Physisorption and pore size analysis

CV Gerhard Pirngruber

- 1995 1999 PhD in heterogeneous catalysis
 - Universiteit Twente (NL)
- 2000 2005 Oberassistent
 - ETH Zurich, Inst of Chemical and Bioengineering
 - Research activity
 - zeolites
 - mesoporous silica
- 2005 now
 R&D Scientist, project leader
 - IFP Energies nouvelles, Catalysis and Separation Division
 - Research activity
 - 2005 2012 : CO2 capture, separation of hydrocarbons
 - 2012 now: hydrotreating and hydrocracking catalysts

Porous solids in catalysis

Supported catalysts

- e.g. noble metals, transition metal sulfides
- Porous support
 - provides surface for dispersing the catalyst
 - provides mechanical stability
 - has an influence on diffusion of reactants and products
 - has an influence on adsorption of reactants and products
 - determines reactor volume

Porous catalysts

- Zeolites
- Oxydes

Optimising porosity is often the key to improving catalytic performance.

Types of porosity

- Porous cristalline structures
 - Zeolites,
 - Metal Organic Frameworks

- Ordered or disordered stacking of small particles generates an interparticles porosity
 - oxides (silica, alumina, etc.)
 - activated carbon

Characterisation of porosity

- Physisorption (N₂, Ar, Kr)
 - surface area
 - pore volume
 - pore size distribution
- Hg intrusion
 - pore volume
 - pore size distribution
 - surface area
- Imaging methods
 - Transmission Electron Microscopy
 - Secondary Electron Microscopy

Terminology

- Adsorption is a surface phenomenon.
- Adsorbent = solid that provides a surface for adsorption.
- Adsorbate = molecule adsorbed on the surface.
- Adsorptive = molecule susceptible of being adsorbed.
- Physisorption: no formation of chemical bonds, no transfer of electron density
- Chemisorption: formation of a chemical bond (exchange of electrons)

Terminology

- IUPAC distinguishes 3 catagories of pore sizes
 - Micropores < 2 nm
 - Mesopores 2 50 nm
 - Macropores > 50 nm

Forces involved in physisorption

- van der Waals forces
 - amplified by multiple interactions with atoms or pore wall (i)

maximal when size of adsobate (j) close to pore size

Forces involved in physisorption

Electrostatic forces

- Any non-symmetric charge distribution in the adsorbent generates an electric field
- adsorbates with an electric moment (dipole, quadrupole) interact with the electric field
- undesirable in analysis of porosity/pores size because surface chemistry/chemical composition enter into the game
- N₂ has a small quadrupole moment → use of Ar, Kr is preferable for precise micropore size analysis

 Gradual filling of pore volume starting from surfcae

Pressure

Adsorbed amount

Adsorption in mesopores

monolayer adsorption

multilayer adsorption onset of capillary condensation

pore filled by capillary condensation

Adsorption in macropores

- Opposite pore wall is too far away to influence adsorption and provoke capillary condensation
- First monolayer, then multilayer adsorption

Volumetric method

Material balance

- Reservoir: 1 Sample cell: 2
- without adsorption (He), sample cell initially under vacuum

$$\frac{p_{init}V_1}{RT_1} = \frac{p_{final}V_1}{RT_1} + \frac{p_{final}V_2}{RT_2}$$

$$\frac{V_2}{T_2} = \frac{V_1}{T_1} \cdot \frac{p_{init} - p_{final}}{p_{final}}$$

with adsorption (N_2)

determined with He

quantity initially present in the reservoir
$$n_{tot} = \frac{pV_1}{RT_1} + \frac{pV_2}{RT_2} + n_{ads}$$

Experimental difficulties

- Precise measurement of pressure required
 - difficult at low pressure
 - difficult to measure a micropore distribution
- Isotherm !!
 - T₂ in principle 77 K (temperature of liquid N₂)
 - part of the cell is not plunged into liquid N2, but is at ambient temperature
 - temperature gradient must be the same as during the initial calibration of the volume with He
 - pay attention to the level of liquid N₂

Example zeolite NaX

- Micropores are entirely filled at very low pressure.
- Isotherm is totally flat once micropores are filled.

