

Characterization of Catalysts and Surfaces with Nuclear Magnetic Resonance

René Verel

Laboratorium für Anorganische Chemie, ETH Zürich, HCI D117 verelr@ethz.ch

NMR Spectroscopy - An Introduction

Rene Verel verelr@ethz.ch HCI D117

Outline

General Principles of NMR Spectroscopy Interactions in NMR Spectroscopy Information content of NMR Interactions Characterization of (Molecular) Structure by NMR

Courses

PCIV: Magnetic ResonanceB.H. Meier, M.C. Ernst, G. JeschkeyearlyStructure Determination by NMRM. EbertyearlyAdvanced Magnetic ResonanceM.C. Ernstapprox. every third yearly

Books

M.H. Levitt: "Spin Dynamics: Basics of Nuclear Magnetic Resonance", John Wiley & Sons, 2001 J. Keeler: "Understanding NMR Spectroscopy", John Wiley & Sons, 2005.

M. Duer: "Introduction to solid-state NMR", Blackwell Science Ltd (Oxford), 2004. K. Schmidt-Rohr, H.W. Spiess: "Multidimensional Solid-State NMR and Polymers", Academic Press, 1994.

Principles of Spectroscopy

- The purpose is to obtain information about the molecular and/or atomic structure of matter
- The method is to use the interaction between EM radiation and matter
 - 1. Absorption/Emission of Energy by the system

$$\Delta E = E_2 - E_1 = hv$$

- 2. Interaction with Electric or Magnetic part of the radiation
- 3. Characteristic frequency of radiation for each type of spectroscopy

The Nuclear Spin

Nuclear Property

The inherent Angular Momentum of a Nucleus

Purely Quantum Mechanic

The magnitude of the Nuclear Spin is given by:

$$\boldsymbol{\rho} = |\mathbf{p}| = \frac{h}{2\pi} \sqrt{I(I+1)}$$

The Spin Quantum number, *I*, is a property of the nuclear species.

The Nuclear Magnetic Moment

The Nuclear Spin implies a Nuclear Magnetic Moment

Vector parallel with the Nuclear Spin

Proportional to the Spin with the gyromagnetic ratio, γ $\mu = \gamma \cdot \mathbf{p}$

The gyromagnetic ratio is a property of the nuclear species

Orientational Quantization States

In a (strong) external magnetic Field the component of the nuclear spin along that field is quantized

$$p_{Z} = (h/2\pi)I \qquad \mu_{Z} = \gamma(h/2\pi)I = (h/2\pi)(I-1) \qquad = \gamma(h/2\pi)(I-1) = (h/2\pi)(I-2) \qquad = \gamma(h/2\pi)(I-2) \dots = (h/2\pi)(-I) \qquad = \gamma(h/2\pi)(-I)$$

 $p_z = (h/2\pi)m$ $\mu_z = \gamma(h/2\pi)m$

where

OR

 $m \in [-l, -l+1, -l+2, ..., l]$

Ζ

B。

n

Spin Quantum Numbers

IA	_															,	VIIIA	Isotope	Spin Quan-	Magnetic Quan-
н	IIA											IIIA	IVA	VA	VIA	VIIA	He		tum Number	tum Number
Li	Be											В	С	Ν	0	F	Ne		1	[[]]
Na	Mg	IIIB	IVB	VB	VIB	VIIB	,	VIIIB	s	IB	IIB	AI	Si	Р	S	CI	Ar	¹² C, ¹⁸ O	0	-
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	¹ H, ¹³ C, ¹⁵ N,	1/2	-1/2, +1/2
Dh	Or.	V	 7r	Nb	Mo	То	. J	Dh	Dd	۸a	Cd	- In	Sn	Ch.	То			19 _E 31 _D		
RD	5	T	21			IC.	КU		Fu	Ay	Cu		311	30	Ie	1	ve	., .		
Cs	Ba	*La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn	² H, ¹⁴ N	1	-1, 0, +1
Fr	Ra	‡Ac	Rf	На	Sg	Ns	Hs	Mt										⁷ Li ²³ Na	3/2	-3/2, -1/2, 1/2, 3/2
37CL 87 Ru																				
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		47 05	F /0	
			T 1-	De		Nia	Du	A	0	DI	<u> </u>		F	N A -I		1		¹⁷ O, ²⁵ Mg,	5/2	-5/2, -3/2, -1/2
			In	Ра	U	Νр	Pu	Am	Cm	ВК	CT	ES	Fm	Ma	NO	Lr		²⁷ AI		1/2, 3/2, 5/2
I=1/2 I>1/2												⁴⁵ Sc, ⁵¹ V, ⁵⁹ Co	7/2	-7/2,-5/2,-3/2,-1/2, 1/2,3/2,5/2,7/2						

