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Porous solids in catalysis

= Supported catalysts
= e.g. noble metals, transition metal sulfides

= Porous support
= provides surface for dispersing the catalyst
= provides mechanical stability
= has an influence on diffusion of reactants and products
= has an influence on adsorption of reactants and products
« determines reactor volume

= Porous catalysts
m Zeolites Optimising porosity is often the
= Oxydes key to improving catalytic
performance.
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Types of porosity

m Porous cristalline structures
= Zeolites,
= Metal Organic Frameworks

= Ordered or disordered stacking of small particles
generates an interparticles porosity
= oxides (silica, alumina, etc.)
= activated carbon
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Characterisation of porosity

= Physisorption (N,, Ar, Kr)
= surface area
= pore volume
m pore size distribution

= Hg intrusion
= pore volume
= pore size distribution
= surface area

= |Imaging methods
= Transmission Electron Microscopy
= Secondary Electron Microscopy
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Terminology

= Adsorption is a surface phenomenon.

= Adsorbent = solid that provides a surface for
adsorption.

= Adsorbate = molecule adsorbed on the surface.
= Adsorptive = molecule susceptible of being adsorbed.

= Physisorption: no formation of chemical bonds, no
transfer of electron density

= Chemisorption: formation of a chemical bond
(exchange of electrons)
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Forces involved in physisorption
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= van der Waals forces
= ambplified bv multiole interactions with atoms or pore wall (i)
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Forces involved in physisorption
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m Electrostatic forces

= Any non-symmetric charge distribution in the adsorbent
generates an electric field

= adsorbates with an electric moment (dipole, quadrupole)
interact with the electric field

= undesirable in analysis of porosity/pores size because
surface chemistry/chemical composition enter into the game

= N, has a small quadrupole moment - use of Ar, Kr is
preferable for precise micropore size analysis
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Terminology

= |UPAC distinguishes 3 catagories of pore sizes
= Micropores <2nm
= Mesopores 2-50 nm
= Macropores > 50 nm
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Adsorbed amount

Adsorption in micropores

= Due to the strong interactions with the pore wall,
micropores are filled at very low p/p, values

Saturationzone

Initial slope depends on adsorbent-
adsorbate interactions

a5

Pressure

Transition zone
additional adsorbate-
adsorbate interactions
i i |




monolayer multilayer onset of pore filled by

adsorption adsorption capillary capillary
condensation condensation iE\
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Adsorption in macropores

= Opposite pore wall is too far away to influence
adsorption and provoke capillary condensation

= First monolayer, then multilayer adsorption, like on an
external surface

= Macropore volume not measurable via
physisorption.
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Questions

= Capillary condensation is the important adsorption
mechanism in
= Micropores
= Mesopores
= Macropores

= |n adsorption experiments aiming at characterizing
porosity we want to look at
= Electrostatic adsorption forces
= Covalent bonding to the surface
m Van de Waals forces
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How to measure an adsorption isotherm?

= Volumetric method

Réservoir etalon : V, Réservoir etalon : V,
Etat ir!itial.: Priie Trine Etat in'itial.: Prio T
Etat final : Pr,., Try,. Etat final : Pry,, Try,

Bilans Matiéres : He et N,

i f
AN _ PrHe _ PrHe Vres
He — i f
TrHe TrHe R
AV
_ f i cel
Température AnHe - (Pc - Pc )RT
ambiante m
Cellule mesure : V_
1 Pf V
AN _ N2 _ " rN2 res
Nl Tl )R
Température N2 N2
N2 liquide AV
_ f i) Veel ads
77K Any, = (P —P/)=o 4 ni
RT,,
Etat initial : Pc,,, Tc,, Etat initial : Pc,, Tc,,
Etat final : PCiier TChue Etat final : Pc,,,, TCq,
Masse d'adsorbant : M, u
Réservoir d'azote o . s I
liquide & 77 K Quantite adsorbée : Qads=n,**/M_, —
v/ Energie

Environnement
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Material balance

= Reservoir: 1 Sample cell : 2

= without adsorption (He), sample cell initially under

vacuum

PiitVs _ PrinaVs N P final V> ‘ Vo _ Vi Pinit = Prinal
RT, RT, RT, T T Pria

= with adsorption (N2) determined with He
V V
quantity initially N, = Yy , BV N,
presentinthe — RT, RT,

reservoir
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Experimental difficulties

= Precise measurement of pressure required
= difficult at low pressure
» difficult to measure a micropore distribution

= Isotherm !l

= T,in principle 77 K (temperature of liquid N, )

= part of the cell is not plunged into liquid N,, but is at ambient
temperature

- temperature gradient must be the same as during the initial
calibration of the volume with He

= pay attention to the level of liquid N,




Example zeolite NaXxX
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shaping with a
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= Micropores are entirely filled at very low pressure.

