X-ray absorption spectroscopy

Literature recommendations

J.C. Vickerman (editor), "Surface Analysis – The Principal Techniques", Wiley, 1997
J. W. Niemantsverdriet, "Spectroscopy in Catalysis – An Introduction", VCH, 1993
B. K. Teo, "EXAFS Spectroscopy: Principles and Applications", Plenum Pub Corp, 1981

Jagdeep Singh

Jeroen A. van Bokhoven

Absorption as function of energy of the x-ray

Data-analysis

Background and Normalization

EXAFS Function

EXAFS formula $\chi(k) = \sum_{i} \frac{N_{i}F_{i}(k)}{kR_{i}^{2}} \exp\left(\frac{-2R_{i}}{\lambda}\right)$ $\exp\left(-2\sigma_i^2k^2\right)\sin\left(2kR_i+\varphi_j(k)\right)$ Scatter Disorder Damping power 1st neighbor 60 2nd neighbor Fourier transform $(k^{2*}\chi(k))$ 40 20 Fourier transformation

χ(k)

-20

-40

-60

4

6

8

12

14

10

k(Å⁻¹)

radial distribution function

R (Å)

Δ

3

5

6

2

1

Temperature effect on EXAFS / XANES

Getting structural information from EXAFS

$$\chi(k) = \sum_{i} NF_{i}(k) \left[\frac{S_{0}^{2}}{kR_{i}^{2}} \exp\left(\frac{-2R_{i}}{\lambda}\right) \exp\left(-2\sigma_{i}^{2}k^{2}\right) \sin\left(2kR_{i} + \varphi_{j}(k)\right) \right]$$

 F_i , ϕ_i , and S_o^2 from reference compound or theory

Coordination number	6.8
Au-Au distance	2.76 Å
∆DWF	0.0058
C3	9 E-6
C4	3E-6

Added parameter: ΔE_0

Abstract

• EXAFS gives local structure

• XANES gives geometry and oxidation state (empty density of states)

Information contained in an XAS Spectrum

Data Analysis: Fitting Process 1st coordination shell

Scatter Damping power

Disorder

XANES versus EXAFS

EXAFS

- Single scattering dominates

XANES

- Multiple scattering
- Electronic transitions
- Multiple electron transitions

Information

- Number & kind of neighbor
- Distance
- Disorder
- Geometry / subtle distortions
- Oxidation state
- Electronic information
- DOS in final state

Theoretical description of XANES

- Detailed electronic information
- Aids interpretation of spectra of unknown compounds
- Time-consuming
- Needs an expert

XAS in Catalysis

Goal Local structure of catalysts under well-defined conditions precursor state during / after activation during reaction deactivation time-resolution (few msec) space-resolution (few μ m)

.

Palladium hydride formation

Partial / complete oxidation of hydrocarbons methane, alkenes, methanol

Hydrogenation / dehydrogenation reactions alkenes, alkynes, alkadienes, (un)saturated ketones

Methanol synthesis

 $\begin{array}{rcl} \mathsf{CO} + 2\mathsf{H}_2 \ & \rightarrow & \mathsf{CH}_3\mathsf{OH} \\ \mathsf{CO}_2 + 3 \ \mathsf{H}_2 \ & \rightarrow & \mathsf{CH}_3\mathsf{OH} + \mathsf{H}_2\mathsf{O} \end{array}$

WGS $H_2O + CO \rightarrow CO_2 + H_2$

Nitric Oxide reduction (with CO, olefins, or H_2)

CO oxidation 1925: Active in CO oxidation highly active in presence of H_2 : Haruta Catal. Today 36 (1997) 153 Selective CO removal, air purification, high-purity N_2 and O_2

Physical properties

- bulk metallic gold is thermodynamically stable
- melting point and metallicity of the particle is function of particle size

Buffat Phys. Rev. A 13 (1976) 2287

Physical properties

- bulk metallic gold is thermodynamically stable
- melting point and metallicity of the particle is function of particle size

15

20

CO oxidation: particle-size effect

Physical properties:

- bulk metallic gold is thermodynamically stable
- melting point and metallicity of the particle is function of particle size

CO oxidation: particle-size effect

Large support effects:

SiO₂: hardly active Al₂O₃, MgO: moderately active (TiO₂) Fe₂O₃, CeO₂, other reducible supports: very active & less dependent on particle sizes; No clear relation to reducibility of support

Active species in gold oxidation catalysis?

- Carbonate-mechanism excluded
- Small particles become active as soon as they are non-metallic (Goodman)
- Oxidic gold (I or III) is active species (Gates)
- Theory supports both gold-only and support-aided mechanism
- Support supplies oxygen via molecularly (activated) adsorbed oxygen via Mars van Krevelen

Geometry / coordination

Density of states

Oxidation state

Time resolved

In situ

How is oxygen activated on the catalyst?