Zeeman Interaction Energies

A (nuclear) magnetic Moment interacts with a magnetic field with an energy

$$E_m = -m \cdot \gamma \cdot \frac{h}{2\pi} \cdot B_0$$

$$\Delta E = E_{m+1} - E_m = -\gamma \cdot \frac{h}{2\pi} \cdot B_0$$

Boltzmann Population

The populations of the states is given by a Boltzmann Distribution

$$\frac{N_{\alpha}}{N_{\beta}} = e^{\Delta E / (kT)} \approx 1 + \frac{\Delta E}{kT} \approx 1.000064$$

Signal Strength is proportional to the *difference* between Boltzmann Populations

NMR Signal Strength

The energy difference is usually given in frequency units

$$\mathbf{v}_0 = \frac{-\gamma}{2\pi} \cdot \mathbf{B}_0$$

Properties of some nucleotides of importance to NMR

Nucleotide	gyromagnetic ratio γ [10 ⁷ rad T ⁻¹ s ⁻¹]	Natural Abundance [%]	^v 0 [MHz] (<i>B</i> ₀ = 4.7 T)
¹ H	26.7519	99.985	200.0
¹³ C	6.7283	1.108	50.1
¹⁵ N	- 2.7126	0.370	20.2
¹⁹ F	25.1815	100.000	188.2
³¹ P	10.8394	100.000	81.0

More Signal

- Higher Magnetic Field (B_0)
- Higher gyromagnetic Ratio (γ)
- More Spins (e.g. higher nat. ab.)
- Lower Temperature

NMR Interactions

	Zeeman Interaction	10 ⁶ -10 ⁹ Hz
	Rf Field Under experimental control for Spin rotations	10 ⁰ -10 ⁵ Hz
	Chemical Shift Interaction Reports on local electronic environment	10 ² -10 ⁴ Hz
ucture	Magnetic Dipole-Dipole Interaction Reports on the distance between two coupled spins.	10 ² -10 ⁵ Hz
	Scalar J-Coupling Reports on chemical bonds between two spins.	10 ⁰ -10 ² Hz
	Quadrupole Coupling Reports on the electric field gradient around the nucleus.	10 ⁰ -10 ⁷ Hz
		Only for I > 1/2

Sample/Structure Dependent

NMR Interactions

Single Spin

Zeeman Interaction

Rf Field

Under experimental control for Spin rotations

Chemical Shift Interaction Reports on local electronic environment

Quadrupole Coupling

Reports on the electric field gradient around the nucleus.

Two Spin

- Magnetic Dipole-Dipole Interaction Reports on the distance between two coupled spins.
- Scalar J-Coupling Reports on chemical bonds between two spins.

Chemical Shift

The *exact* frequency of a nucleus depends on the *local* electronic structure

$$B_{\text{eff}} = B_0 - \sigma \cdot B_0$$

or
$$v_{\text{eff}} = \frac{\gamma}{2\pi} \cdot B_0 \cdot (1 - \sigma)$$

* The shielding constant σ is the sum of many effects (diamagentic-, paramagentic, ringcurrent-, intermolecular-effects) and is *rather* difficult to calculate accurately.

The chemical shift modifies the magnetic field on a part per million scale (ppm). (e.g. when v₀=400 MHz, then 1 ppm= 400 MHz x 10⁻⁶= 400 Hz)

Chemical Shift

- The Integral of a signal is proportional to the number of nuclei.
- Some effects distort value of an integral more or less severely.
- The chemical shift of a given nucleus depends on the (chemical) environment of that nucleus.
- Lots of empirical knowledge about the value of the chemical shift in a given environment.

Chemical Shift

- The chemical shift of a given nucleus depends on the (chemical) environment of that nucleus.
- Lots of empirical knowledge about the value of the chemical shift in a given environment.
- The chemical shift (in ppm) is a relative scale to a reference coumpound (usually TMS for ¹H and ¹³C).

Structure Determination

CH₃O.