= |sotherm is totally flat once micropores are filled.
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m saturation zone
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Examples - ZnO

Quantité adsorbée (cm3 STP/g)
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multilayer adsorption on the
surface of the particles

capillary condensation

\

In the mesopores

\

0.2

0.4

0.6 0.8
p/p0

® NO micropores
= mesopores generated by stacking of inidividual

particles
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Comparison of two ZnO samplesv.
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Quantité adsorbée (cm3 STP/g)
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p/p0

0.6

0.8 1

—— 65811
—=— 70299

m Surface : 65811 > 70299
m Pore size : 70299 > 65811



Example — Al,O,

300 ~

capillary condensation

In mesopores
\

250 -

200 A

150 -

100 ~

\ multilayer adsorption
on surface of particles

Quantité adsorbée (cm3 STP/g)

ul
o
|

o

p/p0

® NO micropores
= high surface area, broad pore size distribution iE\
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Comparison Al,O,

500 1~
450 A
400 A
350
300 -+
250 A
200 ~

Quantité adsorbée (cm3 STP/g)

-=— 79999
—— 61399
—— 47148

0 0.2 0.4
p/p0

m Surface : 79999 > 61399 > 47148
m Pore size : 47148 > 61399 > 79999
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Quantitative treatment of N,

Q
Q
\

Isotherms

= Pore volume: Vmicro’ Vmeso’ Vtotal
= t-plot

= Surface area
= BET (Brunauer-Emerett-Teller)
= Langmuir

= Pore size distribution

= Micropores
- Horwath-Kawazoe, Saito-Foley
= Mesopores
« BJH (Brunauer-Joyner-Halenda)
- DFT (Density Functional Theory)




Determination of the surface area
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= BET (Brunauer Emmet Teller): multilayer adsorption
= first layer: adsorption on the surface
= all the other layers are considered like a condensed liquid

o0
Q0 COO0 oo
OO0 o000 O Q000

condensation

K

surface

N, = number of surface adsorption sites (monolayer)
N,q4s = total number of adsorbed molecules




BET equation -
P __ 1 C 1( Pj
= BET equation Vass(Po=P)  VuC Vi CLPs
_ Ksurface
B Kcondensation Recommended
range of p/p,:
= V), = monolayer volume 0 059_ 0 35prﬁgx_

= V_4 = adsorbed volume A
= Plot p/V,¢s(Po-P).VS. PIPg 2
= Calculation of surface area: =
S PNT. = (C-1)/(V,,.C)

= N,, :Avogadro number | T _.
= a:area of N, molecule (16,2 A2) |-~

0.0. = 1/(V,,.C)
0,1 0,2 0,3 0,4 P/F’>
Seer = a. PV N, Sger (M*/g) =4.355-V, (cm’STP/g) 3
R-273K 1
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Exemple ZnO

65811

136

70299

237

Isothermes BET plot
4.355 slope
1907 SgET = ) Coer =———
S 160 - 0055 slope + int ercept int ercept
& 140 0.045 -
0
© 10 0.04 y = 0.1196x + 0.0005
o < 0.035
g 1007 —— 65811 5 003
5 80 - = 70299 5 ~ 65811
% E 0.025 -=- 70299
o 607 <002
= (0]
s 401 8 0.015
>
© 201 0.01 y = 0.0594x + 0.0003
0 . . . . 0.005 -
0 0.2 0.4 0.6 0.8 1 0 | | | | |
p/p0 0 0.1 0.2 0.3 0.4 0.5
prel = p/p0
°19)
Sger (M?/g Chrer
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Example NaX

= The multilayer adsorption
model does not apply well to A\ - 00055 35.05
microporous solids when the o 30
pores are filled.