Examples - ZnO

- no micropores
- mesopores generated by stacking of inidividual particles

Comparison of two ZnO samples

Surface : 65811 > 70299

Pore size : 70299 > 65811

Example – Al₂O₃

- no micropores
- high surface area, broad pore size distribution

Comparison Al₂O₃

- Surface: 79999 > 61399 > 47148
- Pore size : 47148 > 61399 > 79999

Quantitative treatment of N₂ isotherms

- Pore volume: V_{micro}, V_{meso}, V_{total}
 - t-plot
- Surface area
 - BET (Brunauer-Emerett-Teller)
 - Langmuir
- Pore size distribution
 - Micropores
 - Horwath-Kawazoe, Saito-Foley
 - Mesopores
 - BJH (Brunauer-Joyner-Halenda)
 - DFT (Density Functional Theory)

Determination of the surface area

- BET (Brunauer Emmet Teller): multilayer adsorption
 - first layer: adsorption on the surface
 - all the other layers are considered like a condensed liquid

 n_m = number of surface adsorption sites (monolayer) n_{ads} = total number of adsorbed molecules

BET equation

BET equation

$$\frac{P}{V_{ads}(P_0 - P)} = \frac{1}{V_M C} + \frac{C - 1}{V_M C} \left(\frac{P}{P_0}\right)$$

$$C = \frac{K_{surface}}{K_{condensation}}$$

- V_M = monolayer volume
- V_{ads} = adsorbed volume
- Plot $p/V_{ads}(p_0-p)$ vs. p/p_0
- Calculation of surface area:
 - N_{Av}: Avogadro number
 - a : area of N₂ molecule (16,2 Å²)

Recommended range of p/p_0 : 0,05 - 0,35 max.

$$S_{BET} = a. \frac{p_0 V_M}{R \cdot 273 K}. N_A$$

$$S_{BET}(m^2/g) = 4.355 \cdot V_m(cm^3 STP/g)$$

Exemple ZnO

Isothermes

BET plot

	S _{BET} (m ² /g)	C _{BET}
65811	74	136
70299	36	237

Example NaX

- The multilayer adsorption model does not apply well to microporous solids when the pores are filled.
- Choose a lower pressure range for microporous solids.
 - $p/p_0 = 0.05 0.10$
- C constant may be negative.
 Does not make physical sense
 - lower the pressure range further

$$S_{BET} = \frac{4.355}{0.0064 - 0.00003} = 685m^2 / g$$

Langmuir Surface Area

- Langmuir theory
 - is a model of monolayer adsorption
 - this hypothesis is never fulfilled
- Do not use Langmuir surface areas !!
- S_{Langmuir} is always > S_{BET} because multilayer adsorption is treated like monolayer adsorption.

Determination of the pore volume

In some cases possible without using any model.

Conversion gas volume – pore volume

- Volume of adsorbed gas correponds to a certain number of moles
 - STP = Standard Temperature Pressure
 - T = 273 K, p = 1 bar = 100 kPa

- $n_{ads} = \frac{V_{ads}p}{RT}$
- The adsorbed phase is considered like a liquid phase
 - Density of liquid N₂ at 77 K : 0.807 g/ml

$$V_p = \frac{m_{N2}}{\rho_{N2,liq}} = \frac{n_{ads} \cdot M_{N2}}{\rho_{N2,liq}}$$

$$V_p(ml/g) = 1.5468 \cdot 10^{-3} \cdot V_{ads}(cm^3 STP/g)$$

t-plot

- Transform adsorbed amount in an average thickness(t) of the adsorbed layer
- For multilayer adsorption on a flat surface

$$t = \frac{V_{ads}}{S}$$

Universal curve t vs. p/p₀

- The isotherms (V_{ads}/S_{BET}) of many low surface area oxides (SiO₂, Al₂O₃, ZrO₂, TiO₂, MgO) form a universal curve t = f(p/p₀).
- Numerical description of that curve
 - valid for t = 3.5 10 Å
 - and $p/p_0 = 0.1 0.8$

