Davide Ferri :: Paul Scherrer Institut

Infrared spectroscopy

Molecular aspects of catalysts and surfaces :: ETHZ

The electromagnetic spectrum

source: Andor.com

Importance of IR spectroscopy in catalysis

Number of publications containing in situ, catalysis, and respective method Source: ISI Web of Knowledge (Sept. 2008)

- pros ٠
- economic
- non-invasive
- versatile (e.g. solid, liquid, gas, interfaces)
- very sensitive (concentration)
- fast acquisition (down to ns!)
- no atomic resolution

Infrared spectroscopy

Why IR spectroscopy

- 'quality control': identification of compounds according to their fingerprint spectrum
 - also inorganic materials, e.g. metal oxides
 - ex situ, but also after degassing in cell (vacuum)
- Identification of surface sites Detailed characterization of surface
 - use of molecular probes
 - in situ experiments, controlled dosage of probe
- Identification of surface sites under reaction conditions
 - in situ/operando experiments to obtain molecular reaction mechanism, exposure to reaction conditions

Vibrational spectroscopy

- Interaction with matter
 - energy causes vibration of molecular bonds
 - energy is absorbed in correspondence of vibrational modes
 - an absorption band is generated

Vibrations

Vibrations

• Why do vibrations appear in the IR spectrum?

selection rule $\left(\frac{\partial \mu}{\partial O}\right) \neq 0$

molecular dipole moment μ must change due to vibration or rotation along its coordinate (so called, normal mode or normal coordinate, **Q**)

H_2O

N=3, non-linear, 3 fundamental modes

Gas and liquid phase H₂O

Vibrations

- Harmonic oscillator
 - The stretching frequency of a bond can be approximated by Hooke's law. Two atoms and the connecting bond are treated as a harmonic oscillator composed of two masses (atoms) joined by a spring.

Vibrations

The spectrometer

Dispersive vs. FT

FT-IR spectrometer has significant advantages over dispersive one

Multiplex (Fellgett) advantage

All source wavelengths are measured simultaneously

Throughput (Jacquinot) advantage

For the same resolution, the energy throughput in an interferometer can be higher \rightarrow the same S/N as a dispersive-IR in a much shorter time

Precision (Connes) advantage

The wavenumber scale of an interferometer is derived from a HeNe laser that acts as an internal reference for each scan

The IR spectrum

The IR spectrum

The IR spectrum

The background

DRIFT spectra of V-W-TiO₂ catalysts after adsorption of NH₃
 – aspect of spectra changes with background

- The spectrum contains information on – terminal O-H bonds | 3800-3600 cm⁻¹
 - bridge hydroxyls Brønsted acidity
 - H-bonded hydroxyls
 - M-O and M=O bonds, bulk and surface
 fundamental (n) and overtone (2×n) modes
 - other groups, e.g. C-H, carbonates, carboxylates...

Busca, in Metal Oxide Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) 95 Uslamin, Zeolite-based catalysis for sustainable aromatics production, Technische Universiteit Eindhoven (2019)

Busca, in Metal Oxide Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) 95

• Also other disciplines...

Moros et al., Anal. Bioanal. Chem. 385 (2006) 708

Adsorbates by FTIR

Morterra, Catal. Today 27 (1996) 497

Adsorbates by FTIR

Techniques, sample form, environment

• Lambert-Beer law

T: transmittance, **A**: absorbance, ε: molar absorption (extinction) coefficient, **c**: concentration, **d**: path length

Solid samples

Large solid particles generally absorb too much IR light, therefore particles should be small and also special preparations are often necessary.