= Choose a lower pressure
range for microporous solids:

0.0007 -

0.0004 -

0.0003 -

prel / Vads(1-prel)

0.0002 -

= p/p,=0.05-0.10 0.0002 1
= C constant may be negative. 00000 00200  00M0 0060  00MO0 01000 01200
Does not make physical sense prel= e
= lower the pressure range 4 355
further Seer = : =685m’/ g
0.0064 —0.00003

Energie
Environnement
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Langmuir Surface Area

= Langmuir theory
= is a model of monolayer adsorption
= this hypothesis is never fulfilled

= Do not use Langmuir surface areas !!

" S| angmuir IS @lways > Sgerbecause multilayer
adsorption is treated like monolayer adsorption.
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\ = -L°/Qg/
Determination of the pore volume
300
5 250
E 200 ‘.,{ ’
2 —w--o---+-—+-—o———0———0-»-0-~0-—--¢---0—---0----0--'—'-"*""' g
el Vg5 = 240
2 cm3 STP/g
V.4 = 178 é 100 1 — Viotal
cm? STP/ S ol _
— V.. J > Vmeso - Vtotal B Vmicro
micro 0 | | | | |
0 0.2 0.4 0.6 0.8 1

p/p0

= |In some cases possible without using any model.
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Conversion gas volume — pore volume

= Volume of adsorbed gas correponds to a certain
number of moles V
= STP = Standard Temperature Pressure N = ads P
. T=273K, p =1 bar =100 kPa RT
= The adsorbed phase is considered like a liquid phase
= Density of liquid N, at 77 K : 0.807 g/mi

m N, M
Vp — N2 — d N2
PN 2.lig PN 2,liq
V_(ml/g)=1.5468-10"-V_, (cm°STP/g) .
: d |fé\

eeeeeee
Environnement
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t-plot

= Transform adsorbed amount in an average thickness
(t) of the adsorbed layer

= For multilayer adsorption on a flat surface t Vads

S




Universal curve t vs. p/p,

m The isotherms (V,_4/Sget) Of
many low surface area oxides
(SiO,, Al,O,, ZrO,, TiO,, MgO)
form a universal curve
t = f(p/po).

= Numerical description of that
curve

= validfort=3.5-10A

= and p/p,=0.1-0.8

Harkins  t=( 13.99 )1’2

Jura “log P +0.034
Po

1/3

Halsey t=354 ———

t = Vads &

SBET 3

0
pip

Fig. 12.3. The adsorption of mtrogen on nonporous samples of sﬂ1ca and alumina, the surface

.- areas ranging, from 2.6-11.5 m? g for silica and from 58-153 m” g™ for alumina. n/nm is plotted

against p/p°. n.is the number of moles adsorbed per gram of adsorbent and #n, is the monolayer

papacaty expressed in l-he same units. Line A: @ =silica; + = alumina. Line B: the BET 1sotherm

Eqn 12 19) wlth c Values of 100-200. ;
. -i

| [

on
//‘ Energie

Environnement



Isotherm expressed as V_4. = f(t)

Vads (cm3 STP/g)
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0

180 ~
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140 -
120 ~
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80 -

/
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__ “ads
120 - - t

-
o
o

limit of validity

Vads cm3 STP/g
[e2] [ee]
o o
Y w»

N B
o o o
1 1 1

0

0.2 0.4 0.6 0.8 1 0 0.5 1 15 2
p/p0 t (nm)
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\/’

t = thickness that the

t=( 13.99 )2 adsorbed phase
—log - +0.034 would have on a non-
Po porous material

Environnemen



Interpretation of t-plots

= Adsorption on a non-porous solid

= Adsorption on a microporous solid t
= micropores rapidly filled K

= then adsorption on external surface  Vads
4 5 x4 S — Vass

<

> ~.p/pg t

*
.
*
*
*
+*
*

v

© IFP
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Example zeolite NaXxX
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V. iwe =175 cm3 STP/g = 0.271 ml/g
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Surface BET vs. Surface t

-plot
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Solide non poreux : Adsorption sur Surface Externe - Courbet=t(P/P,)

Solide poreux : Adsorption sur Surfaces Interne & Externe
A

A Solide Non Poreux Solide L et m-Poreux
Adsorption sur

Surface Externe

Vol. Ads.