Harkins
$$t = (\frac{13.99}{-\log \frac{p}{p_0} + 0.034})^{1/2}$$

Halsey
$$t = 3.54 \left\lceil \frac{5}{\ln\left(\frac{P_0}{P}\right)} \right\rceil^{1/3}$$

Fig. 12.3. The adsorption of nitrogen on nonporous samples of silica and alumina, the surface areas ranging from $2.6-11.5 \text{ m}^2\text{ g}^{-1}$ for silica and from $58-153 \text{ m}^2\text{ g}^{-1}$ for alumina. n/n_m is plotted against p/p° . n is the number of moles adsorbed per gram of adsorbent and n_m is the monolayer capacity, expressed in the same units. Line A: \bullet = silica; + = alumina. Line B: the BET isotherm (Eqn. 12.19) with c values of 100–200.

$$t = \left(\frac{13.99}{-\log\frac{p}{p_0} + 0.034}\right)^{1/2}$$

t = thickness that the adsorbed phase would have on a nonporous material

Interpretation of t-plots

Adsorption on a non-porous solid

- Adsorption on a microporous solid
 - micropores rapidly filled
 - then adsorption on external surface

Example zeolite NaX

 $V_{\text{micro}} = 175 \text{ cm}^3 \text{ STP/g} = 0.271 \text{ ml/g}$

	S _{BET} (m ² /g)	S _{t-plot}
65811	74	70
70299	36	34

t-plot may be ambiguous

- Zeolite beta with supermicropores
 - no clear linear region in the t-plot
 - micropore volume depends on the interval chosen for extrapolation

Average pore size

From geometrical rules

Cylindrical Pore:

• V = pore volume
$$\begin{cases} V = \pi r^2 h \\ S = \text{surface} \end{cases}$$

$$\int V = \pi r^2 h$$

$$S = 2\pi rh$$

$$\frac{S}{V} = \frac{2}{r}$$
 $d = \frac{4V}{S}$

$$d = \frac{4V}{S}$$

$$\begin{cases} V = \frac{4}{3}\pi r^3 \\ S = 4\pi r^2 \end{cases}$$

$$\frac{S}{V} = \frac{3}{r}$$
 $d = \frac{6V}{S}$

$$\begin{cases} V = lhr \\ S = lh \end{cases}$$

$$\frac{S}{V} = \frac{1}{r} \qquad d = \frac{2V}{S}$$

Micropore size distribution

- Based on the relation between adsorption strength and the ratio between adsorbate size and pore size
 - condition: adsorption controled by van der Waals interactions only
- Mathematical models
 - Horvath-Kawazoe
 - Saito-Foley

Saito, Foley, AICHE Journal 1991, 37, 429.

- Input parameters
 - pore geometry: slit-shaped, cylinder, sphere
 - parameters of the Lennard-Jones potential well: ε and σ_{ii}
 - not always well known for atypical solids
- Input data
 - high precision isotherm at very low pressure!

via the theory of capillary condensation

C -> D

Kelvin equation

- Capillary forces in the pore lower the vapor pressure of the condensed liquid
 - Pressure at the concave side of an interface is higher than at the convex side.
 - overpressure counteracts the surface tension, which tries to collapse the interface area
 - Application to interface between gas and adsorbed liquid film in a pore
 - Pressure in liquid is lower than gas pressure.
 - Means that chemical potential in liquid is lower, in other words that the equilibrium vapor pressure is lower.
 - Capillary condensation occurs at a lower pressure than condensation.