Most popular sample preparation methods (for mid-IR):

Alkali halide disk method

- Typically solid samples are diluted in KBr and ground
- Then pressurized to form a disk

Mull method

- Most common one is Nujol (liquid paraffin)
- Samples are ground and suspended in one or two drops of a mulling agent
- Followed by further grinding until a smooth paste is obtained

Film method

By solvent casting or melt casting

NOT FOR IN SITU/OPERANDO EXPERIMENTS

- Sample preparation
 - self supporting wafers (few mg)
- · Controlled exp. conditions
 - vacuum and controlled dosages
- Baseline
 - slope increases at high frequency (beam scattering increases with increasing frequency)
 - slope depends on particle size (very steep for powders with large particles, ca. 1 µm)
 - T @ 4000 cm⁻¹ is ca. 0 for large particle size oxides

Busca, in Metal Oxide Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) 95

• Quantification Molar absorption coefficient ϵ

- ϵ , integrated molar absorption coefficient
- *l*, disc thickness (optical path)
- n, amount of adsorbed molecule
- S, disc area

Diffuse reflection

Chalmers and Dent, Industrial analysis with vibrational spectroscopy, 1997, 153

Diffuse reflection

- Qualitative analysis
 - very sensitive to surface species due to its diffuse reflective nature
 - the detected light is reflected multiple times at powder surfaces
- Quantitative analysis
 - can be very complicated
 - the spectra are largely influenced by various experimental parameters, e.g. particles shape and size, refractive index of particles, absorption characteristics of particles, and porosity of the powder bed
 - a popular method is to use the Kubelka-Munk (K-M) function to transform reflectance to a sort of absorbance (K-M) unit
 - solid (approximated) theory
 - applicability and accuracy for highly absorbing and non-absorbing samples is questionable

Kubelka-Munk function

• Infinitely thick medium

K/S = $(1-R_{\infty})^2/2R_{\infty}$ K, absorption coeff. S, scattering coeff.

Adsorbate on infinitely thick medium

 $(K+\epsilon C)/S = (1-R)^2/2R$

 $F(R) = J(1/R-R_{\infty}) = 2\varepsilon C/S$

Kubelka-Munk function

optical length (d in L-B Law) much larger than in transmission \rightarrow more sensitivity

Matyshak et al., Catal. Today 25 (1995) 1

Diffuse reflection

Sirita et al., Anal. Chem. 79 (2007) 3912

Diffuse reflection vs Transmission

- Advantages of diffuse reflection
 - easier sampling
 - applicability to powders that scatter too much in transmission, assuming the surface area is sufficiently high to detect surface
 - vibrations with a sufficiently high signal-to-noise ratio
 - slightly lower sensitivity to bulk conduction phenomena, because of a higher surface-to-bulk sensitivity ratio
 - ideally suited for in situ/operando studies
- Disadvantages of diffuse reflection
 - less obvious optical setup
 - work in flow rather than in vacuum
 - more difficult sample activation (i.e. water removal from highly porous materials)

Diffuse reflection vs Transmission

- Comparison between techniques with different sensitivity (bulk/surface) should be careful
- DRIFTS more sensitive than TIRS
- Band assignment depends on surface sensitivity of the technique

Rödel et al., PCCP 10 (2008) 6190

Diffuse reflection

• Typical mirror unit, sample holder and in situ cell

IRE, internal reflection element; high refractive index material

• Stable films needed for in situ investigations

Materials for internal reflection elements

Material	Useful range / cm ⁻¹	n	$d_{ m p}$	Properties
ZnSe	20000-700	2.43	long	soluble in strong acid; usable up to ca. 300°C
Ge	5000-900	4.02	short	good chemical resistance; hard and brittle; becomes opaque at 250°C
Si	9400-1500; 350-FIR	3.42	short	excellent chemical resistance; hard; usable up to ca. 300°C
KRS-5 (Thallium bromoiodide)	14000-330	2.45	long	toxic; slightly soluble in water and soluble in base; usable up to ca. 200°C

- Solid (powders, crystals, foils, plates, seeds...) and liquid samples
- Ex situ
 - structure assignment
 - identification
 - quality control

manual mirrors • Sample compartment 0 00 员 cell holder liquid out to/from thermostat liquid in

ethyl cyanoacetate

ethyl α -cyanocinnamate

- γ-aminopropyl modified SiO₂ (APS-SiO₂)
 1.5 mmol/g NH₂
 202 m²/g
 deposited on ZnSe from
 CCl₄ slurry
 toluene/PE slurry prep. 80°C