Adsorption sur Surface Externe

Vol. Ads

\Vj . Adsorption sur

WP _o*
.ot Surface Interne
(mesopores) =>S, . ;
|
L

-------- -
EpaISSGUI’ t Epaisseur t I Innovation
7 Energie

Environnement




t-plot of micro/mesoporous z

(] By [ - —

eolites

m Dealuminated USY zeolites

Adsorbed volume (mISTP/g)
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L = M N w w &
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o o o (=] o o o o

o
o

w
. o
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Adsorbed Volume (mISTP/g)
w1
o

[ e
[=]
o

o
o

—desilicated USY
—HMVUSY 0 |\

0,2 04 0,6 08 1 0 0,5
P/PO

T-plot

N

Increase due to
capillary
condensation

—desilicated USY
—HMVUSY

1 1,5 2 2,5
Statistical Thickness (nm)
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= - Intercept gives micropore volume
= Slope gives surface area of mesopores

= Hard to define a second slope for the external surface

Innova tion
Energie
Environnement




Average pore size

= From geometrical rules
= Cylindrical Pore:

. V =pore volume |V =arh EZE d:ﬂ
- S =surface S =2arh V r S
Spherical pore : (4

- op g V=—nar’ S 3 6V
3 3 Vi d =5

S =4xar? '
= Slit pore : = 1lhr s 1 o\
°_z =2
S=1lh vV or S
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Micropore size distribution

= Based on the relation between adsorption strength
and the ratio between adsorbate size and pore size

= condition: adsorption controled by van der Waals interactions
only

= Mathematical models

= Horvath-Kawazoe: slit-shaped pores

= Saito-F0|ey: cy"nder pores Saito, Foley, AICHE Journal 1991, 37, 429.
= |nput parameters

= pore geometry: slit-shaped, cylinder, sphere

= parameters of the Lennard-Jones potential well: € and g;
= not always well known for atypical solids

= [nput data
= high precision isotherm at very low pressure !
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Fig. 4. Adsorption isotherms of argon on 5A (Venerc and

10° 10

G
7 10—5

PP,

Fig. 11. Micropore size distribution of faujasite zeolite cal-
culated from spherical pores models: (#) improved model;

Chiou, 1988) and faujasite zeolites (Borghard er al, 1991) at

87 K: (Q) 5A zeolite; () faujasite.

mportance of geometry!
mproved model assumes

_Langmuir isotherm instead of linear ~ %&™"o7

3 nm

Slit pore model:

1.1 1.3 15
Effective Pore Size (nm) +

(<) H-K model.
z p
L3
¥ 20 )

0.8 09 10
Effective Pore Size (nm)

isotherm. Cheng Yang Chem. Eng. Sci. 1994. 4 Fig. 6. Micropore size distributions of faujasite zeolite cal-

culated from slit pore models: (@) improved model; (O)
H-K model



Mesopore size distribution

= via the theory of capillary condensation
7 7

7
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Kelvin equation

= Capillary forces in the pore lower the vapor pressure of the
condensed liquid

= Pressure at the concave side of an interface is higher than at the
convex side.
= overpressure counteracts the surface tension, which tries to collapse the
interface area
= Application to interface between gas and _pressure
adsorbed liquid film in a pore difterence Ap
= Pressure.in liquid is lower than gas pressure.

- Means that chemical potential in liquid
is'lower, in other words
that the equilibrium vapor pressure
is lower.

= Capillary condensation occurs at a
lower pressure than condensation.

surface
tension




Kelvin equation
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= Mathematic formalism
= Work against interfacial tension = change in free enthalpy

dA- ¥ = dNyapiq - Hoapiiq + ANig * Lig
dv_ .
_ _ caplig
dncapliq - _dnliq =
dvca li cha li
dA7/ = Vmp & " Heapliq — Vmp - " Hiig
dAvm V= dVcapliq (/ucapliq o luliq)
dA
(:ucapliq _,Unq) = _m Ny y
RT In Peap =— dA V.y

psat dV

cap,g
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Generalized Kelvin equation
Relation to curvature of the pore
In Peap __Viur A dV/dA =change in volume per change in
Pt RT dV interface area
Vm = molar volume
dv
dA = Teurvature Inverse relationship with curvature radius.

