = \frac{n_{21} E_0^2 d_p}{2\cos\theta}$$

Cells

thermostatting plates

cyclohexane, 50° C, Pd/Al₂O₃

Ferri et al. J. Phys. Chem. B 110 (2006) 22982

Comparison of techniques

- Comparison between techniques with different sensitivity (bulk/surface) should be careful
- Band assignment depends on surface sensitivity of the technique
- PM-IRRAS suitable for investigation of powder samples...

Adsorbed molecules

Orientation on surfaces

Powders

qualitative

 adsorption mode, coordination to surface (e.g., mono-, bidentate, bridging, tilted...)

Metallic surfaces (e.g. single crystals)

- more accurate
- surface selection rule
- orientation information from dynamic dipole moment direction
- group theory
- combination with theory (Density Functional Theory DFT)

IR spectroscopy for catalysis

Ex situ experiments

structure determination (M-O bonds, OH groups), nature of adsorbates

In situ experiments

- structure determination (M-O bonds, OH groups), nature of adsorbates
- determination of adsorption sites (probe molecules)
- determination of acidity and basicity (probe molecules)
- typically, vacuum experiments and low T (LN₂)
- other atmospheres and T possible

Operando experiments

Combination of

- spectroscopic measurement (not only IR!)
- simultaneous detection of reactants and products (MS, GC, ...)
- Evolution of adsorbates with changes in reaction conditions (e.g. T)
- simulation of reactor studies (pay attention to reactor design issue)
- adsorption-desorption experiments under relevant conditions (not vacuum)

- Quality and quantity of acid sites
- Criteria
- unequivocal analysis of intermolecular interaction
- selective interaction with acidic or basic sites
- sufficient accuracy in frequency shift determination
- high (and available) extinction coefficients of adsorbed probe
- appropriate acid (base) strength to induce interaction Hard–Soft classification of sites and probes
- high specificity (allow discrimination between sites with different strength) Use different molecules !
- small molecular size Use different molecules !
- Iow reactivity under exp. Conditions
- **.**..
- Example
 - acidity of zeolite with different channel sizes
 - acid sites located in all channels
 - use of pyridine (smaller channels) and picoline (larger channels or surface only)

 $SiO_2-AI_2O_3 > AI_2O_3 > SiO_2$; next issue: coordination environment of acid site

Molar absorption coefficient of adsorbates

- *l*, disc thickness (optical path)
- n, amount of adsorbed molecule
- S, disc area

 H_3C

Molar absorption coefficient of adsorbates

 $\epsilon_{1605} = 1.9$

nd: not determined; $\varepsilon = cm \mu mol^{-1}$

Onfroy et al., Micropor. Mesopor. Mater. 82 (2005) 99

Indirect characterization of supported metal oxides

Carbon monoxide (CO)

• Widely used as a *sensor* to investigate the electronic state of catalytic active sites

Carbon monoxide (CO)

The larger the particles, the less CO adsorbs (intensity)

The larger the particles, the less defects available (nr. of signals)

Winkler et al., Appl. Catal. B 93 (2009) 177; Matam et al., Appl. Catal. B 129 (2013) 214

Carbon monoxide (CO)

Carbon monoxide (CO)

Q

How does the CO stretching frequency shift when a Pt surface is covered with hydrogen or oxygen?

Pd/Ag alloy on SiO₂

Y. Soma-Noto, W.M.H. Sachtler, J. Catal. 32 (1974) 315