Kelvin equation

Mathematic formalism

Work against interfacial tension = change in free enthalpy

$$dA \cdot \gamma = dn_{capliq} \cdot \mu_{capliq} + dn_{liq} \cdot \mu_{liq}$$

$$dn_{capliq} = -dn_{liq} = \frac{dV_{capliq}}{V_{m}}$$

$$dA \cdot \gamma = \frac{dV_{capliq}}{V_{m}} \cdot \mu_{capliq} - \frac{dV_{capliq}}{V_{m}} \cdot \mu_{liq}$$

$$dA \cdot V_m \cdot \gamma = dV_{capliq} (\mu_{capliq} - \mu_{liq})$$

$$(\mu_{capliq} - \mu_{liq}) = -\frac{dA}{dV_{cap,g}} \cdot V_m \cdot \gamma$$

$$RT \ln \frac{p_{cap}}{p_{sat}} = -\frac{dA}{dV_{cap,g}} V_m \gamma$$

$$\mu_{capliq} = \mu_0 + RT \ln \frac{p_{cap}}{p_0}$$

$$\mu_{liq} = \mu_0 + RT \ln \frac{p_{sat}}{p_0}$$

Generalized Kelvin equation

$$\ln \frac{p_{cap}}{p_{sat}} = -\frac{V_m \gamma}{RT} \cdot \frac{dA}{dV}$$

dV/dA = change in volume per change in interface area
Vm = molar volume

- dV/dA depends on the pore geometry
 - Sphere: dV/dA = r/2
 - Cylinder dV/dA = r
 - Slit dV/dA = d distance between slits
- Relation to curvature of the pore

$$\ln \frac{p_{cap}}{p_{sat}} = -\frac{1}{r_{curvature}} \frac{V_m \gamma}{RT}$$

Capillary condensation

- Multilayer adsorption on the surface: layer thickness t ↑
- At a certain effective pore radius r_p-t, capillary condensation occurs
- Pore is filled. There is a step in the adsorption isotherm.

 p_0 – all pores filled

 p_1 — capillary evaporation in largest pore reduction of layer thickness

p₂ — capillary evaporation in 2nd largest pore reduction of layer thickness in both pores

- In each desorption step $p_{n-1} \rightarrow p_n$, capillary evaporation occurs from a pore of size r_{pn}
- The volume desorbed in that step (ΔV_n) can be related to the pore volume by the geometrical relation given above.
- Complication: Reduction in layer thickness in the pores, which were already emptied, also contribute

The BJH-equation

E.P. Barret, L.G. Joyner, P.P. Halenda, JACS 73 (1951) 373.

$$V_{pn} = \frac{r_{pn}^{2}}{(r_{kn} + \Delta t_{n})^{2}} \cdot \Delta V_{n} - \frac{r_{pn}^{2}}{(r_{kn} + \Delta t_{n})^{2}} \cdot \Delta t_{n} \cdot \sum_{j=1}^{n-1} \frac{r_{pj} - t_{j}}{r_{pj}} A_{pj} \qquad A_{p} = \frac{2V_{p}}{r_{p}}$$

capillary evaporation

correction term

For each desorption step the average diameter of the pore, which undergoes capillary evaporation is calculated from the Kelvin equation and the t-plot equation: r_p = r_k + t

$$\log \frac{p}{p_0} = 0.034 - \frac{13.99}{t^2}$$
$$\log \frac{p}{p_0} = \frac{-4.14}{r_k}$$

- At is the change in layer thickness in each desorption step
- ΔV_n is the volume desorbed in each step
- → A plot of pore volume vs. pore radius is obtained.

Limits of the BJH-model

- BJH underestimates the pore size below 7.5 nm WHY?
 - Model separates the adsorbed film and the capillary condensate – not a realistic picture
 - Fluid-wall interactions are neglected
 - Kelvin equation may not be valid in very narrow pores
 - Surface tension might increase with curvature
- One should speak about a BJH-value rather than pore diameter.