= Curvature depends on the pore geometry
= Sphere: ‘dV/dA =1/2
= Cylinder dV/dA=r
= Slit dV/dA=d distance between slits




Capillary condensation ™
associated with hysteresis

1200 - _
capillary

10007 evaporation

S

800 -

600 -

Vol_, (cm3/g)

400 -

N ' capillary condensation

0.0 0.2 0.4 0.6 0.8 1.0

p/p,
Iﬁ?
I//‘ Eneraie.

Environnement
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Origin of the hysteresis — Cohan's theory
N N _ N \ :
\ §~ Adsorption: \ \ Desorption:
%‘: cylindrical meniscus hemisperical meniscus
% rcurv = re1"f rcurv = reﬂ= /2
1. ‘.
\
\

= The lower r,,, the lower is the pressure of capillary
condensation/evaporation

- r.curv,ads = 2 rcurv,des

= Capillary evaporation at a lower pressure than capillary
condensation

— Hysteresis loop in isotherm

© IFP

L.H. Cohan, JACS 60 (19

nvironnemen
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ory

Application of Cohan's the
1200 ~
1000—-
/\g\ 800_’ Harkins-Jura t-plot equation
= ]
= 600- / log P = 0034139
_8 | Po t
> 400 - log 2 = —%14
] Po Fn
200 Kelvin equation
° 00 02 04 06 08 10 Cylinder !!
p/p, /
pc/ pO t(pc) rcurvature Rc / rp: rc+t
Ads 0.671 8.2 11.9 11.9 20.2
Des 0.565 7.0 8.35 x2=16.7 23.7

Sphere !
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Origin of the hysteresis

Truth seems to be complicated than in Cohan’s
theory.

Cohan’s theory, based on the shape of mensiscus,
theory suggests that different vapor liquid equilibria
exist in a spherical or cylindrical meniscus, which
leads to hysteresis => is-an equilibrium picture.

Molecular simulations (DFT) suggest that adsorption
branch is not in thermodynamic equilibrium, but is a
metastable state.




Hysteresis and metastability

(@) 1y = Adsorption branch comprises metastable states.

os | = grand free energy of filled pore is lower than
os f that of the empty pore in the hysteresis

S = Desorption branch is in thermodynamic
: equilibrium.
=~ Reason for metastability in adsorption branch

o oz o4 of 08 = barrier of nucleation by formation of a liquid
bridge across the pore

m condensation occurs when limit of
metastability is reached

0.2 r

(b) iy

limit of metastability

ﬂ gas phase/
\/\/ liquid phase

PiP, ol
Monson, MMM, 2012.

I
0.4 0.5 0.6 0.7 0.8

Peterson,



Pore network effects

®—

7 /% pore B has already been
>
@
m Desorption is controlled by a percolation process.

Order of capillary evaporation:
7 emptied.
= Desorption branch of isotherm not in thermodynamic
= probability that the pore is connected to the outer surface.

/ 2 @ C before B and A, but

N, can only desorb from pore C if
T Seaton, CES, 1991.

equilibrium any more, due to pore blocking.



© IFP

Ink-bottle pores

rdes

rdes

= In desorption the evaporation from the pore neck is
determining.

= Whole pore will only be emptied, when the capillary
evaporation pressure for the pore neck is reached.

= Sudden drop in the desorption isotherm — type H2i

Energie
Environnement




700

vicm® (STP) g

600

500 - Type H2

400 ~

300 - Adsorbent:
xerogel and

200 A
alcogel

100 L a—

Y .:' 1 T T T p{p./

If pore size distribution is calculated from desorption branch, an
artificially narrow pore size distribution is obtained

The adsorption branch has to be used to calculate the pore size
distribution.
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Adsorption vs. desorption isotherm

= Adsorption isotherm — Pros and cons

= Condensation can be delayed — not in thermodynamic
equilibrium
= Cylindrical meniscus not stable ~ not advisable to use
adsorption branch for cylindrical pores
= Desorption branch — Pros and cons

= Evaporation not delayed, in thermodynamic equilibrium —
generally preferred

= |nk-bottle type pores: smallest openening determines the
desorption

m|In a network of interconnected pores: percolation (transport)
effects determine the desorption

= Conclusion: look at both and compare them
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distribution analysis — BJH model

Py — all pores filled

|

P, — capillary evaporation in
largest pore
reduction of layer thickness

|

P, — capillary evaporation in
2nd largest pore
reduction of layer thick
both pores
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= |n each desorption step p,.;s — p,, capillary evaporation
occurs from a pore of size r,,

= The volume desorbed in that step (AV,) can be related to
the pore volume by the geometrical relation given above.