 - dried in *vacuum*
- toluene, 60°C

toluene, 60°C, 20 mM

toluene, 60°C, 20 mM

- Consecutive dosage of reactants
- Time dependence

Wirz et al., Langmuir 22 (2006) 3698

toluene, 60°C, 20 mM

Wirz et al., Langmuir 22 (2006) 3698

metal donates electrons back to the anti-bonding π orbital of CO

- Low CO coverage: v_{CO} depends on the geometry of adsorption site (face order: terrace – corner – edge) – BD is strong
- High CO coverage: v_{CO} depends on dipoledipole interactions – BD is weak

- Model studies Surface science
 - stainless steel UHV setup with flanges, pumps, pressure gauges, etc.
 - 10⁻¹⁰ to 10⁻¹¹ mbar base pressure
 - tools and components for preparation, characterization, sample manipulation, resistive

heating

MS

XPS

etecto

FTIR

manipulator

LEED

Szanyi et al., J. Vac. Sci. Technol. A 11 (1993) 1969

• Powders

- the larger the particles, the less CO adsorbs (intensity)
- the larger the particles, the less the available defects (nr. of signals)

How does the CO stretching frequency shift when a Pt surface is covered with hydrogen or oxygen?

Lear et al., J. Chem. Phys. 123 82005) 174706

Y. Soma-Noto et al., J. Catal. 32 (1974) 315

The surface selection rule

Fig. 1. (a) The lines of force and the electrical "image" resulting from a positive charge over the surface of a conductor (the metal surface is the upper line above the hatched area). (b) The changes during the vibration of a dipole parallel to the surface of the metal; the "image" dipole change is in the opposite direction to the original. (c) The changes during the vibration of a dipole perpendicular to the surface; the "image" dipole change is in the same direction as the original.

Pearce and Sheppard, Surf. Sci. 59 (1976) 205

The surface selection rule

Carboxylate groups

Greenler et al. Surf. Sci. 118 (1982) 415

Reflection-absorption (IRRAS)

Haq et al., J. Phys. Chem. 100 (1996) 16957; Preuss et al., Phys. Rev. B 73 (2006) 155413

Reflection-absorption (IRRAS)

Haq et al., J. Phys. Chem. 100 (1996) 16957

Reflection-absorption (IRRAS)

• Adsorption of ethylene

Vibrational assignments of ethylidyne

Mode	$Pt(111) (cm^{-1})$	Co ₃ (CO) ₉ CCH ₃	
	FT-RAIRS [this work]	EELS	(cm ⁻¹) [8]
		[5]	
$\overline{\nu_{as}(CH_3)}$	Not allowed	2950 (impact)	2924
$\nu_{\rm s}(\rm CH_3)$	2884	2895	2882
$\delta_{as}(CH_3)$	Not allowed	1420 (impact)	1432
$\delta_{s}(CH_{3})$	1341	1350	1359
VC-C	1124	1130	1161
$\rho(CH_3)$	Not allowed	980 (impact)	1006
$\nu_{\rm C-Pt}$	Below detector cut off	435	~ 600

Chesters et al., Surf. Sci. 187 (1987) L639

Phase-modulation IRRAS (PM-IRRAS)

- Generation of 2 polarizations (photoelastic modulator)
 - excellent gas-phase compensation
 - non-UHV experiments pssible
 - highly sensitive, time-resolved studies possible

Acid sites

- Quality and quantity of acid sites Criteria
 - unequivocal analysis of intermolecular interaction
 - selective interaction with acidic or basic sites
 - sufficient accuracy in frequency shift determination
 - high (and available) extinction coefficients of adsorbed probe
 - appropriate acid (base) strength to induce interaction
 - high specificity (allow discrimination between sites with different strength) Use different molecules !
 - small molecular size Use different molecules !
 - pyridine (smaller channels) and picoline (larger channels or surface only)
 - low reactivity under exp. conditions
- Examples
- acidity of zeolites with different channel sizes
- acid sites located in all channels

Probe molecules

• Adsorption of NH₃

Probe molecules

• Adsorption of NH₃

• Adsorption of NH₃ $-V_2O_5/WO_3$ -TiO₂

 Probe molecules for the study of localization of active sites in microporous materials

Liu et al., J. Phys. Chem. C 121 (2017) 23520