# **UV-Vis spectroscopy**

Dr. Davide Ferri Paul Scherrer Institut 2056 310 27 81 davide.ferri@psi.ch

## The electromagnetic spectrum



source: Andor.com

## **UV-vis spectroscopy**

- Use of ultraviolet and visible radiation
- Electron excitation to excited electronic level (electronic transitions)
- Identifies functional groups (-(C=C)<sub>n</sub>-, -C=O, -C=N, etc.)
- Access to molecular structure and oxidation state

#### pros

- economic
- non-invasive (fiber optics!)
- versatile (e.g. solid, liquid, gas)
- extremely sensitive (concentration)
- fast acquisition (but S/N!)



#### cons

- no atomic resolution
- broad signals (spectral resolution, multiple overlapping components)

## **Electronic transitions**



$$E=h_V$$

 $\lambda = c/v$ 

high e<sup>-</sup> jump  $\rightarrow$  high Ehigh  $E \rightarrow$  high  $\nu$ 

high  $\nu \rightarrow \text{low } \lambda$ 

#### **Electronic transitions**



 $\sigma \rightarrow \sigma^*$ high *E*, low  $\lambda$  (<200 nm)

 $n \rightarrow \sigma^*$  150-250 nm, weak

n→π\* **200-700 nm**, weak

 $\pi \rightarrow \pi^*$  **200-700 nm**, intense

Condition to absorb light (200-800 nm):

 $\pi$  and/or *n* orbitals

**CHROMOPHORE** 



#### Conjugation effect





#### Complementary colours



If a colour is absorbed by white light, what the eye detects by mixing all other wavelengths is its complementary colour

UV-vis spectra of transition metal complexes originate from

Electronic *d*-*d* transitions



**.**..



#### ■ *d-d* transitions: Cu(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>



- Yellow light is absorbed and the Cu<sup>2+</sup> solution is coloured in blue (ca. 800 nm)
- **The greater**  $\Delta$ , the greater the *E* needed to promote the e<sup>-</sup>, and the shorter  $\lambda$
- $\Delta$  depends on the nature of ligand,  $\Delta_{NH3} > \Delta_{H2O}$

TM(H<sub>2</sub>O)<sub>6</sub><sup>n+</sup>



*d-d* transitions:  $\varepsilon_{max} = 1 - 100 \text{ Lmol}^{-1}\text{cm}^{-1}$ , **weak** (selection rule: forbidden transition)

*d***-***d* **transitions:** factors governing magnitude of Δ

#### Oxidation state of metal ion

Δ increases with increasing oxidation state
 Δ

#### Nature of metal ion

•  $\Delta$  increases in the order 3d < 4d < 5d

#### Number and geometry of ligands

#### Nature of ligands

spectrochemical series

 $|F < Br < S^{2-} < SCN^{-} < C|^{-} < NO_{3}^{-} < N_{3}^{-} < F^{-} < OH^{-} < C_{2}O_{4}^{-2-} < H_{2}O < NCS^{-} < CH_{3}CN < py < NH_{3} < en < bipy < phen < NO_{2}^{-} < PPh_{3} < CN^{-} < CO$ 

UV-vis spectra of transition metal complexes originate from

Electronic d-d transitions



#### Charge transfer

#### Charge transfer complex

- no selection rules  $\rightarrow$  intense colours ( $\epsilon$ = 50'000 Lmol<sup>-1</sup>cm<sup>-1</sup>, strong)
- Association of 2 or more molecules in which a fraction of electronic charge is transferred between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for the molecular complex
- Electron donor: source molecule
- Electron acceptor: receiving species
- Ligand field theory (LFT), based on MO
  - Metal-to-ligand transfer (MLCT)
  - Ligand-to-metal transfer (LMCT)



#### Ligand field theory (LFT)

- LMCT
  - ligand with high energy lone pair
  - or, metal with low lying empty orbitals
  - high oxidation state (also d<sup>0</sup>)
  - M-L strengthened

#### MLCT

- Iigands with low lying  $\pi^*$  orbitals (CO, CN<sup>-</sup>, SCN<sup>-</sup>)
- Iow oxidation state (high energy d orbitals)
- M-L strengthened, π bond of L weakened



CO adsorption on precious metals

## **Band gap**



## **Band gap**



## **Metal colloids**

#### Analysis of metals

- Localized plasmon resonance
  - When

wavelength larger than metal particle

What

collective excitations of conduction electrons (plasmons)

- limit: ca. 20-30 nm
- $\lambda$  position depends on nature of metal





#### Instrumentation

#### Dispersive instruments

Measurement geometry:

- transmission
- diffuse reflectance



double beam spectrometer



## In situ instrumentation



X

- 20% of light is collected
   gas flows, pressure, vacuum
- Iong meas. time
  - spectral collection ( $\lambda$  after  $\lambda$ )
- limited high temperature (ca. 600°C)

- no NIR (no optical fiber > 1100 nm)

- long term reproducibility (single beam)

 $\rightarrow$  different parts of spectrum do not represent same reaction time!!!