= Complication: Reduction in layer thickness in the pores,
which were already emptied, also contributes to AV...

nvironnemen
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. \\\‘—4 -:-// '
T h e B J H 'eq U atl O n E.P. Barret, L.G. Joyner, P.P. Halenda, JACS 73 (1951) 373.

2 2

I I ntr. —t 2V
_ pn . _ pn . . Pl i A A —_'P
LIRS R B (AT 2
kn n kn n J=1 pj P
capillary evaporation correction term

= For each desorption step the average diameter of the pore, which
undergoes capillary evaporation is calculated from the Kelvin
equation and the t-plot equation: r, =r, +t

log £~ = 0,034 3%
P t
og P —414
Po I

= At is the change in layer thickness in each desorption step
= AV, is the volume desorbed in each step

— A plot of pore volume vs. pore radius is obtained.

Characterization of porous solids - Characterization of Catalysts and Surfaces - G Pirngruber 17 october 2017
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Example of pore size distribu tion

= Alumina supports

= Significant differences
between PSD from
adsorption and
desorption

Isotherme
600

500

B
o
o

[
o
o

0,3

0,25
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Limits of the BJH-model

= BJH underestimates the pore size below 7.5 nm —
WHY?

= Model separates the adsorbed film and the capillary
condensate — not a realistic picture

= Fluid-wall interactions are neglected

= Kelvin equation may not be valid in very narrow pores
= Surface tension might increase with curvature

= One should speak about a BJH-value rather than pore
diameter.
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Ink-bottle type hysteresis loo

Isotherm Pore size distribution

1000 -
900 i 6+
800 i | Desorption
700 1
600 i

dv/dD
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400 01
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200

Pore size (nm)

100

T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
p/p,

= Narrow peak in the pore size distribution of the adsorption branch

is an artefact caused by the forced closure of the isotherm at
=0.43

nvironnemen



Isotherm without hysteresis loo
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Closure point of the isotherm

Q
Q
\

Critical temperature inside a pore lower than in bulk:

Tc,pore < Tc, bulk
T pore decreases with decreasing pore diameter?

Above T, no condensate-vapour meniscus
For narrow pores T, < 77 K
No hysteresis for filling and emptying of these pores

T pore < 77K for pores, which show capillary
condensation at p/p, = 0.4 — closure point of isotherm

T.(Ar) > T.(N,) — Ar isotherms show hysteresis when
N, isotherms don‘t?

[1] R. Evans, J. Phys. Condensed Matter 2 (1990) 8989.
[2] M. Thommes, R. Kéhn, M. Froba, J.Phys.Chem. B 10
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Summary — Pore size analysis

= BJH relies on Kelvin equation and the universal t-
curve for determining pore size distribution

= both concepts have weaknesses

= Alternative methods exist
= Density Functional Theory
= Broekhoff de Boer - improvement of BJH
= Derjaguin — concept of disjoining pressure
= surface tension concept that takes interaction with solid into
account

= Every model assumes a certain pore geometry
(cylindrical, spherical, slit-shaped) — influences the

results!!