CH₃O

Structure Determination

✤ Brucine (C₂₃H₂₆N₂O₄)

Structure Determination

✤ Brucine (C₂₃H₂₆N₂O₄)

Reaction Kinetics

The reactivity of acyl chlorides towards Na(OCP) Chem. Sci., 2016, 7, 6125-6131 DOI: 10.1039/C6SC01269H

Reaction Kinetics

The reactivity of acyl chlorides towards Na(OCP) Chem. Sci., 2016, 7, 6125-6131 DOI: 10.1039/C6SC01269H

Reaction Kinetics

Molecular Weight Determination

Diffusion (DOSY) 1H NMR as an Alternative Method for Molecular Weight Determination of Poly(ethylene furanoate) (PEF) Polyesters

J-G. Rosenboom et. al., Macromol. Chem. Phys., 2017, 218, 1600436 DOI: 10.1002/macp.201600436

Molecular Weight Determination

Diffusion (DOSY) 1H NMR as an Alternative Method for Molecular Weight Determination of Poly(ethylene furanoate) (PEF) Polyesters

J-G. Rosenboom et. al., Macromol. Chem. Phys., 2017, 218, 1600436 DOI: 10.1002/macp.201600436

Molecular Weight Determination

Diffusion (DOSY) 1H NMR as an Alternative Method for Molecular Weight Determination of Poly(ethylene furanoate) (PEF) Polyesters

J-G. Rosenboom et. al., Macromol. Chem. Phys., 2017, 218, 1600436 DOI: 10.1002/macp.201600436

Catalyst Stability

Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate

V. Paunovic, et. al., Angew. Chem. Int. Ed. 2016, 55, 15619. DOI: 10.1002/anie.201608165

Catalyst Stability

- Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate
 - V. Paunovic, et. al., Angew. Chem. Int. Ed. 2016, 55, 15619. DOI: 10.1002/anie.201608165

♦ V⁴⁺ and V³⁺ are paramagnetic. Strong shift of the (spatially close by) ³¹P resonances through the Hyperfine interaction.

Catalyst adsorbed Species

CO₂-to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal–Support Interface

K. Larmier, et. al., *Angew. Chem. Int. Ed.* 2017, **56**, 2318. DOI: 10.1002/anie.201610166

Catalyst adsorbed Species

CO₂-to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal–Support Interface

K. Larmier, et. al., *Angew. Chem. Int. Ed.* 2017, **56**, 2318. DOI: 10.1002/anie.201610166

Figure S18. Liquid-state ¹H NMR after washing Cu/ZrO₂ with D₂O after the two steps hydrogenation of ¹³CO₂. A doublet of pentet centered at 3.24 ppm can be observed, related to the ¹H-¹³C and ¹H-²D J-couplings. This is consistent with a ¹³CHD₂ group. This signal merges into a single peak at 3.24 ppm when a ¹³C decoupling pulse is applied. The other peaks are impurities introduced during the process. They do not change upon ¹³C decoupling.

Figure S19. Liquid-state ²D NMR after washing Cu/ZrO₂ with H₂O after the two steps hydrogenation of ¹³CO₂. A doublet centered at 3.19 ppm can be observed, related to the ²D- 13 C J-coupling. No fine structure can be distinguished (no ¹H decoupling was applied).

No Brownian Motion but "static" molecules

The Chemical Shift is dependent on the orientation wrt the Magnetic Field (Rank 2 Tensor)

Orientation dependency of the signal

***** Three Euler Angles (α, β, γ) needed to orient a "molecule".

Not all orientations are equally prevalent in a uniform and random powder. (only one polar but many equatorial)

A tensor is characterized by its three principal components (δ₁₁,δ₂₂,δ₃₃)
 In general all three are different and easy to determine from a powder spectrum
 The principal components are connected to the molecular frame

René Verel - ETH

Alternative parameterizations for the tensor characterization are common

Tensor Characterization:

$$\delta_{11}, \delta_{22}, \delta_{33}$$

$$\delta_{iso} = \frac{1}{3} (\delta_{11} + \delta_{22} + \delta_{33})$$

When two (or more) principal values are equal, it tells us about the local symmetry around the nucleus

202 MHz ³¹P NMR spectrum on a static sample showing the axial tensor, $\sigma_{11} = \sigma_{22} = -24.0$ and $\sigma_{33} = -43.0$ ppm

View of trop₃P along the threefold symmetry axis

Symmetry *might* be an effect of dynamic averaging.
 E.g. Rotor Phases lead to averaging of tensor elements

- 1. Hexamethylbenzene
- 2. Benzene
- 3. Permetylferrocene

¹³C NMR of uniaxial aromatic rotors

Т	δ_{11}	δ ₂₂	δ ₃₃	δ_{iso}	Ω	к					
Hexamethylbenzene											
87	232	154	24	137	208	0.25					
296	189	189	21	133	168	1.00					
Benzene											
	187	187	13	129	174	1.00					
Permethylferrocene											
93	127	86	23	79	104	0.20					
289	101	101	34	79	67	1.00					