Weckhuysen, Chem. Commun. (2002) 97

## In situ instrumentation



#### Determination of oxidation state: 0.1 wt% Cr<sup>n+</sup>/Al<sub>2</sub>O<sub>3</sub>

| Compound                                                        | Coordination geometry<br>and oxidation state | Absorption bands (nm) <sup>a</sup>                     | Color      |
|-----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|------------|
| K <sub>2</sub> CrO <sub>4</sub> (solution)                      | $T_d$ , $Cr^{6+}$                            | 440 (sh, vw), 370 (s), 275 (s)                         | Yellow     |
| K <sub>2</sub> CrO <sub>4</sub> (solid)                         | $T_d$ , $Cr^{6+}$                            | 459 (s), 340 (s), 265 (s), 229 (s)                     | Yellow     |
| K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> (solution)        | $T_d$ , $Cr^{6+}$                            | 440 (w), 352 (s), 255 (s)                              | Orange     |
| K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> (solid)           | $T_d$ , $Cr^{6+}$                            | 526 (s, br), 332 (s), 262 (s), 229 (s)                 | Orange-red |
| Cr(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O (solution) | $O_h$ , $Cr^{3+}$                            | 575 (s), 410 (s), 303 (s)                              | Green      |
| Cr(NO <sub>3</sub> ) <sub>3</sub> .9H <sub>2</sub> O (solid)    | Dist O <sub>h</sub> , Cr <sup>3+</sup>       | 575 (s), 410 (s), 304 (s), 263 (sh)                    | Green      |
| $Cr(H_2O)_6^{2+}$ (solution)                                    | $O_h, Cr^{2+}$                               | 769 (s)                                                | Blue       |
| K <sub>2</sub> CrCl <sub>4</sub> (solid)                        | Distorted $T_d$ , $Cr^{2+}$                  | 1430 (s)                                               | Blue       |
| Cr <sub>2</sub> O <sub>3</sub> (solid)                          | Distorted O <sub>h</sub> , Cr <sup>3+</sup>  | 714 (sh), 645 (sh), 595 (s), 461 (s), 351 (s), 274 (s) | Green      |

<sup>a</sup>s: strong; m: medium; w: weak; vw: very weak; sh: shoulder; br: broad.



Weckhuysen et al., Catal. Today 49 (1999) 441

#### Determination of oxidation state: 0.1 wt% Cr<sup>n+</sup>/Al<sub>2</sub>O<sub>3</sub>



Weckhuysen et al., Catal. Today 49 (1999) 441



0.2 wt% Cr/SA, 500°C in 18 vol% n-butane in N<sub>2</sub>

| Table 1                                                                        |
|--------------------------------------------------------------------------------|
| UV-Vis DRS edge energies (V <sup>5+</sup> LMCT band) during methanol oxidation |
| at 230 °C.                                                                     |

| Catalyst                                           | $E_g$ (eV)                                    |                                                    | $\Delta E_{\rm g} \ ({\rm eV})^{\rm a}$            |  |
|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------|--|
|                                                    | O <sub>2</sub> /He<br>at 230 °C               | CH <sub>3</sub> OH/O <sub>2</sub> /He<br>at 230 °C | CH <sub>3</sub> OH/O <sub>2</sub> /He<br>at 230 °C |  |
| 1% V2O5/SiO2                                       | 3.74                                          | 4.31                                               | 0.57                                               |  |
| 5% V2O5/Al2O3                                      | 3.61                                          | 3.65                                               | 0.04                                               |  |
| 4% V <sub>2</sub> O <sub>5</sub> /ZrO <sub>2</sub> | 3.14                                          | 3.29                                               | 0.15                                               |  |
| $^{a}\Delta E_{g} = E_{g}(\mathbf{rxn}) -$         | – <i>E</i> <sub>g</sub> (O <sub>2</sub> /He). |                                                    |                                                    |  |

Weckhuysen et al., *J. Chem. Soc., Faraday Trans.*, **94** (1998) 2011 Burcham et al., *Top. Catal.*, **11/12** (2000) 85



■ UV-vis of V<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub>



UV-vis probe in a pilot-scale reactor: propane dehydrogenation



Weckhuysen et al., Chem. Commun. 49 (2013) 1518

UV-vis probe in a pilot-scale reactor





Coke formation fast on top section of reactor

Coke is combusted fast in top section of reactor

Weckhuysen et al., Chem. Commun. 49 (2013) 1518