Harkins-Jura t-plot equation

$$\log \frac{p}{p_0} = 0.034 - \frac{13.99}{t^2}$$

$$\log \frac{p}{p_0} = \frac{-4.14}{r_m}$$

Kelvin equation

Cylinder !!

	p_c/p_0	t(p _c)	r _{curvature}	R_{c}	$r_p = r_c + t$
Ads	0.671	8.2	11.9	11.9	20.2
Des	0.565	7.0	8.35	16.7	23.7

Energie Environnement

Origin of the hysteresis

Adsorption: cylindrical meniscus $r_m = 2r_{eff}$

Desorption: hemisperical meniscus

$$r_{\rm m} = r_{\rm eff}$$

- The lower r_m, the lower is the pressure of capillary condensation/evaporation
- $r_{m,ads} = 2 r_{m,des}$
- Capillary evaporation at a lower pressure than capillary condensation
- → Hysteresis loop in isotherm

Origin of the hysteresis

- Truth seems to be complicated than in Cohan's theory.
- Cohan's theory, based on the shape of mensiscus, theory suggests that different vapor liquid equilibria exist in a spherical or cylindrical meniscus, which leads to hysteresis => is an equilibrium picture.
- Molecular simulations (DFT) suggest that adsorption branch is not in thermodynamic equilibrium, but is a metastable state.

- Adsorption branch comprises metastable states.
 - grand free energy of filled pore is lower than that of the empty pore in the hysteresis
- Desorption branch is in thermodynamic equilibrium.
- Reason for metastability in adsorption branch
 - barrier of nucleation by formation of a liquid bridge across the pore
 - condensation occurs when limit of metastability is reached

Monson, MMM, 2012.

Ink-bottle pores

- In desorption smallest pore openening is determining.
- When pressure of capillary evaporation is reached for the smallest pore opening, whole pore is suddenly emptied.
- Sudden drop in the desorption isotherm type H2

Pore network effects

N₂ can only desorb from pore A and C if pore B has already been emptied.

Seaton, CES, 1991.

- Desorption branch of isotherm not in thermodynamic equilibrium any more, due to pore blocking.
- Desorption is controlled by a percolation process.
 - probability that the pore is connected to the outer surface.

- Adsorption isotherm Pros and cons
 - Condensation can be delayed not in thermodynamic equilibrium
 - Cylindrical meniscus not stable not advisable to use adsorption branch for cylindrical pores
- Desorption branch Pros and cons
 - Evaporation not delayed, in thermodynamic equilibrium generally preferred
 - Ink-bottle type pores: smallest openening determines the desorption
 - In a network of interconnected pores: percolation (transport) effects determine the desorption
- Conclusion: look at both and compare them

Type H2

Adsorbent: xerogel and alcogel

- If pore size distribution is calculated from desorption branch, an artificially narrow pore size distribution is obtained
- The adsorption branch has to be used to calculate the pore size distribution.

Pore size distribution

Narrow peak in the pore size distribution of the adsorption branch is an artefact caused by the forced closure of the isotherm at p/p₀ = 0.43

Closure point of the isotherm

- Critical temperature inside a pore lower than in bulk:
 T_{c,pore} < T_{c, bulk}
- T_{c,pore} decreases with decreasing pore diameter¹
- Above T_c no condensate-vapour meniscus
- For narrow pores T_c < 77 K</p>
- No hysteresis for filling and emptying of these pores
- $T_{c,pore}$ < 77 K for pores, which show capillary condensation at p/p_0 = 0.4 \rightarrow closure point of isotherm
- $T_c(Ar) > T_c(N_2) \rightarrow Ar$ isotherms show hysteresis when N_2 isotherms don't²

Summary – Pore size analysis

- BJH relies on Kelvin equation and the universal tcurve for determining pore size distribution
 - both concepts have weaknesses
- Alternative methods exist
 - Density Functional Theory
 - Broekhoff de Boer improvement of BJH
 - Derjaguin concept of disjoining pressure
 - surface tension concept that takes interaction with solid into account
- Every model assumes a certain pore geometry (cylindrical, spherical, slit-shaped) – influences the results!!
- The adsorption and the desorption branch contain different information – look at both.