Tris-Ethene Complex of Silver Cations

¹³C NMR of Ethene and Complexes

#	δ ₁₁	δ ₂₂	δ ₃₃	δ_{iso}	Ω	к
1	234	121	24	126	210	-0.08
2	191	72	72	112	119	-1.00
3	190	135	10	112	180	0.39
4	134	65	-11	63	145	0.05

chemical shifts of principle tensor components in ppm relative to TMS. (1) Free Ethene, (2) $[Ag(\eta^2-C_2H_4)_3][AI(OR)_4]$, (3) $[Ag(\eta^2-C_2H_4)][AI(OC(CH_3)(CF_3)_2)_4]$, (4) Zeise's Salt

Powder Lineshapes

Information vs. Resolution

Magic Angle Spinning (MAS)

Chemical Shift in solids - MAS

Structural Information from ²⁹Si Chemical Shifts

²⁹Si MAS NMR of Potassium Silicate Glasses

Detection and Quantification of Q² sites in three membered rings

NMR Interactions - Chemical Shift

✤Effect of ²⁷Al neighbours on ²⁹Si Chemical Shifts

René Verel - ETH

²⁹Si MAS NMR of Treated Zeolites

²⁹Si MAS NMR of Treated Zeolites

Dipole Mediated Transfer: Cross Polarization

Transfer of Polarization from Spin A to Spin B through the dipole coupling

Dipole Interaction is strongly dependent on the distance between two spins.

Dipole Mediated Transfer: Cross Polarization

Distance based proximity filter using Cross Polarization

For I>1/2, nuclei have a non-spherical charge distribution in the nucleus and this gives rise to a quadrupole moment

The Quadrupole moment interacts with the electric field gradient

The Quadrupole Coupling Constant, $C_Q = \frac{eQV_{zz}}{2I(2I-1)h}$ depends on the system

Going through the mathematics and applying the secular approximation we get a frequency caused by the quarupole interaction

$$\omega_{\mathsf{Q}} = \frac{3\mathsf{e}\mathsf{Q}\mathsf{V}_{zz}}{4\mathsf{I}(2\mathsf{I}-1)\mathsf{h}^2} (3\cos^2\theta - 1 + \eta_{\mathsf{Q}}\sin^2\theta\cos 2\gamma)$$

Often the Quadrupolar Interaction is big and the first order approximation is not good enough
 First Order Term

$$\omega_{Q}^{(1)} = \frac{3eQV_{zz}}{4l(2l-1)h^{2}} (3\cos^{2}\theta - 1 + \eta_{Q}\sin^{2}\theta\cos^{2}\gamma)$$

Second Order Term

$$\omega_{Q}^{(2)} \propto \frac{\left(\frac{3eQV_{zz}}{4I(2I-1)h}\right)^{2}}{\omega_{0}} (A + Bd_{00}^{(2)}(\theta) + Cd_{00}^{(4)}(\theta))$$
$$d_{00}^{(2)}(\theta) \propto 3\cos^{2}\theta - 1$$
$$d_{00}^{(4)}(\theta) \propto 35\cos^{4}\theta - 30\cos^{2}\theta + 3$$

The Second Order Term:

Scales with the inverse of the Larmor Frequency (and therefore with B₀) Contains an orientation independent term (A) Contains a second rank term (B) Contains a fourth rank term (C)

Titanocene dichloride

Static powder QCPMG experiment at $B_0=11.7 \text{ T} (^{1}\text{H} 500 \text{ MHz})$

 C_Q = 22.18 (+/- 0.03) MHz η_Q = 0.612 (+/- 0.003)

Magic Angle Spinning of Quadrupoles with second order effects

Second order Quadrupole and Magnetic Field Strength

Quadrupole Interaction: High Resolution

Is it possible to get high resolution Spectra of Quadrupoles?

Well, yes:

- 1. Go to very high field
- 2. Rotate around two axes simultanously (DOR)
- 3. Rotate around two axes consecutively (DAS)
- 4. Use the different but related 2nd order shifts of the ST and CT (MQMAS and STMAS)

Quadrupole Interaction: MQMAS

Correlation between Triple Quantum and Single Quantum Coherence in a 2D experiment

Quadrupole Interaction: MQMAS

Direct evidence of the effect of synthesis conditions on aluminum siting in zeolite ferrierite: A 27AI MQ MAS NMR study

Ana B. Pinar et al., *Micro. Meso. Mater.*, 2014, **193**, 111-114. DOI: 10.1016/j.micromeso.2014.03.016

Quadrupole Interaction: MQMAS

2^{7} AI MQMAS on differently prepared Sr/AI mixed oxides with Sr/AI = 1.25.

No Calcination

September 25, 2018

precursor