= The adsorption and the desorption branch contain
different information — look at both.
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DFT is becoming state of the art

= Express the Grand Potential as a function of the fluid
density distribution in space

0lp] = Flo] + f oWV (r)dr — [ p(r)dr

= p(r) = fluid densityat position r
= F(p) = Helmholtz energy of the system due to fluid-fluid
interactions, in the absence of an external field

= V(r) = external potential at position r
= [ =chemical potential
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. Q\ .
Expression for the grand potential

u
[ | o
M o °

Ideal gas Excess energy (non-ideality)

A A
| | I |

Qlp()] = kyT f (1) [I'n. (A3(r)) - 1] dr + kyT f dr @ ({A}())
‘ +5 [[ar [ 00007, - rar - [ o= 4., ar

J

| |
Fluid-fluid-interaction External potential

= Everything is in the experssion of @
= Solid-fluid interaction

= . Effet of pore size and pore geometry (confinement)
= Similar to the HK, SF models of micropore size analysis
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= Kernel of adsorption isotherms (= integrated fluid
density) is calculated as function of pore size

= Experimental adsorptionisotherm is fitted by a
weighted sum of the kernel isotherms

= The weights give the pore size distribution.

m Recommended method :

= Use DFT to extract pore size distribution from adsorption
branch.

= Use desorption branch to analyze percolation phenomena
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Be careful when using DF

= Modern commercial equipment has DFT analysis
intergrated in the software

= |s a press-button, black-box method
= Depending on the solid-fluid interaction parameters and the
pore geometry that the DFT method relies on you will get
different results
= You should know what you are doing

= Like BJH analysis, DFT produces” ™ G
an artifact : peak in pore size | - Sinan g
distribution at 1 nm

= Due to formation of an ordered

layer on the surface

dVv(d) (cm*nm/g)

Ty R
lllllll
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Questions

= When you analyse the pore size distribution for a
given isotherm with a cylindrical model or with a
spherical model, what will be the ratio between the
pore size?

= The analysis of the desorption branch of the
adsorption isotherm gives the
= Pore size distribution
= Neck size distribution
= None of them
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Literature

= Textbooks on adsorption

= D.A. Ruthven, Principles of Adsorption and Adsorption
Processes, Wiley

= D.D. Do, Adsorption Analysis: Equilibria and Kinetics,
Imperial College Press

= Review articles discussing a more moderne view of
hysteresis effects and pore size analysis

= P.A. Monson, Understanding adsorption/desorption
hysteresis for fluids in mesoporous materials using simple
molecular models and classical density functional theory,
Microporous Mesoporous Materials 160 (2012) 47.

= B. Coasne et al., Adsorption, intrusion and freezing in porous
silica: the view from the nanoscale, Chem. Soc. Rev. 42
(2013) 4141.
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Alternative explanations of the
Kelvin equation
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condensation

= Vapour pressure of a liquid under external pressure

External pressure

\4

H,0

My

py = new vapour pressure of H,0

Pgo = orignial vapour pressure of H,O
Ap, = external pressure on liquid (H,0),
which induces the change in vapour

pressure

v, = molar volume of liquid (H,O)

Characterization of porous solids - Characterization of Catalysts and Surfaces - G Pirngruber 17 october 2017

= Equlibrium gas-liquid p,=
vapour pressure p g

= Equilibrium disturbed by external
pressure

dp‘g = dul -V dpl = Vg dpg
v, dp,= RT/p, * dp,
VAP, = RT In (pg/pgo)

V
Py = Py -exp(ﬁ Ap,)

nvironnemen



© IFP

\

Vapour pressure of a drop of I

iquid

2
Pin = Pout = _7/
r

y = surface tension
r = radius of curvature

2
pl o pout :_7/
r

2
P = p"'_]/
I

Pout

Pin = Pout

overpressure
Inside the drop
holds against

surface tension
tries to contract
the drop
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Vapour pressure of a liquid void -

27/ Pout Pin = Pout
Pin = Pout = r overpressure
In gas bubble
2y holds against
Pin = B =—
;
B 2y surface tension
bh=P- T tries to collapse
the void

-exp(— 2VI7/) Kelvin equation: vapour giessure
= RT -r Inside a void is lowered |
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Kelvin equation

= Capillary forces in the pore lower the vapor pressure

of the condensed liquid

Peap

Heap = Ho +RT In Hig = Ho + RTIn

0N

.

\
\
k

capillary

—

unconfined liquid
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psat

Po Po

Evaporate n moles from capillary
and condense on a flat surface.
You have to work against the
surface tension y.

W = AAycosO = 2nrAlycos6

The work done to overcome the surface
tension is equal to change in chemical

potential.

n-Ay:ﬂRT In Psa

m pcap
Explains why vapor pressure of the
unconfined liquid is higher than in the
capillary.
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