DFT is becoming state of the art

 Express the Grand Potential as a function of the fluid density distribution in space

$$\Omega[\rho] = F[\rho] + \int \rho(\mathbf{r})V(r)dr - \mu \int \rho(\mathbf{r})dr$$

- $\rho(\mathbf{r}) = \text{fluid density at position } \mathbf{r}$
- F(ρ) = Helmholtz energy of the system due to fluid-fluid interactions, in the absence of an external field
- V(r) = external potential at position r
- μ = chemical potential

More recent DFT equation

- Everything is in the experssion of Φ_{ext}
 - Solid-fluid interaction
 - Effet of pore size and pore geometry (confinement)
 - Similar to the HK, SF models of micropore size analysis

Pore size analysis with DFT

- Kernel of adsorption isotherms (= integrated fluid density) is calculated as function of pore size
- Experimental adsorption isotherm is fitted by a weighted sum of the kernel isotherms
- The weights give the pore size distribution.
- Recommended method :
 - Use DFT to extract pore size distribution from adsorption branch.
 - Use desorption branch to analyze percolation phenomena

Be careful when using DFT

- Modern commercial equipment has DFT analysis intergrated in the software
 - Is a press-button, black-box method
 - Depending on the solid-fluid interaction parameters and the pore geometry that the DFT method relies on you will get different results
 - You should know what you are doing
- Like BJH analysis, DFT produces an artifact : peak in pore size distribution at 1 nm
 - Due to formation of an ordered layer on the surface

Literature

- Textbooks on adsorption
 - D.A. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley
 - D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press
- Review articles discussing a more moderne view of hysteresis effects and pore size analysis
 - P.A. Monson, Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory, Microporous Mesoporous Materials 160 (2012) 47.
 - B. Coasne et al., Adsorption, intrusion and freezing in porous silica: the view from the nanoscale, Chem. Soc. Rev. 42 (2013) 4141.

Alternative explanations of the Kelvin equation

Energie Environnement

Physical principles of capillary condensation

External pressure

 p_g = new vapour pressure of H_2O p_{g0} = original vapour pressure of H_2O Δp_l = external pressure on liquid (H_2O), which induces the change in vapour pressure

- Equlibrium gas-liquid $μ_g = μ_l$ vapour pressure $p_{g,0}$
- Equilibrium disturbed by external pressure

$$d\mu_g = d\mu_l \rightarrow v_l dp_l = v_g dp_g$$

$$v_l dp_l = RT/p_g * dp_g$$

$$v_l \Delta p_l = RT \ln (p_g/p_{g0})$$

$$p_g = p_{g,0} \cdot \exp(\frac{v_l}{RT} \Delta p_l)$$

Vapour pressure of a drop of liquid

$$p_{in} - p_{out} = \frac{2\gamma}{r}$$

 γ = surface tension r = radius of curvature

$$p_l - p_{out} = \frac{2\gamma}{r}$$

$$p_l = p + \frac{2\gamma}{r}$$

Vapour pressure of a liquid void

$$p_{in} - p_{out} = \frac{2\gamma}{r}$$

$$p_{in} - p_l = \frac{2\gamma}{r}$$

$$p_l = p - \frac{2\gamma}{r}$$

$$p_g = p_{g,0} \cdot \exp(-\frac{2v_l \gamma}{RT \cdot r})$$

Kelvin equation: vapour pressure inside a void is lowered

Kelvin equation

Capillary forces in the pore lower the vapor pressure of the condensed liquid

$$\mu_{cap} = \mu_0 + RT \ln \frac{p_{cap}}{p_0} \qquad \mu_{liq} = \mu_0 + RT \ln \frac{p_{sat}}{p_0}$$

Evaporate n moles from capillary and condense on a flat surface. You have to work against the surface tension y.

$$W = \Delta A \gamma cos\theta = 2\pi r \Delta l \gamma cos\theta$$

The work done to overcome the surface tension is equal to change in chemical potential.

$$n \cdot \Delta \mu = \frac{\Delta V}{V_m} RT \ln \frac{p_{sat}}{p_{cap}}$$

Explains why vapor pressure of the unconfined liquid is higher than in the capillary.