How can the most inert metal be so active?

Nørskov et al. Angew. Chem. 44 (2005) 1824

Small gold particles adsorb oxygen (and react)

Structure of gold catalysts

Sample Preparation

- Deposition precipitation HAuCl₄ adjusted pH
- Washing with a base to remove chlorine
- Reduction in hydrogen

Supports Al₂O₃, SiO₂, CeO₂, TiO₂, ZrO₂, Nb₂O₅

Full EXAFS & XANES analyses

EXAFS Fitting Results of Reduced Catalysts

EXAFS Fitting Results of Reduced Catalysts

Strong reduction in Au-Au distance with particle size No visible influence of support

Electronic structure from L_{III} XANES

Whitelines reflect number of holes in the d-band

Gold whiteline: spd-rehybridization results in 5d^{10-x}6sp^{1+x}

Mattheiss, L.F. et al. Phys. Rev. B 1980, 22, 1663

Whitelines reflect number of holes in the d-band

Energy (keV)

Whiteline intensity versus particle size *Difference intensity with bulk*

Six supports, one trend Larger particles fewer d-electrons

Exposure to 20% O₂

	CN	R(Å)	%Au(III)
Reduced	3.6	2.72	0
Reox. RT	3.6 / <mark>0.3</mark>	2.72 / <mark>2.04</mark>	10
Reox. 225C	2.7 / <mark>0.5</mark>	2.71 / <mark>2.04</mark>	15

XAS during CO Oxidation

	CN(Au)	R(Au)		
Не	6.5	2.77		
1:1	5.3	2.73		
2:1	5.7	2.73		
1:2	5.2	2.77		
Small oxygen contribution				

More intense with more CO: holes in the d-band (anti-bonding states)

Gold catalysts and activation of oxygen

- Under (diluted) O₂: surface oxidation (Au/Al₂O₃ & Au/TiO₂)
- Switch to CO/O₂: CO keeps gold reduced

Reduced gold is active phase Gold participates in oxygen activation

Van Bokhoven Angew. Chem. (2006) VIP

- Rehybridization of spd-orbitals (5d^{10-x}6sp^{1+x})
- Smaller particles have fewer holes in the d-band
- Particle size dominates support-effect
- Oxygen is activated on gold particle

Adsorption sites from XAS

FEFF8 simulation

fuel cell (PEM)

catalytic converter

platinum catalyst Structure of the active phase?

surface reaction

surface patterns

surface roughening

Langmuir-Hinshelwood

Two reaction regimes

- Low activity CO poisoning
- High activity **???**

Langmuir-Hinshelwood

UHV conditions

2wt%Pt/Al₂O₃

Conversion data

O ₂ /CO ratio		ignition or extinction temperature (K)			hysteresis	temperature for onset of conversion (K)		
		heating		cooling				
1		472		456		yes	340	
2		445		440		yes	338	
5		433 🗸	,	421	7	yes	329	7

XAS

Energy (eV)

XAS

 $O_2/CO = 2$

ratio $O_2 / CO = 2$

oxidation parallels ignition

Kinetics and XAS

Kinetics and XAS

XAS (QEXAFS)

Conclusions

- a highly active state of the catalyst is discovered
- the catalyst shows different structure in low- and highactivity regime; low-activity region : CO adsorbed on platinum, high-activity region: partially oxidized platinum
- the catalyst increasingly oxidizes during the ignition
- high temperature and a high oxygen concentration benefit the formation of the more active partially oxidic catalyst.

EXAFS analysis Below and above temperature of ignition

EXAFS analysis

Pt /Al₂O₃ small particles

Kinetic oscillations – Single Crystals

M. Eiswirth and G. Ertl, Surface Sci. 177 (1986), 90

Kinetic oscillations – Single Crystals

bulk crystal plane

Pt (110)

T. Gritsch et al. Phys. Rev. Lett. **63** (1989) 1086 *N. Freyer et al. Surface Sci.* **166** (1986) 206

Kinetic oscillations - 2wt% Pt/Al₂O₃

kinetic oscillations originate from the reduction and re-oxidation of the surface

Best of luck for your exams ③

R-FactorAbsolute misfit between data and theory χ^2 Function minimised in fitting algorithmsred χ^2 minimised function scaled by degrees of freedom

$$N_{ind} = \frac{2 \cdot \Delta k \,\Delta R}{\pi} + 1$$

 $\begin{array}{l} \mbox{EXAFS error margins:} \\ \mbox{N \pm 0.5$} & 20\% \\ \mbox{R \pm 0.01 - 0.03$} \\ \mbox{\sigma}^2 \mbox{\pm 20\%$} \end{array}$